Home | History | Annotate | Line # | Download | only in include
lock.h revision 1.17.2.1
      1  1.17.2.1  bouyer /*	$NetBSD: lock.h,v 1.17.2.1 2007/11/13 16:00:16 bouyer Exp $	*/
      2       1.1    fvdl 
      3       1.1    fvdl /*-
      4      1.12      ad  * Copyright (c) 2000, 2006 The NetBSD Foundation, Inc.
      5       1.1    fvdl  * All rights reserved.
      6       1.1    fvdl  *
      7       1.1    fvdl  * This code is derived from software contributed to The NetBSD Foundation
      8      1.12      ad  * by Jason R. Thorpe and Andrew Doran.
      9       1.1    fvdl  *
     10       1.1    fvdl  * Redistribution and use in source and binary forms, with or without
     11       1.1    fvdl  * modification, are permitted provided that the following conditions
     12       1.1    fvdl  * are met:
     13       1.1    fvdl  * 1. Redistributions of source code must retain the above copyright
     14       1.1    fvdl  *    notice, this list of conditions and the following disclaimer.
     15       1.1    fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1    fvdl  *    notice, this list of conditions and the following disclaimer in the
     17       1.1    fvdl  *    documentation and/or other materials provided with the distribution.
     18       1.1    fvdl  * 3. All advertising materials mentioning features or use of this software
     19       1.1    fvdl  *    must display the following acknowledgement:
     20       1.1    fvdl  *	This product includes software developed by the NetBSD
     21       1.1    fvdl  *	Foundation, Inc. and its contributors.
     22       1.1    fvdl  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.1    fvdl  *    contributors may be used to endorse or promote products derived
     24       1.1    fvdl  *    from this software without specific prior written permission.
     25       1.1    fvdl  *
     26       1.1    fvdl  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.1    fvdl  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.1    fvdl  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.1    fvdl  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.1    fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.1    fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.1    fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.1    fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.1    fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.1    fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.1    fvdl  * POSSIBILITY OF SUCH DAMAGE.
     37       1.1    fvdl  */
     38       1.1    fvdl 
     39       1.1    fvdl /*
     40       1.1    fvdl  * Machine-dependent spin lock operations.
     41       1.1    fvdl  */
     42       1.1    fvdl 
     43       1.9    yamt #ifndef _X86_LOCK_H_
     44       1.9    yamt #define	_X86_LOCK_H_
     45       1.1    fvdl 
     46      1.17      ad #ifdef _KERNEL
     47       1.2    fvdl #include <machine/cpufunc.h>
     48      1.17      ad #endif
     49  1.17.2.1  bouyer #include <machine/atomic.h>
     50  1.17.2.1  bouyer 
     51       1.1    fvdl 
     52      1.15   skrll static __inline int
     53      1.15   skrll __SIMPLELOCK_LOCKED_P(__cpu_simple_lock_t *__ptr)
     54      1.15   skrll {
     55      1.15   skrll 	return *__ptr == __SIMPLELOCK_LOCKED;
     56      1.15   skrll }
     57      1.15   skrll 
     58      1.15   skrll static __inline int
     59      1.15   skrll __SIMPLELOCK_UNLOCKED_P(__cpu_simple_lock_t *__ptr)
     60      1.15   skrll {
     61      1.15   skrll 	return *__ptr == __SIMPLELOCK_UNLOCKED;
     62      1.15   skrll }
     63      1.15   skrll 
     64      1.16   skrll static __inline void
     65      1.16   skrll __cpu_simple_lock_set(__cpu_simple_lock_t *__ptr)
     66      1.16   skrll {
     67      1.16   skrll 
     68      1.16   skrll 	*__ptr = __SIMPLELOCK_LOCKED;
     69      1.16   skrll }
     70      1.16   skrll 
     71      1.16   skrll static __inline void
     72      1.16   skrll __cpu_simple_lock_clear(__cpu_simple_lock_t *__ptr)
     73      1.16   skrll {
     74      1.16   skrll 
     75      1.16   skrll 	*__ptr = __SIMPLELOCK_UNLOCKED;
     76      1.16   skrll }
     77      1.16   skrll 
     78      1.11   perry static __inline void __cpu_simple_lock_init(__cpu_simple_lock_t *)
     79       1.1    fvdl 	__attribute__((__unused__));
     80      1.11   perry static __inline void __cpu_simple_lock(__cpu_simple_lock_t *)
     81       1.1    fvdl 	__attribute__((__unused__));
     82      1.11   perry static __inline int __cpu_simple_lock_try(__cpu_simple_lock_t *)
     83       1.1    fvdl 	__attribute__((__unused__));
     84      1.11   perry static __inline void __cpu_simple_unlock(__cpu_simple_lock_t *)
     85       1.1    fvdl 	__attribute__((__unused__));
     86       1.1    fvdl 
     87      1.11   perry static __inline void
     88       1.1    fvdl __cpu_simple_lock_init(__cpu_simple_lock_t *lockp)
     89       1.1    fvdl {
     90       1.1    fvdl 
     91       1.1    fvdl 	*lockp = __SIMPLELOCK_UNLOCKED;
     92       1.7    yamt 	__insn_barrier();
     93       1.1    fvdl }
     94       1.1    fvdl 
     95      1.11   perry static __inline void
     96       1.1    fvdl __cpu_simple_lock(__cpu_simple_lock_t *lockp)
     97       1.1    fvdl {
     98       1.1    fvdl 
     99      1.13      ad 	while (x86_atomic_testset_b(lockp, __SIMPLELOCK_LOCKED)
    100       1.6    yamt 	    != __SIMPLELOCK_UNLOCKED) {
    101       1.6    yamt 		do {
    102      1.17      ad #ifdef _KERNEL
    103       1.6    yamt 			x86_pause();
    104      1.17      ad #endif /* _KERNEL */
    105       1.6    yamt 		} while (*lockp == __SIMPLELOCK_LOCKED);
    106       1.6    yamt 	}
    107       1.7    yamt 	__insn_barrier();
    108       1.1    fvdl }
    109       1.1    fvdl 
    110      1.11   perry static __inline int
    111       1.1    fvdl __cpu_simple_lock_try(__cpu_simple_lock_t *lockp)
    112       1.1    fvdl {
    113      1.13      ad 	int r = (x86_atomic_testset_b(lockp, __SIMPLELOCK_LOCKED)
    114       1.1    fvdl 	    == __SIMPLELOCK_UNLOCKED);
    115       1.1    fvdl 
    116       1.7    yamt 	__insn_barrier();
    117       1.1    fvdl 
    118       1.1    fvdl 	return (r);
    119       1.1    fvdl }
    120       1.1    fvdl 
    121      1.12      ad /*
    122      1.12      ad  * Note on x86 memory ordering
    123      1.12      ad  *
    124      1.12      ad  * When releasing a lock we must ensure that no stores or loads from within
    125      1.12      ad  * the critical section are re-ordered by the CPU to occur outside of it:
    126      1.12      ad  * they must have completed and be visible to other processors once the lock
    127      1.12      ad  * has been released.
    128      1.12      ad  *
    129      1.12      ad  * NetBSD usually runs with the kernel mapped (via MTRR) in a WB (write
    130      1.12      ad  * back) memory region.  In that case, memory ordering on x86 platforms
    131      1.12      ad  * looks like this:
    132      1.12      ad  *
    133      1.12      ad  * i386		All loads/stores occur in instruction sequence.
    134      1.12      ad  *
    135      1.12      ad  * i486		All loads/stores occur in instruction sequence.  In
    136      1.12      ad  * Pentium	exceptional circumstances, loads can be re-ordered around
    137      1.12      ad  *		stores, but for the purposes of releasing a lock it does
    138      1.12      ad  *		not matter.  Stores may not be immediately visible to other
    139      1.12      ad  *		processors as they can be buffered.  However, since the
    140      1.12      ad  *		stores are buffered in order the lock release will always be
    141      1.12      ad  *		the last operation in the critical section that becomes
    142      1.12      ad  *		visible to other CPUs.
    143      1.12      ad  *
    144      1.12      ad  * Pentium Pro	The "Intel 64 and IA-32 Architectures Software Developer's
    145      1.12      ad  * onwards	Manual" volume 3A (order number 248966) says that (1) "Reads
    146      1.12      ad  *		can be carried out speculatively and in any order" and (2)
    147      1.12      ad  *		"Reads can pass buffered stores, but the processor is
    148      1.12      ad  *		self-consistent.".  This would be a problem for the below,
    149      1.12      ad  *		and would mandate a locked instruction cycle or load fence
    150      1.12      ad  *		before releasing the simple lock.
    151      1.12      ad  *
    152      1.12      ad  *		The "Intel Pentium 4 Processor Optimization" guide (order
    153      1.12      ad  *		number 253668-022US) says: "Loads can be moved before stores
    154      1.12      ad  *		that occurred earlier in the program if they are not
    155      1.12      ad  *		predicted to load from the same linear address.".  This is
    156      1.12      ad  *		not a problem since the only loads that can be re-ordered
    157      1.12      ad  *		take place once the lock has been released via a store.
    158      1.12      ad  *
    159      1.12      ad  *		The above two documents seem to contradict each other,
    160      1.12      ad  *		however with the exception of early steppings of the Pentium
    161      1.12      ad  *		Pro, the second document is closer to the truth: a store
    162      1.12      ad  *		will always act as a load fence for all loads that precede
    163      1.12      ad  *		the store in instruction order.
    164      1.12      ad  *
    165      1.12      ad  *		Again, note that stores can be buffered and will not always
    166      1.12      ad  *		become immediately visible to other CPUs: they are however
    167      1.12      ad  *		buffered in order.
    168      1.12      ad  *
    169      1.12      ad  * AMD64	Stores occur in order and are buffered.  Loads can be
    170      1.12      ad  *		reordered, however stores act as load fences, meaning that
    171      1.12      ad  *		loads can not be reordered around stores.
    172      1.12      ad  */
    173      1.11   perry static __inline void
    174       1.1    fvdl __cpu_simple_unlock(__cpu_simple_lock_t *lockp)
    175       1.1    fvdl {
    176       1.1    fvdl 
    177       1.7    yamt 	__insn_barrier();
    178       1.1    fvdl 	*lockp = __SIMPLELOCK_UNLOCKED;
    179       1.1    fvdl }
    180       1.1    fvdl 
    181      1.13      ad #define	SPINLOCK_SPIN_HOOK	/* nothing */
    182      1.13      ad #define	SPINLOCK_BACKOFF_HOOK	x86_pause()
    183      1.13      ad 
    184       1.4    yamt #ifdef _KERNEL
    185      1.13      ad void	mb_read(void);
    186      1.13      ad void	mb_write(void);
    187      1.13      ad void	mb_memory(void);
    188      1.13      ad #endif	/* _KERNEL */
    189       1.1    fvdl 
    190       1.9    yamt #endif /* _X86_LOCK_H_ */
    191