Home | History | Annotate | Line # | Download | only in include
lock.h revision 1.19.6.3
      1  1.19.6.1  bouyer /*	$NetBSD: lock.h,v 1.19.6.3 2008/01/10 23:44:07 bouyer Exp $	*/
      2       1.1    fvdl 
      3       1.1    fvdl /*-
      4      1.12      ad  * Copyright (c) 2000, 2006 The NetBSD Foundation, Inc.
      5       1.1    fvdl  * All rights reserved.
      6       1.1    fvdl  *
      7       1.1    fvdl  * This code is derived from software contributed to The NetBSD Foundation
      8      1.12      ad  * by Jason R. Thorpe and Andrew Doran.
      9       1.1    fvdl  *
     10       1.1    fvdl  * Redistribution and use in source and binary forms, with or without
     11       1.1    fvdl  * modification, are permitted provided that the following conditions
     12       1.1    fvdl  * are met:
     13       1.1    fvdl  * 1. Redistributions of source code must retain the above copyright
     14       1.1    fvdl  *    notice, this list of conditions and the following disclaimer.
     15       1.1    fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1    fvdl  *    notice, this list of conditions and the following disclaimer in the
     17       1.1    fvdl  *    documentation and/or other materials provided with the distribution.
     18       1.1    fvdl  * 3. All advertising materials mentioning features or use of this software
     19       1.1    fvdl  *    must display the following acknowledgement:
     20       1.1    fvdl  *	This product includes software developed by the NetBSD
     21       1.1    fvdl  *	Foundation, Inc. and its contributors.
     22       1.1    fvdl  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.1    fvdl  *    contributors may be used to endorse or promote products derived
     24       1.1    fvdl  *    from this software without specific prior written permission.
     25       1.1    fvdl  *
     26       1.1    fvdl  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.1    fvdl  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.1    fvdl  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.1    fvdl  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.1    fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.1    fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.1    fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.1    fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.1    fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.1    fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.1    fvdl  * POSSIBILITY OF SUCH DAMAGE.
     37       1.1    fvdl  */
     38       1.1    fvdl 
     39       1.1    fvdl /*
     40       1.1    fvdl  * Machine-dependent spin lock operations.
     41       1.1    fvdl  */
     42       1.1    fvdl 
     43       1.9    yamt #ifndef _X86_LOCK_H_
     44       1.9    yamt #define	_X86_LOCK_H_
     45       1.1    fvdl 
     46      1.15   skrll static __inline int
     47      1.15   skrll __SIMPLELOCK_LOCKED_P(__cpu_simple_lock_t *__ptr)
     48      1.15   skrll {
     49      1.15   skrll 	return *__ptr == __SIMPLELOCK_LOCKED;
     50      1.15   skrll }
     51      1.15   skrll 
     52      1.15   skrll static __inline int
     53      1.15   skrll __SIMPLELOCK_UNLOCKED_P(__cpu_simple_lock_t *__ptr)
     54      1.15   skrll {
     55      1.15   skrll 	return *__ptr == __SIMPLELOCK_UNLOCKED;
     56      1.15   skrll }
     57      1.15   skrll 
     58      1.16   skrll static __inline void
     59      1.16   skrll __cpu_simple_lock_set(__cpu_simple_lock_t *__ptr)
     60      1.16   skrll {
     61      1.16   skrll 
     62      1.16   skrll 	*__ptr = __SIMPLELOCK_LOCKED;
     63      1.16   skrll }
     64      1.16   skrll 
     65      1.16   skrll static __inline void
     66      1.16   skrll __cpu_simple_lock_clear(__cpu_simple_lock_t *__ptr)
     67      1.16   skrll {
     68      1.16   skrll 
     69      1.16   skrll 	*__ptr = __SIMPLELOCK_UNLOCKED;
     70      1.16   skrll }
     71      1.16   skrll 
     72  1.19.6.1  bouyer #ifdef _KERNEL
     73  1.19.6.1  bouyer 
     74  1.19.6.1  bouyer #include <machine/cpufunc.h>
     75  1.19.6.1  bouyer 
     76  1.19.6.1  bouyer void	__cpu_simple_lock_init(__cpu_simple_lock_t *);
     77  1.19.6.1  bouyer void	__cpu_simple_lock(__cpu_simple_lock_t *);
     78  1.19.6.1  bouyer int	__cpu_simple_lock_try(__cpu_simple_lock_t *);
     79  1.19.6.1  bouyer void	__cpu_simple_unlock(__cpu_simple_lock_t *);
     80  1.19.6.1  bouyer 
     81  1.19.6.1  bouyer #define	SPINLOCK_SPIN_HOOK	/* nothing */
     82  1.19.6.2  bouyer 
     83  1.19.6.2  bouyer #ifdef SPINLOCK_BACKOFF_HOOK
     84  1.19.6.2  bouyer #undef SPINLOCK_BACKOFF_HOOK
     85  1.19.6.2  bouyer #endif
     86  1.19.6.3  bouyer #define	SPINLOCK_BACKOFF_HOOK	x86_pause()
     87  1.19.6.1  bouyer 
     88  1.19.6.1  bouyer #else
     89  1.19.6.1  bouyer 
     90      1.11   perry static __inline void __cpu_simple_lock_init(__cpu_simple_lock_t *)
     91  1.19.6.1  bouyer 	__unused;
     92      1.11   perry static __inline void __cpu_simple_lock(__cpu_simple_lock_t *)
     93  1.19.6.1  bouyer 	__unused;
     94      1.11   perry static __inline int __cpu_simple_lock_try(__cpu_simple_lock_t *)
     95  1.19.6.1  bouyer 	__unused;
     96      1.11   perry static __inline void __cpu_simple_unlock(__cpu_simple_lock_t *)
     97  1.19.6.1  bouyer 	__unused;
     98       1.1    fvdl 
     99      1.11   perry static __inline void
    100       1.1    fvdl __cpu_simple_lock_init(__cpu_simple_lock_t *lockp)
    101       1.1    fvdl {
    102       1.1    fvdl 
    103       1.1    fvdl 	*lockp = __SIMPLELOCK_UNLOCKED;
    104       1.7    yamt 	__insn_barrier();
    105       1.1    fvdl }
    106       1.1    fvdl 
    107  1.19.6.1  bouyer static __inline int
    108  1.19.6.1  bouyer __cpu_simple_lock_try(__cpu_simple_lock_t *lockp)
    109       1.1    fvdl {
    110  1.19.6.1  bouyer 	uint8_t val;
    111       1.1    fvdl 
    112  1.19.6.1  bouyer 	val = __SIMPLELOCK_LOCKED;
    113  1.19.6.1  bouyer 	__asm volatile ("xchgb %0,(%2)" :
    114  1.19.6.1  bouyer 	    "=r" (val)
    115  1.19.6.1  bouyer 	    :"0" (val), "r" (lockp));
    116       1.7    yamt 	__insn_barrier();
    117  1.19.6.1  bouyer 	return val == __SIMPLELOCK_UNLOCKED;
    118       1.1    fvdl }
    119       1.1    fvdl 
    120  1.19.6.1  bouyer static __inline void
    121  1.19.6.1  bouyer __cpu_simple_lock(__cpu_simple_lock_t *lockp)
    122       1.1    fvdl {
    123       1.1    fvdl 
    124  1.19.6.1  bouyer 	while (!__cpu_simple_lock_try(lockp))
    125  1.19.6.1  bouyer 		/* nothing */;
    126       1.7    yamt 	__insn_barrier();
    127       1.1    fvdl }
    128       1.1    fvdl 
    129      1.12      ad /*
    130      1.12      ad  * Note on x86 memory ordering
    131      1.12      ad  *
    132      1.12      ad  * When releasing a lock we must ensure that no stores or loads from within
    133      1.12      ad  * the critical section are re-ordered by the CPU to occur outside of it:
    134      1.12      ad  * they must have completed and be visible to other processors once the lock
    135      1.12      ad  * has been released.
    136      1.12      ad  *
    137      1.12      ad  * NetBSD usually runs with the kernel mapped (via MTRR) in a WB (write
    138      1.12      ad  * back) memory region.  In that case, memory ordering on x86 platforms
    139      1.12      ad  * looks like this:
    140      1.12      ad  *
    141      1.12      ad  * i386		All loads/stores occur in instruction sequence.
    142      1.12      ad  *
    143      1.12      ad  * i486		All loads/stores occur in instruction sequence.  In
    144      1.12      ad  * Pentium	exceptional circumstances, loads can be re-ordered around
    145      1.12      ad  *		stores, but for the purposes of releasing a lock it does
    146      1.12      ad  *		not matter.  Stores may not be immediately visible to other
    147      1.12      ad  *		processors as they can be buffered.  However, since the
    148      1.12      ad  *		stores are buffered in order the lock release will always be
    149      1.12      ad  *		the last operation in the critical section that becomes
    150      1.12      ad  *		visible to other CPUs.
    151      1.12      ad  *
    152      1.12      ad  * Pentium Pro	The "Intel 64 and IA-32 Architectures Software Developer's
    153      1.12      ad  * onwards	Manual" volume 3A (order number 248966) says that (1) "Reads
    154      1.12      ad  *		can be carried out speculatively and in any order" and (2)
    155      1.12      ad  *		"Reads can pass buffered stores, but the processor is
    156      1.12      ad  *		self-consistent.".  This would be a problem for the below,
    157      1.12      ad  *		and would mandate a locked instruction cycle or load fence
    158      1.12      ad  *		before releasing the simple lock.
    159      1.12      ad  *
    160      1.12      ad  *		The "Intel Pentium 4 Processor Optimization" guide (order
    161      1.12      ad  *		number 253668-022US) says: "Loads can be moved before stores
    162      1.12      ad  *		that occurred earlier in the program if they are not
    163      1.12      ad  *		predicted to load from the same linear address.".  This is
    164      1.12      ad  *		not a problem since the only loads that can be re-ordered
    165      1.12      ad  *		take place once the lock has been released via a store.
    166      1.12      ad  *
    167      1.12      ad  *		The above two documents seem to contradict each other,
    168      1.12      ad  *		however with the exception of early steppings of the Pentium
    169      1.12      ad  *		Pro, the second document is closer to the truth: a store
    170      1.12      ad  *		will always act as a load fence for all loads that precede
    171      1.12      ad  *		the store in instruction order.
    172      1.12      ad  *
    173      1.12      ad  *		Again, note that stores can be buffered and will not always
    174      1.12      ad  *		become immediately visible to other CPUs: they are however
    175      1.12      ad  *		buffered in order.
    176      1.12      ad  *
    177      1.12      ad  * AMD64	Stores occur in order and are buffered.  Loads can be
    178      1.12      ad  *		reordered, however stores act as load fences, meaning that
    179      1.12      ad  *		loads can not be reordered around stores.
    180      1.12      ad  */
    181      1.11   perry static __inline void
    182       1.1    fvdl __cpu_simple_unlock(__cpu_simple_lock_t *lockp)
    183       1.1    fvdl {
    184       1.1    fvdl 
    185       1.7    yamt 	__insn_barrier();
    186       1.1    fvdl 	*lockp = __SIMPLELOCK_UNLOCKED;
    187       1.1    fvdl }
    188       1.1    fvdl 
    189      1.13      ad #endif	/* _KERNEL */
    190       1.1    fvdl 
    191       1.9    yamt #endif /* _X86_LOCK_H_ */
    192