Home | History | Annotate | Line # | Download | only in include
lock.h revision 1.23.10.2
      1  1.23.10.2   yamt /*	$NetBSD: lock.h,v 1.23.10.2 2009/05/04 08:12:09 yamt Exp $	*/
      2        1.1   fvdl 
      3        1.1   fvdl /*-
      4       1.12     ad  * Copyright (c) 2000, 2006 The NetBSD Foundation, Inc.
      5        1.1   fvdl  * All rights reserved.
      6        1.1   fvdl  *
      7        1.1   fvdl  * This code is derived from software contributed to The NetBSD Foundation
      8       1.12     ad  * by Jason R. Thorpe and Andrew Doran.
      9        1.1   fvdl  *
     10        1.1   fvdl  * Redistribution and use in source and binary forms, with or without
     11        1.1   fvdl  * modification, are permitted provided that the following conditions
     12        1.1   fvdl  * are met:
     13        1.1   fvdl  * 1. Redistributions of source code must retain the above copyright
     14        1.1   fvdl  *    notice, this list of conditions and the following disclaimer.
     15        1.1   fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1   fvdl  *    notice, this list of conditions and the following disclaimer in the
     17        1.1   fvdl  *    documentation and/or other materials provided with the distribution.
     18        1.1   fvdl  *
     19        1.1   fvdl  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.1   fvdl  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.1   fvdl  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.1   fvdl  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.1   fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.1   fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.1   fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.1   fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.1   fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.1   fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.1   fvdl  * POSSIBILITY OF SUCH DAMAGE.
     30        1.1   fvdl  */
     31        1.1   fvdl 
     32        1.1   fvdl /*
     33        1.1   fvdl  * Machine-dependent spin lock operations.
     34        1.1   fvdl  */
     35        1.1   fvdl 
     36        1.9   yamt #ifndef _X86_LOCK_H_
     37        1.9   yamt #define	_X86_LOCK_H_
     38        1.1   fvdl 
     39  1.23.10.2   yamt #include <sys/param.h>
     40  1.23.10.2   yamt 
     41       1.15  skrll static __inline int
     42       1.15  skrll __SIMPLELOCK_LOCKED_P(__cpu_simple_lock_t *__ptr)
     43       1.15  skrll {
     44       1.15  skrll 	return *__ptr == __SIMPLELOCK_LOCKED;
     45       1.15  skrll }
     46       1.15  skrll 
     47       1.15  skrll static __inline int
     48       1.15  skrll __SIMPLELOCK_UNLOCKED_P(__cpu_simple_lock_t *__ptr)
     49       1.15  skrll {
     50       1.15  skrll 	return *__ptr == __SIMPLELOCK_UNLOCKED;
     51       1.15  skrll }
     52       1.15  skrll 
     53       1.16  skrll static __inline void
     54       1.16  skrll __cpu_simple_lock_set(__cpu_simple_lock_t *__ptr)
     55       1.16  skrll {
     56       1.16  skrll 
     57       1.16  skrll 	*__ptr = __SIMPLELOCK_LOCKED;
     58       1.16  skrll }
     59       1.16  skrll 
     60       1.16  skrll static __inline void
     61       1.16  skrll __cpu_simple_lock_clear(__cpu_simple_lock_t *__ptr)
     62       1.16  skrll {
     63       1.16  skrll 
     64       1.16  skrll 	*__ptr = __SIMPLELOCK_UNLOCKED;
     65       1.16  skrll }
     66       1.16  skrll 
     67  1.23.10.2   yamt #ifdef _HARDKERNEL
     68       1.20     ad 
     69       1.20     ad #include <machine/cpufunc.h>
     70       1.20     ad 
     71       1.20     ad void	__cpu_simple_lock_init(__cpu_simple_lock_t *);
     72       1.20     ad void	__cpu_simple_lock(__cpu_simple_lock_t *);
     73       1.20     ad int	__cpu_simple_lock_try(__cpu_simple_lock_t *);
     74       1.20     ad void	__cpu_simple_unlock(__cpu_simple_lock_t *);
     75       1.20     ad 
     76       1.20     ad #define	SPINLOCK_SPIN_HOOK	/* nothing */
     77       1.22     ad 
     78       1.22     ad #ifdef SPINLOCK_BACKOFF_HOOK
     79       1.22     ad #undef SPINLOCK_BACKOFF_HOOK
     80       1.23   yamt #endif
     81       1.20     ad #define	SPINLOCK_BACKOFF_HOOK	x86_pause()
     82       1.20     ad 
     83       1.20     ad #else
     84       1.20     ad 
     85       1.11  perry static __inline void __cpu_simple_lock_init(__cpu_simple_lock_t *)
     86       1.21  perry 	__unused;
     87       1.11  perry static __inline void __cpu_simple_lock(__cpu_simple_lock_t *)
     88       1.21  perry 	__unused;
     89       1.11  perry static __inline int __cpu_simple_lock_try(__cpu_simple_lock_t *)
     90       1.21  perry 	__unused;
     91       1.11  perry static __inline void __cpu_simple_unlock(__cpu_simple_lock_t *)
     92       1.21  perry 	__unused;
     93        1.1   fvdl 
     94       1.11  perry static __inline void
     95        1.1   fvdl __cpu_simple_lock_init(__cpu_simple_lock_t *lockp)
     96        1.1   fvdl {
     97        1.1   fvdl 
     98        1.1   fvdl 	*lockp = __SIMPLELOCK_UNLOCKED;
     99        1.7   yamt 	__insn_barrier();
    100        1.1   fvdl }
    101        1.1   fvdl 
    102       1.20     ad static __inline int
    103       1.20     ad __cpu_simple_lock_try(__cpu_simple_lock_t *lockp)
    104        1.1   fvdl {
    105       1.20     ad 	uint8_t val;
    106        1.1   fvdl 
    107       1.20     ad 	val = __SIMPLELOCK_LOCKED;
    108       1.20     ad 	__asm volatile ("xchgb %0,(%2)" :
    109       1.20     ad 	    "=r" (val)
    110       1.20     ad 	    :"0" (val), "r" (lockp));
    111        1.7   yamt 	__insn_barrier();
    112       1.20     ad 	return val == __SIMPLELOCK_UNLOCKED;
    113        1.1   fvdl }
    114        1.1   fvdl 
    115       1.20     ad static __inline void
    116       1.20     ad __cpu_simple_lock(__cpu_simple_lock_t *lockp)
    117        1.1   fvdl {
    118        1.1   fvdl 
    119       1.20     ad 	while (!__cpu_simple_lock_try(lockp))
    120       1.20     ad 		/* nothing */;
    121        1.7   yamt 	__insn_barrier();
    122        1.1   fvdl }
    123        1.1   fvdl 
    124       1.12     ad /*
    125       1.12     ad  * Note on x86 memory ordering
    126       1.12     ad  *
    127       1.12     ad  * When releasing a lock we must ensure that no stores or loads from within
    128       1.12     ad  * the critical section are re-ordered by the CPU to occur outside of it:
    129       1.12     ad  * they must have completed and be visible to other processors once the lock
    130       1.12     ad  * has been released.
    131       1.12     ad  *
    132       1.12     ad  * NetBSD usually runs with the kernel mapped (via MTRR) in a WB (write
    133       1.12     ad  * back) memory region.  In that case, memory ordering on x86 platforms
    134       1.12     ad  * looks like this:
    135       1.12     ad  *
    136       1.12     ad  * i386		All loads/stores occur in instruction sequence.
    137       1.12     ad  *
    138       1.12     ad  * i486		All loads/stores occur in instruction sequence.  In
    139       1.12     ad  * Pentium	exceptional circumstances, loads can be re-ordered around
    140       1.12     ad  *		stores, but for the purposes of releasing a lock it does
    141       1.12     ad  *		not matter.  Stores may not be immediately visible to other
    142       1.12     ad  *		processors as they can be buffered.  However, since the
    143       1.12     ad  *		stores are buffered in order the lock release will always be
    144       1.12     ad  *		the last operation in the critical section that becomes
    145       1.12     ad  *		visible to other CPUs.
    146       1.12     ad  *
    147       1.12     ad  * Pentium Pro	The "Intel 64 and IA-32 Architectures Software Developer's
    148       1.12     ad  * onwards	Manual" volume 3A (order number 248966) says that (1) "Reads
    149       1.12     ad  *		can be carried out speculatively and in any order" and (2)
    150       1.12     ad  *		"Reads can pass buffered stores, but the processor is
    151       1.12     ad  *		self-consistent.".  This would be a problem for the below,
    152       1.12     ad  *		and would mandate a locked instruction cycle or load fence
    153       1.12     ad  *		before releasing the simple lock.
    154       1.12     ad  *
    155       1.12     ad  *		The "Intel Pentium 4 Processor Optimization" guide (order
    156       1.12     ad  *		number 253668-022US) says: "Loads can be moved before stores
    157       1.12     ad  *		that occurred earlier in the program if they are not
    158       1.12     ad  *		predicted to load from the same linear address.".  This is
    159       1.12     ad  *		not a problem since the only loads that can be re-ordered
    160       1.12     ad  *		take place once the lock has been released via a store.
    161       1.12     ad  *
    162       1.12     ad  *		The above two documents seem to contradict each other,
    163       1.12     ad  *		however with the exception of early steppings of the Pentium
    164       1.12     ad  *		Pro, the second document is closer to the truth: a store
    165       1.12     ad  *		will always act as a load fence for all loads that precede
    166       1.12     ad  *		the store in instruction order.
    167       1.12     ad  *
    168       1.12     ad  *		Again, note that stores can be buffered and will not always
    169       1.12     ad  *		become immediately visible to other CPUs: they are however
    170       1.12     ad  *		buffered in order.
    171       1.12     ad  *
    172       1.12     ad  * AMD64	Stores occur in order and are buffered.  Loads can be
    173       1.12     ad  *		reordered, however stores act as load fences, meaning that
    174       1.12     ad  *		loads can not be reordered around stores.
    175       1.12     ad  */
    176       1.11  perry static __inline void
    177        1.1   fvdl __cpu_simple_unlock(__cpu_simple_lock_t *lockp)
    178        1.1   fvdl {
    179        1.1   fvdl 
    180        1.7   yamt 	__insn_barrier();
    181        1.1   fvdl 	*lockp = __SIMPLELOCK_UNLOCKED;
    182        1.1   fvdl }
    183        1.1   fvdl 
    184  1.23.10.2   yamt #endif	/* _HARDKERNEL */
    185        1.1   fvdl 
    186        1.9   yamt #endif /* _X86_LOCK_H_ */
    187