Home | History | Annotate | Line # | Download | only in include
lock.h revision 1.24
      1  1.24  martin /*	$NetBSD: lock.h,v 1.24 2008/04/28 20:23:40 martin Exp $	*/
      2   1.1    fvdl 
      3   1.1    fvdl /*-
      4  1.12      ad  * Copyright (c) 2000, 2006 The NetBSD Foundation, Inc.
      5   1.1    fvdl  * All rights reserved.
      6   1.1    fvdl  *
      7   1.1    fvdl  * This code is derived from software contributed to The NetBSD Foundation
      8  1.12      ad  * by Jason R. Thorpe and Andrew Doran.
      9   1.1    fvdl  *
     10   1.1    fvdl  * Redistribution and use in source and binary forms, with or without
     11   1.1    fvdl  * modification, are permitted provided that the following conditions
     12   1.1    fvdl  * are met:
     13   1.1    fvdl  * 1. Redistributions of source code must retain the above copyright
     14   1.1    fvdl  *    notice, this list of conditions and the following disclaimer.
     15   1.1    fvdl  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1    fvdl  *    notice, this list of conditions and the following disclaimer in the
     17   1.1    fvdl  *    documentation and/or other materials provided with the distribution.
     18   1.1    fvdl  *
     19   1.1    fvdl  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1    fvdl  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1    fvdl  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1    fvdl  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1    fvdl  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1    fvdl  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1    fvdl  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1    fvdl  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1    fvdl  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1    fvdl  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1    fvdl  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1    fvdl  */
     31   1.1    fvdl 
     32   1.1    fvdl /*
     33   1.1    fvdl  * Machine-dependent spin lock operations.
     34   1.1    fvdl  */
     35   1.1    fvdl 
     36   1.9    yamt #ifndef _X86_LOCK_H_
     37   1.9    yamt #define	_X86_LOCK_H_
     38   1.1    fvdl 
     39  1.15   skrll static __inline int
     40  1.15   skrll __SIMPLELOCK_LOCKED_P(__cpu_simple_lock_t *__ptr)
     41  1.15   skrll {
     42  1.15   skrll 	return *__ptr == __SIMPLELOCK_LOCKED;
     43  1.15   skrll }
     44  1.15   skrll 
     45  1.15   skrll static __inline int
     46  1.15   skrll __SIMPLELOCK_UNLOCKED_P(__cpu_simple_lock_t *__ptr)
     47  1.15   skrll {
     48  1.15   skrll 	return *__ptr == __SIMPLELOCK_UNLOCKED;
     49  1.15   skrll }
     50  1.15   skrll 
     51  1.16   skrll static __inline void
     52  1.16   skrll __cpu_simple_lock_set(__cpu_simple_lock_t *__ptr)
     53  1.16   skrll {
     54  1.16   skrll 
     55  1.16   skrll 	*__ptr = __SIMPLELOCK_LOCKED;
     56  1.16   skrll }
     57  1.16   skrll 
     58  1.16   skrll static __inline void
     59  1.16   skrll __cpu_simple_lock_clear(__cpu_simple_lock_t *__ptr)
     60  1.16   skrll {
     61  1.16   skrll 
     62  1.16   skrll 	*__ptr = __SIMPLELOCK_UNLOCKED;
     63  1.16   skrll }
     64  1.16   skrll 
     65  1.20      ad #ifdef _KERNEL
     66  1.20      ad 
     67  1.20      ad #include <machine/cpufunc.h>
     68  1.20      ad 
     69  1.20      ad void	__cpu_simple_lock_init(__cpu_simple_lock_t *);
     70  1.20      ad void	__cpu_simple_lock(__cpu_simple_lock_t *);
     71  1.20      ad int	__cpu_simple_lock_try(__cpu_simple_lock_t *);
     72  1.20      ad void	__cpu_simple_unlock(__cpu_simple_lock_t *);
     73  1.20      ad 
     74  1.20      ad #define	SPINLOCK_SPIN_HOOK	/* nothing */
     75  1.22      ad 
     76  1.22      ad #ifdef SPINLOCK_BACKOFF_HOOK
     77  1.22      ad #undef SPINLOCK_BACKOFF_HOOK
     78  1.23    yamt #endif
     79  1.20      ad #define	SPINLOCK_BACKOFF_HOOK	x86_pause()
     80  1.20      ad 
     81  1.20      ad #else
     82  1.20      ad 
     83  1.11   perry static __inline void __cpu_simple_lock_init(__cpu_simple_lock_t *)
     84  1.21   perry 	__unused;
     85  1.11   perry static __inline void __cpu_simple_lock(__cpu_simple_lock_t *)
     86  1.21   perry 	__unused;
     87  1.11   perry static __inline int __cpu_simple_lock_try(__cpu_simple_lock_t *)
     88  1.21   perry 	__unused;
     89  1.11   perry static __inline void __cpu_simple_unlock(__cpu_simple_lock_t *)
     90  1.21   perry 	__unused;
     91   1.1    fvdl 
     92  1.11   perry static __inline void
     93   1.1    fvdl __cpu_simple_lock_init(__cpu_simple_lock_t *lockp)
     94   1.1    fvdl {
     95   1.1    fvdl 
     96   1.1    fvdl 	*lockp = __SIMPLELOCK_UNLOCKED;
     97   1.7    yamt 	__insn_barrier();
     98   1.1    fvdl }
     99   1.1    fvdl 
    100  1.20      ad static __inline int
    101  1.20      ad __cpu_simple_lock_try(__cpu_simple_lock_t *lockp)
    102   1.1    fvdl {
    103  1.20      ad 	uint8_t val;
    104   1.1    fvdl 
    105  1.20      ad 	val = __SIMPLELOCK_LOCKED;
    106  1.20      ad 	__asm volatile ("xchgb %0,(%2)" :
    107  1.20      ad 	    "=r" (val)
    108  1.20      ad 	    :"0" (val), "r" (lockp));
    109   1.7    yamt 	__insn_barrier();
    110  1.20      ad 	return val == __SIMPLELOCK_UNLOCKED;
    111   1.1    fvdl }
    112   1.1    fvdl 
    113  1.20      ad static __inline void
    114  1.20      ad __cpu_simple_lock(__cpu_simple_lock_t *lockp)
    115   1.1    fvdl {
    116   1.1    fvdl 
    117  1.20      ad 	while (!__cpu_simple_lock_try(lockp))
    118  1.20      ad 		/* nothing */;
    119   1.7    yamt 	__insn_barrier();
    120   1.1    fvdl }
    121   1.1    fvdl 
    122  1.12      ad /*
    123  1.12      ad  * Note on x86 memory ordering
    124  1.12      ad  *
    125  1.12      ad  * When releasing a lock we must ensure that no stores or loads from within
    126  1.12      ad  * the critical section are re-ordered by the CPU to occur outside of it:
    127  1.12      ad  * they must have completed and be visible to other processors once the lock
    128  1.12      ad  * has been released.
    129  1.12      ad  *
    130  1.12      ad  * NetBSD usually runs with the kernel mapped (via MTRR) in a WB (write
    131  1.12      ad  * back) memory region.  In that case, memory ordering on x86 platforms
    132  1.12      ad  * looks like this:
    133  1.12      ad  *
    134  1.12      ad  * i386		All loads/stores occur in instruction sequence.
    135  1.12      ad  *
    136  1.12      ad  * i486		All loads/stores occur in instruction sequence.  In
    137  1.12      ad  * Pentium	exceptional circumstances, loads can be re-ordered around
    138  1.12      ad  *		stores, but for the purposes of releasing a lock it does
    139  1.12      ad  *		not matter.  Stores may not be immediately visible to other
    140  1.12      ad  *		processors as they can be buffered.  However, since the
    141  1.12      ad  *		stores are buffered in order the lock release will always be
    142  1.12      ad  *		the last operation in the critical section that becomes
    143  1.12      ad  *		visible to other CPUs.
    144  1.12      ad  *
    145  1.12      ad  * Pentium Pro	The "Intel 64 and IA-32 Architectures Software Developer's
    146  1.12      ad  * onwards	Manual" volume 3A (order number 248966) says that (1) "Reads
    147  1.12      ad  *		can be carried out speculatively and in any order" and (2)
    148  1.12      ad  *		"Reads can pass buffered stores, but the processor is
    149  1.12      ad  *		self-consistent.".  This would be a problem for the below,
    150  1.12      ad  *		and would mandate a locked instruction cycle or load fence
    151  1.12      ad  *		before releasing the simple lock.
    152  1.12      ad  *
    153  1.12      ad  *		The "Intel Pentium 4 Processor Optimization" guide (order
    154  1.12      ad  *		number 253668-022US) says: "Loads can be moved before stores
    155  1.12      ad  *		that occurred earlier in the program if they are not
    156  1.12      ad  *		predicted to load from the same linear address.".  This is
    157  1.12      ad  *		not a problem since the only loads that can be re-ordered
    158  1.12      ad  *		take place once the lock has been released via a store.
    159  1.12      ad  *
    160  1.12      ad  *		The above two documents seem to contradict each other,
    161  1.12      ad  *		however with the exception of early steppings of the Pentium
    162  1.12      ad  *		Pro, the second document is closer to the truth: a store
    163  1.12      ad  *		will always act as a load fence for all loads that precede
    164  1.12      ad  *		the store in instruction order.
    165  1.12      ad  *
    166  1.12      ad  *		Again, note that stores can be buffered and will not always
    167  1.12      ad  *		become immediately visible to other CPUs: they are however
    168  1.12      ad  *		buffered in order.
    169  1.12      ad  *
    170  1.12      ad  * AMD64	Stores occur in order and are buffered.  Loads can be
    171  1.12      ad  *		reordered, however stores act as load fences, meaning that
    172  1.12      ad  *		loads can not be reordered around stores.
    173  1.12      ad  */
    174  1.11   perry static __inline void
    175   1.1    fvdl __cpu_simple_unlock(__cpu_simple_lock_t *lockp)
    176   1.1    fvdl {
    177   1.1    fvdl 
    178   1.7    yamt 	__insn_barrier();
    179   1.1    fvdl 	*lockp = __SIMPLELOCK_UNLOCKED;
    180   1.1    fvdl }
    181   1.1    fvdl 
    182  1.13      ad #endif	/* _KERNEL */
    183   1.1    fvdl 
    184   1.9    yamt #endif /* _X86_LOCK_H_ */
    185