Home | History | Annotate | Line # | Download | only in include
lock.h revision 1.15
      1  1.15     skrll /*	$NetBSD: lock.h,v 1.15 2007/09/10 11:34:10 skrll Exp $	*/
      2   1.1      fvdl 
      3   1.1      fvdl /*-
      4  1.12        ad  * Copyright (c) 2000, 2006 The NetBSD Foundation, Inc.
      5   1.1      fvdl  * All rights reserved.
      6   1.1      fvdl  *
      7   1.1      fvdl  * This code is derived from software contributed to The NetBSD Foundation
      8  1.12        ad  * by Jason R. Thorpe and Andrew Doran.
      9   1.1      fvdl  *
     10   1.1      fvdl  * Redistribution and use in source and binary forms, with or without
     11   1.1      fvdl  * modification, are permitted provided that the following conditions
     12   1.1      fvdl  * are met:
     13   1.1      fvdl  * 1. Redistributions of source code must retain the above copyright
     14   1.1      fvdl  *    notice, this list of conditions and the following disclaimer.
     15   1.1      fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1      fvdl  *    notice, this list of conditions and the following disclaimer in the
     17   1.1      fvdl  *    documentation and/or other materials provided with the distribution.
     18   1.1      fvdl  * 3. All advertising materials mentioning features or use of this software
     19   1.1      fvdl  *    must display the following acknowledgement:
     20   1.1      fvdl  *	This product includes software developed by the NetBSD
     21   1.1      fvdl  *	Foundation, Inc. and its contributors.
     22   1.1      fvdl  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1      fvdl  *    contributors may be used to endorse or promote products derived
     24   1.1      fvdl  *    from this software without specific prior written permission.
     25   1.1      fvdl  *
     26   1.1      fvdl  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1      fvdl  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1      fvdl  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1      fvdl  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1      fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1      fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1      fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1      fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1      fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1      fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1      fvdl  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1      fvdl  */
     38   1.1      fvdl 
     39   1.1      fvdl /*
     40   1.1      fvdl  * Machine-dependent spin lock operations.
     41   1.1      fvdl  */
     42   1.1      fvdl 
     43   1.9      yamt #ifndef _X86_LOCK_H_
     44   1.9      yamt #define	_X86_LOCK_H_
     45   1.1      fvdl 
     46   1.1      fvdl #if defined(_KERNEL_OPT)
     47   1.1      fvdl #include "opt_lockdebug.h"
     48   1.1      fvdl #endif
     49   1.1      fvdl 
     50   1.2      fvdl #include <machine/cpufunc.h>
     51   1.1      fvdl 
     52  1.15     skrll static __inline int
     53  1.15     skrll __SIMPLELOCK_LOCKED_P(__cpu_simple_lock_t *__ptr)
     54  1.15     skrll {
     55  1.15     skrll 	return *__ptr == __SIMPLELOCK_LOCKED;
     56  1.15     skrll }
     57  1.15     skrll 
     58  1.15     skrll static __inline int
     59  1.15     skrll __SIMPLELOCK_UNLOCKED_P(__cpu_simple_lock_t *__ptr)
     60  1.15     skrll {
     61  1.15     skrll 	return *__ptr == __SIMPLELOCK_UNLOCKED;
     62  1.15     skrll }
     63  1.15     skrll 
     64   1.1      fvdl #ifdef LOCKDEBUG
     65   1.1      fvdl 
     66   1.5  junyoung extern void __cpu_simple_lock_init(__cpu_simple_lock_t *);
     67   1.5  junyoung extern void __cpu_simple_lock(__cpu_simple_lock_t *);
     68   1.5  junyoung extern int __cpu_simple_lock_try(__cpu_simple_lock_t *);
     69   1.5  junyoung extern void __cpu_simple_unlock(__cpu_simple_lock_t *);
     70   1.1      fvdl 
     71   1.1      fvdl #else
     72   1.1      fvdl 
     73   1.1      fvdl #include <machine/atomic.h>
     74   1.1      fvdl 
     75  1.11     perry static __inline void __cpu_simple_lock_init(__cpu_simple_lock_t *)
     76   1.1      fvdl 	__attribute__((__unused__));
     77  1.11     perry static __inline void __cpu_simple_lock(__cpu_simple_lock_t *)
     78   1.1      fvdl 	__attribute__((__unused__));
     79  1.11     perry static __inline int __cpu_simple_lock_try(__cpu_simple_lock_t *)
     80   1.1      fvdl 	__attribute__((__unused__));
     81  1.11     perry static __inline void __cpu_simple_unlock(__cpu_simple_lock_t *)
     82   1.1      fvdl 	__attribute__((__unused__));
     83   1.1      fvdl 
     84  1.11     perry static __inline void
     85  1.15     skrll __cpu_simple_lock_set(__cpu_simple_lock_t *__ptr)
     86  1.15     skrll {
     87  1.15     skrll 
     88  1.15     skrll 	*__ptr = __SIMPLELOCK_LOCKED;
     89  1.15     skrll }
     90  1.15     skrll 
     91  1.15     skrll static __inline void
     92  1.15     skrll __cpu_simple_lock_clear(__cpu_simple_lock_t *__ptr)
     93  1.15     skrll {
     94  1.15     skrll 
     95  1.15     skrll 	*__ptr = __SIMPLELOCK_UNLOCKED;
     96  1.15     skrll }
     97  1.15     skrll 
     98  1.15     skrll static __inline void
     99   1.1      fvdl __cpu_simple_lock_init(__cpu_simple_lock_t *lockp)
    100   1.1      fvdl {
    101   1.1      fvdl 
    102   1.1      fvdl 	*lockp = __SIMPLELOCK_UNLOCKED;
    103   1.7      yamt 	__insn_barrier();
    104   1.1      fvdl }
    105   1.1      fvdl 
    106  1.11     perry static __inline void
    107   1.1      fvdl __cpu_simple_lock(__cpu_simple_lock_t *lockp)
    108   1.1      fvdl {
    109   1.1      fvdl 
    110  1.13        ad 	while (x86_atomic_testset_b(lockp, __SIMPLELOCK_LOCKED)
    111   1.6      yamt 	    != __SIMPLELOCK_UNLOCKED) {
    112   1.6      yamt 		do {
    113   1.6      yamt 			x86_pause();
    114   1.6      yamt 		} while (*lockp == __SIMPLELOCK_LOCKED);
    115   1.6      yamt 	}
    116   1.7      yamt 	__insn_barrier();
    117   1.1      fvdl }
    118   1.1      fvdl 
    119  1.11     perry static __inline int
    120   1.1      fvdl __cpu_simple_lock_try(__cpu_simple_lock_t *lockp)
    121   1.1      fvdl {
    122  1.13        ad 	int r = (x86_atomic_testset_b(lockp, __SIMPLELOCK_LOCKED)
    123   1.1      fvdl 	    == __SIMPLELOCK_UNLOCKED);
    124   1.1      fvdl 
    125   1.7      yamt 	__insn_barrier();
    126   1.1      fvdl 
    127   1.1      fvdl 	return (r);
    128   1.1      fvdl }
    129   1.1      fvdl 
    130  1.12        ad /*
    131  1.12        ad  * Note on x86 memory ordering
    132  1.12        ad  *
    133  1.12        ad  * When releasing a lock we must ensure that no stores or loads from within
    134  1.12        ad  * the critical section are re-ordered by the CPU to occur outside of it:
    135  1.12        ad  * they must have completed and be visible to other processors once the lock
    136  1.12        ad  * has been released.
    137  1.12        ad  *
    138  1.12        ad  * NetBSD usually runs with the kernel mapped (via MTRR) in a WB (write
    139  1.12        ad  * back) memory region.  In that case, memory ordering on x86 platforms
    140  1.12        ad  * looks like this:
    141  1.12        ad  *
    142  1.12        ad  * i386		All loads/stores occur in instruction sequence.
    143  1.12        ad  *
    144  1.12        ad  * i486		All loads/stores occur in instruction sequence.  In
    145  1.12        ad  * Pentium	exceptional circumstances, loads can be re-ordered around
    146  1.12        ad  *		stores, but for the purposes of releasing a lock it does
    147  1.12        ad  *		not matter.  Stores may not be immediately visible to other
    148  1.12        ad  *		processors as they can be buffered.  However, since the
    149  1.12        ad  *		stores are buffered in order the lock release will always be
    150  1.12        ad  *		the last operation in the critical section that becomes
    151  1.12        ad  *		visible to other CPUs.
    152  1.12        ad  *
    153  1.12        ad  * Pentium Pro	The "Intel 64 and IA-32 Architectures Software Developer's
    154  1.12        ad  * onwards	Manual" volume 3A (order number 248966) says that (1) "Reads
    155  1.12        ad  *		can be carried out speculatively and in any order" and (2)
    156  1.12        ad  *		"Reads can pass buffered stores, but the processor is
    157  1.12        ad  *		self-consistent.".  This would be a problem for the below,
    158  1.12        ad  *		and would mandate a locked instruction cycle or load fence
    159  1.12        ad  *		before releasing the simple lock.
    160  1.12        ad  *
    161  1.12        ad  *		The "Intel Pentium 4 Processor Optimization" guide (order
    162  1.12        ad  *		number 253668-022US) says: "Loads can be moved before stores
    163  1.12        ad  *		that occurred earlier in the program if they are not
    164  1.12        ad  *		predicted to load from the same linear address.".  This is
    165  1.12        ad  *		not a problem since the only loads that can be re-ordered
    166  1.12        ad  *		take place once the lock has been released via a store.
    167  1.12        ad  *
    168  1.12        ad  *		The above two documents seem to contradict each other,
    169  1.12        ad  *		however with the exception of early steppings of the Pentium
    170  1.12        ad  *		Pro, the second document is closer to the truth: a store
    171  1.12        ad  *		will always act as a load fence for all loads that precede
    172  1.12        ad  *		the store in instruction order.
    173  1.12        ad  *
    174  1.12        ad  *		Again, note that stores can be buffered and will not always
    175  1.12        ad  *		become immediately visible to other CPUs: they are however
    176  1.12        ad  *		buffered in order.
    177  1.12        ad  *
    178  1.12        ad  * AMD64	Stores occur in order and are buffered.  Loads can be
    179  1.12        ad  *		reordered, however stores act as load fences, meaning that
    180  1.12        ad  *		loads can not be reordered around stores.
    181  1.12        ad  */
    182  1.11     perry static __inline void
    183   1.1      fvdl __cpu_simple_unlock(__cpu_simple_lock_t *lockp)
    184   1.1      fvdl {
    185   1.1      fvdl 
    186   1.7      yamt 	__insn_barrier();
    187   1.1      fvdl 	*lockp = __SIMPLELOCK_UNLOCKED;
    188   1.1      fvdl }
    189   1.1      fvdl 
    190   1.1      fvdl #endif /* !LOCKDEBUG */
    191   1.4      yamt 
    192  1.13        ad #define	SPINLOCK_SPIN_HOOK	/* nothing */
    193  1.13        ad #define	SPINLOCK_BACKOFF_HOOK	x86_pause()
    194  1.13        ad 
    195   1.4      yamt #ifdef _KERNEL
    196  1.13        ad void	mb_read(void);
    197  1.13        ad void	mb_write(void);
    198  1.13        ad void	mb_memory(void);
    199  1.13        ad #else	/* _KERNEL */
    200  1.14        ad static __inline void
    201  1.13        ad mb_read(void)
    202  1.13        ad {
    203  1.13        ad 	x86_lfence();
    204  1.13        ad }
    205  1.13        ad 
    206  1.14        ad static __inline void
    207  1.13        ad mb_write(void)
    208  1.13        ad {
    209  1.13        ad 	__insn_barrier();
    210  1.13        ad }
    211  1.13        ad 
    212  1.14        ad static __inline void
    213  1.13        ad mb_memory(void)
    214  1.13        ad {
    215  1.13        ad 	x86_mfence();
    216  1.13        ad }
    217  1.13        ad #endif	/* _KERNEL */
    218   1.1      fvdl 
    219   1.9      yamt #endif /* _X86_LOCK_H_ */
    220