clock.c revision 1.1 1 1.1 perry /* $NetBSD: clock.c,v 1.1 2006/09/04 02:16:03 perry Exp $ */
2 1.1 perry
3 1.1 perry /*-
4 1.1 perry * Copyright (c) 1990 The Regents of the University of California.
5 1.1 perry * All rights reserved.
6 1.1 perry *
7 1.1 perry * This code is derived from software contributed to Berkeley by
8 1.1 perry * William Jolitz and Don Ahn.
9 1.1 perry *
10 1.1 perry * Redistribution and use in source and binary forms, with or without
11 1.1 perry * modification, are permitted provided that the following conditions
12 1.1 perry * are met:
13 1.1 perry * 1. Redistributions of source code must retain the above copyright
14 1.1 perry * notice, this list of conditions and the following disclaimer.
15 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 perry * notice, this list of conditions and the following disclaimer in the
17 1.1 perry * documentation and/or other materials provided with the distribution.
18 1.1 perry * 3. Neither the name of the University nor the names of its contributors
19 1.1 perry * may be used to endorse or promote products derived from this software
20 1.1 perry * without specific prior written permission.
21 1.1 perry *
22 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 perry * SUCH DAMAGE.
33 1.1 perry *
34 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
35 1.1 perry */
36 1.1 perry /*-
37 1.1 perry * Copyright (c) 1993, 1994 Charles M. Hannum.
38 1.1 perry *
39 1.1 perry * This code is derived from software contributed to Berkeley by
40 1.1 perry * William Jolitz and Don Ahn.
41 1.1 perry *
42 1.1 perry * Redistribution and use in source and binary forms, with or without
43 1.1 perry * modification, are permitted provided that the following conditions
44 1.1 perry * are met:
45 1.1 perry * 1. Redistributions of source code must retain the above copyright
46 1.1 perry * notice, this list of conditions and the following disclaimer.
47 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 perry * notice, this list of conditions and the following disclaimer in the
49 1.1 perry * documentation and/or other materials provided with the distribution.
50 1.1 perry * 3. All advertising materials mentioning features or use of this software
51 1.1 perry * must display the following acknowledgement:
52 1.1 perry * This product includes software developed by the University of
53 1.1 perry * California, Berkeley and its contributors.
54 1.1 perry * 4. Neither the name of the University nor the names of its contributors
55 1.1 perry * may be used to endorse or promote products derived from this software
56 1.1 perry * without specific prior written permission.
57 1.1 perry *
58 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.1 perry * SUCH DAMAGE.
69 1.1 perry *
70 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
71 1.1 perry */
72 1.1 perry /*
73 1.1 perry * Mach Operating System
74 1.1 perry * Copyright (c) 1991,1990,1989 Carnegie Mellon University
75 1.1 perry * All Rights Reserved.
76 1.1 perry *
77 1.1 perry * Permission to use, copy, modify and distribute this software and its
78 1.1 perry * documentation is hereby granted, provided that both the copyright
79 1.1 perry * notice and this permission notice appear in all copies of the
80 1.1 perry * software, derivative works or modified versions, and any portions
81 1.1 perry * thereof, and that both notices appear in supporting documentation.
82 1.1 perry *
83 1.1 perry * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
84 1.1 perry * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
85 1.1 perry * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
86 1.1 perry *
87 1.1 perry * Carnegie Mellon requests users of this software to return to
88 1.1 perry *
89 1.1 perry * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
90 1.1 perry * School of Computer Science
91 1.1 perry * Carnegie Mellon University
92 1.1 perry * Pittsburgh PA 15213-3890
93 1.1 perry *
94 1.1 perry * any improvements or extensions that they make and grant Carnegie Mellon
95 1.1 perry * the rights to redistribute these changes.
96 1.1 perry */
97 1.1 perry /*
98 1.1 perry Copyright 1988, 1989 by Intel Corporation, Santa Clara, California.
99 1.1 perry
100 1.1 perry All Rights Reserved
101 1.1 perry
102 1.1 perry Permission to use, copy, modify, and distribute this software and
103 1.1 perry its documentation for any purpose and without fee is hereby
104 1.1 perry granted, provided that the above copyright notice appears in all
105 1.1 perry copies and that both the copyright notice and this permission notice
106 1.1 perry appear in supporting documentation, and that the name of Intel
107 1.1 perry not be used in advertising or publicity pertaining to distribution
108 1.1 perry of the software without specific, written prior permission.
109 1.1 perry
110 1.1 perry INTEL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
111 1.1 perry INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
112 1.1 perry IN NO EVENT SHALL INTEL BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
113 1.1 perry CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
114 1.1 perry LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
115 1.1 perry NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
116 1.1 perry WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
117 1.1 perry */
118 1.1 perry
119 1.1 perry /*
120 1.1 perry * Primitive clock interrupt routines.
121 1.1 perry */
122 1.1 perry
123 1.1 perry #include <sys/cdefs.h>
124 1.1 perry __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.1 2006/09/04 02:16:03 perry Exp $");
125 1.1 perry
126 1.1 perry /* #define CLOCKDEBUG */
127 1.1 perry /* #define CLOCK_PARANOIA */
128 1.1 perry
129 1.1 perry #include "opt_multiprocessor.h"
130 1.1 perry #include "opt_ntp.h"
131 1.1 perry
132 1.1 perry #include <sys/param.h>
133 1.1 perry #include <sys/systm.h>
134 1.1 perry #include <sys/time.h>
135 1.1 perry #include <sys/timetc.h>
136 1.1 perry #include <sys/kernel.h>
137 1.1 perry #include <sys/device.h>
138 1.1 perry
139 1.1 perry #include <machine/cpu.h>
140 1.1 perry #include <machine/intr.h>
141 1.1 perry #include <machine/pio.h>
142 1.1 perry #include <machine/cpufunc.h>
143 1.1 perry
144 1.1 perry #include <dev/isa/isareg.h>
145 1.1 perry #include <dev/isa/isavar.h>
146 1.1 perry #include <dev/ic/mc146818reg.h>
147 1.1 perry #include <dev/ic/i8253reg.h>
148 1.1 perry #include <i386/isa/nvram.h>
149 1.1 perry #include <x86/x86/tsc.h>
150 1.1 perry #include <dev/clock_subr.h>
151 1.1 perry #include <machine/specialreg.h>
152 1.1 perry
153 1.1 perry #include "config_time.h" /* for CONFIG_TIME */
154 1.1 perry
155 1.1 perry #ifndef __x86_64__
156 1.1 perry #include "mca.h"
157 1.1 perry #endif
158 1.1 perry #if NMCA > 0
159 1.1 perry #include <machine/mca_machdep.h> /* for MCA_system */
160 1.1 perry #endif
161 1.1 perry
162 1.1 perry #include "pcppi.h"
163 1.1 perry #if (NPCPPI > 0)
164 1.1 perry #include <dev/isa/pcppivar.h>
165 1.1 perry
166 1.1 perry int sysbeepmatch(struct device *, struct cfdata *, void *);
167 1.1 perry void sysbeepattach(struct device *, struct device *, void *);
168 1.1 perry
169 1.1 perry CFATTACH_DECL(sysbeep, sizeof(struct device),
170 1.1 perry sysbeepmatch, sysbeepattach, NULL, NULL);
171 1.1 perry
172 1.1 perry static int ppi_attached;
173 1.1 perry static pcppi_tag_t ppicookie;
174 1.1 perry #endif /* PCPPI */
175 1.1 perry
176 1.1 perry #ifdef __x86_64__
177 1.1 perry #define READ_FLAGS() read_rflags()
178 1.1 perry #define WRITE_FLAGS(x) write_rflags(x)
179 1.1 perry #else /* i386 architecture processor */
180 1.1 perry #define READ_FLAGS() read_eflags()
181 1.1 perry #define WRITE_FLAGS(x) write_eflags(x)
182 1.1 perry #endif
183 1.1 perry
184 1.1 perry #ifdef CLOCKDEBUG
185 1.1 perry int clock_debug = 0;
186 1.1 perry #define DPRINTF(arg) if (clock_debug) printf arg
187 1.1 perry #else
188 1.1 perry #define DPRINTF(arg)
189 1.1 perry #endif
190 1.1 perry
191 1.1 perry static int gettick(void);
192 1.1 perry void sysbeep(int, int);
193 1.1 perry static void tickle_tc(void);
194 1.1 perry
195 1.1 perry static int clockintr(void *, struct intrframe);
196 1.1 perry static void rtcinit(void);
197 1.1 perry static int rtcget(mc_todregs *);
198 1.1 perry static void rtcput(mc_todregs *);
199 1.1 perry
200 1.1 perry static int cmoscheck(void);
201 1.1 perry
202 1.1 perry static int clock_expandyear(int);
203 1.1 perry
204 1.1 perry static inline int gettick_broken_latch(void);
205 1.1 perry
206 1.1 perry static volatile uint32_t i8254_lastcount;
207 1.1 perry static volatile uint32_t i8254_offset;
208 1.1 perry static volatile int i8254_ticked;
209 1.1 perry
210 1.1 perry static struct simplelock tmr_lock = SIMPLELOCK_INITIALIZER; /* protect TC timer variables */
211 1.1 perry
212 1.1 perry inline u_int mc146818_read(void *, u_int);
213 1.1 perry inline void mc146818_write(void *, u_int, u_int);
214 1.1 perry
215 1.1 perry u_int i8254_get_timecount(struct timecounter *);
216 1.1 perry static void rtc_register(void);
217 1.1 perry
218 1.1 perry static struct timecounter i8254_timecounter = {
219 1.1 perry i8254_get_timecount, /* get_timecount */
220 1.1 perry 0, /* no poll_pps */
221 1.1 perry ~0u, /* counter_mask */
222 1.1 perry TIMER_FREQ, /* frequency */
223 1.1 perry "i8254", /* name */
224 1.1 perry 100, /* quality */
225 1.1 perry NULL, /* prev */
226 1.1 perry NULL, /* next */
227 1.1 perry };
228 1.1 perry
229 1.1 perry /* XXX use sc? */
230 1.1 perry inline u_int
231 1.1 perry mc146818_read(void *sc, u_int reg)
232 1.1 perry {
233 1.1 perry
234 1.1 perry outb(IO_RTC, reg);
235 1.1 perry return (inb(IO_RTC+1));
236 1.1 perry }
237 1.1 perry
238 1.1 perry /* XXX use sc? */
239 1.1 perry inline void
240 1.1 perry mc146818_write(void *sc, u_int reg, u_int datum)
241 1.1 perry {
242 1.1 perry
243 1.1 perry outb(IO_RTC, reg);
244 1.1 perry outb(IO_RTC+1, datum);
245 1.1 perry }
246 1.1 perry
247 1.1 perry u_long rtclock_tval; /* i8254 reload value for countdown */
248 1.1 perry int rtclock_init = 0;
249 1.1 perry
250 1.1 perry int clock_broken_latch = 0;
251 1.1 perry
252 1.1 perry #ifdef CLOCK_PARANOIA
253 1.1 perry static int ticks[6];
254 1.1 perry #endif
255 1.1 perry /*
256 1.1 perry * i8254 latch check routine:
257 1.1 perry * National Geode (formerly Cyrix MediaGX) has a serious bug in
258 1.1 perry * its built-in i8254-compatible clock module.
259 1.1 perry * machdep sets the variable 'clock_broken_latch' to indicate it.
260 1.1 perry */
261 1.1 perry
262 1.1 perry int
263 1.1 perry gettick_broken_latch(void)
264 1.1 perry {
265 1.1 perry u_long flags;
266 1.1 perry int v1, v2, v3;
267 1.1 perry int w1, w2, w3;
268 1.1 perry
269 1.1 perry /* Don't want someone screwing with the counter while we're here. */
270 1.1 perry flags = READ_FLAGS();
271 1.1 perry disable_intr();
272 1.1 perry
273 1.1 perry v1 = inb(IO_TIMER1+TIMER_CNTR0);
274 1.1 perry v1 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
275 1.1 perry v2 = inb(IO_TIMER1+TIMER_CNTR0);
276 1.1 perry v2 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
277 1.1 perry v3 = inb(IO_TIMER1+TIMER_CNTR0);
278 1.1 perry v3 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
279 1.1 perry
280 1.1 perry WRITE_FLAGS(flags);
281 1.1 perry
282 1.1 perry #ifdef CLOCK_PARANOIA
283 1.1 perry if (clock_debug) {
284 1.1 perry ticks[0] = ticks[3];
285 1.1 perry ticks[1] = ticks[4];
286 1.1 perry ticks[2] = ticks[5];
287 1.1 perry ticks[3] = v1;
288 1.1 perry ticks[4] = v2;
289 1.1 perry ticks[5] = v3;
290 1.1 perry }
291 1.1 perry #endif
292 1.1 perry
293 1.1 perry if (v1 >= v2 && v2 >= v3 && v1 - v3 < 0x200)
294 1.1 perry return (v2);
295 1.1 perry
296 1.1 perry #define _swap_val(a, b) do { \
297 1.1 perry int c = a; \
298 1.1 perry a = b; \
299 1.1 perry b = c; \
300 1.1 perry } while (0)
301 1.1 perry
302 1.1 perry /*
303 1.1 perry * sort v1 v2 v3
304 1.1 perry */
305 1.1 perry if (v1 < v2)
306 1.1 perry _swap_val(v1, v2);
307 1.1 perry if (v2 < v3)
308 1.1 perry _swap_val(v2, v3);
309 1.1 perry if (v1 < v2)
310 1.1 perry _swap_val(v1, v2);
311 1.1 perry
312 1.1 perry /*
313 1.1 perry * compute the middle value
314 1.1 perry */
315 1.1 perry
316 1.1 perry if (v1 - v3 < 0x200)
317 1.1 perry return (v2);
318 1.1 perry
319 1.1 perry w1 = v2 - v3;
320 1.1 perry w2 = v3 - v1 + rtclock_tval;
321 1.1 perry w3 = v1 - v2;
322 1.1 perry if (w1 >= w2) {
323 1.1 perry if (w1 >= w3)
324 1.1 perry return (v1);
325 1.1 perry } else {
326 1.1 perry if (w2 >= w3)
327 1.1 perry return (v2);
328 1.1 perry }
329 1.1 perry return (v3);
330 1.1 perry }
331 1.1 perry
332 1.1 perry /* minimal initialization, enough for delay() */
333 1.1 perry void
334 1.1 perry initrtclock(u_long freq)
335 1.1 perry {
336 1.1 perry u_long tval;
337 1.1 perry /*
338 1.1 perry * Compute timer_count, the count-down count the timer will be
339 1.1 perry * set to. Also, correctly round
340 1.1 perry * this by carrying an extra bit through the division.
341 1.1 perry */
342 1.1 perry tval = (freq * 2) / (u_long) hz;
343 1.1 perry tval = (tval / 2) + (tval & 0x1);
344 1.1 perry
345 1.1 perry /* initialize 8254 clock */
346 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
347 1.1 perry
348 1.1 perry /* Correct rounding will buy us a better precision in timekeeping */
349 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval % 256);
350 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval / 256);
351 1.1 perry
352 1.1 perry rtclock_tval = tval ? tval : 0xFFFF;
353 1.1 perry rtclock_init = 1;
354 1.1 perry }
355 1.1 perry
356 1.1 perry void
357 1.1 perry startrtclock(void)
358 1.1 perry {
359 1.1 perry int s;
360 1.1 perry
361 1.1 perry if (!rtclock_init)
362 1.1 perry initrtclock(TIMER_FREQ);
363 1.1 perry
364 1.1 perry /* Check diagnostic status */
365 1.1 perry if ((s = mc146818_read(NULL, NVRAM_DIAG)) != 0) { /* XXX softc */
366 1.1 perry char bits[128];
367 1.1 perry printf("RTC BIOS diagnostic error %s\n",
368 1.1 perry bitmask_snprintf(s, NVRAM_DIAG_BITS, bits, sizeof(bits)));
369 1.1 perry }
370 1.1 perry
371 1.1 perry tc_init(&i8254_timecounter);
372 1.1 perry
373 1.1 perry #if defined(I586_CPU) || defined(I686_CPU) || defined(__x86_64__)
374 1.1 perry init_TSC();
375 1.1 perry #endif
376 1.1 perry
377 1.1 perry rtc_register();
378 1.1 perry }
379 1.1 perry
380 1.1 perry
381 1.1 perry static void
382 1.1 perry tickle_tc(void)
383 1.1 perry {
384 1.1 perry #if defined(MULTIPROCESSOR)
385 1.1 perry struct cpu_info *ci = curcpu();
386 1.1 perry /*
387 1.1 perry * If we are not the primary CPU, we're not allowed to do
388 1.1 perry * any more work.
389 1.1 perry */
390 1.1 perry if (CPU_IS_PRIMARY(ci) == 0)
391 1.1 perry return;
392 1.1 perry #endif
393 1.1 perry if (rtclock_tval && timecounter->tc_get_timecount == i8254_get_timecount) {
394 1.1 perry simple_lock(&tmr_lock);
395 1.1 perry if (i8254_ticked)
396 1.1 perry i8254_ticked = 0;
397 1.1 perry else {
398 1.1 perry i8254_offset += rtclock_tval;
399 1.1 perry i8254_lastcount = 0;
400 1.1 perry }
401 1.1 perry simple_unlock(&tmr_lock);
402 1.1 perry }
403 1.1 perry
404 1.1 perry }
405 1.1 perry
406 1.1 perry static int
407 1.1 perry clockintr(void *arg, struct intrframe frame)
408 1.1 perry {
409 1.1 perry tickle_tc();
410 1.1 perry
411 1.1 perry hardclock((struct clockframe *)&frame);
412 1.1 perry
413 1.1 perry #if NMCA > 0
414 1.1 perry if (MCA_system) {
415 1.1 perry /* Reset PS/2 clock interrupt by asserting bit 7 of port 0x61 */
416 1.1 perry outb(0x61, inb(0x61) | 0x80);
417 1.1 perry }
418 1.1 perry #endif
419 1.1 perry return -1;
420 1.1 perry }
421 1.1 perry
422 1.1 perry u_int
423 1.1 perry i8254_get_timecount(struct timecounter *tc)
424 1.1 perry {
425 1.1 perry u_int count;
426 1.1 perry u_char high, low;
427 1.1 perry u_long flags;
428 1.1 perry
429 1.1 perry /* Don't want someone screwing with the counter while we're here. */
430 1.1 perry flags = READ_FLAGS();
431 1.1 perry disable_intr();
432 1.1 perry
433 1.1 perry simple_lock(&tmr_lock);
434 1.1 perry
435 1.1 perry /* Select timer0 and latch counter value. */
436 1.1 perry outb(IO_TIMER1 + TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
437 1.1 perry
438 1.1 perry low = inb(IO_TIMER1 + TIMER_CNTR0);
439 1.1 perry high = inb(IO_TIMER1 + TIMER_CNTR0);
440 1.1 perry count = rtclock_tval - ((high << 8) | low);
441 1.1 perry
442 1.1 perry if (rtclock_tval && (count < i8254_lastcount || !i8254_ticked)) {
443 1.1 perry i8254_ticked = 1;
444 1.1 perry i8254_offset += rtclock_tval;
445 1.1 perry }
446 1.1 perry
447 1.1 perry i8254_lastcount = count;
448 1.1 perry count += i8254_offset;
449 1.1 perry
450 1.1 perry simple_unlock(&tmr_lock);
451 1.1 perry
452 1.1 perry WRITE_FLAGS(flags);
453 1.1 perry return (count);
454 1.1 perry }
455 1.1 perry
456 1.1 perry static int
457 1.1 perry gettick(void)
458 1.1 perry {
459 1.1 perry u_long flags;
460 1.1 perry u_char lo, hi;
461 1.1 perry
462 1.1 perry if (clock_broken_latch)
463 1.1 perry return (gettick_broken_latch());
464 1.1 perry
465 1.1 perry /* Don't want someone screwing with the counter while we're here. */
466 1.1 perry flags = READ_FLAGS();
467 1.1 perry disable_intr();
468 1.1 perry /* Select counter 0 and latch it. */
469 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
470 1.1 perry lo = inb(IO_TIMER1+TIMER_CNTR0);
471 1.1 perry hi = inb(IO_TIMER1+TIMER_CNTR0);
472 1.1 perry WRITE_FLAGS(flags);
473 1.1 perry return ((hi << 8) | lo);
474 1.1 perry }
475 1.1 perry
476 1.1 perry /*
477 1.1 perry * Wait approximately `n' microseconds.
478 1.1 perry * Relies on timer 1 counting down from (TIMER_FREQ / hz) at TIMER_FREQ Hz.
479 1.1 perry * Note: timer had better have been programmed before this is first used!
480 1.1 perry * (Note that we use `rate generator' mode, which counts at 1:1; `square
481 1.1 perry * wave' mode counts at 2:1).
482 1.1 perry * Don't rely on this being particularly accurate.
483 1.1 perry */
484 1.1 perry void
485 1.1 perry i8254_delay(int n)
486 1.1 perry {
487 1.1 perry int delay_tick, odelay_tick;
488 1.1 perry static const int delaytab[26] = {
489 1.1 perry 0, 2, 3, 4, 5, 6, 7, 9, 10, 11,
490 1.1 perry 12, 13, 15, 16, 17, 18, 19, 21, 22, 23,
491 1.1 perry 24, 25, 27, 28, 29, 30,
492 1.1 perry };
493 1.1 perry
494 1.1 perry /* allow DELAY() to be used before startrtclock() */
495 1.1 perry if (!rtclock_init)
496 1.1 perry initrtclock(TIMER_FREQ);
497 1.1 perry
498 1.1 perry /*
499 1.1 perry * Read the counter first, so that the rest of the setup overhead is
500 1.1 perry * counted.
501 1.1 perry */
502 1.1 perry odelay_tick = gettick();
503 1.1 perry
504 1.1 perry if (n <= 25)
505 1.1 perry n = delaytab[n];
506 1.1 perry else {
507 1.1 perry #ifdef __GNUC__
508 1.1 perry /*
509 1.1 perry * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler
510 1.1 perry * code so we can take advantage of the intermediate 64-bit
511 1.1 perry * quantity to prevent loss of significance.
512 1.1 perry */
513 1.1 perry int m;
514 1.1 perry __asm volatile("mul %3"
515 1.1 perry : "=a" (n), "=d" (m)
516 1.1 perry : "0" (n), "r" (TIMER_FREQ));
517 1.1 perry __asm volatile("div %4"
518 1.1 perry : "=a" (n), "=d" (m)
519 1.1 perry : "0" (n), "1" (m), "r" (1000000));
520 1.1 perry #else
521 1.1 perry /*
522 1.1 perry * Calculate ((n * TIMER_FREQ) / 1e6) without using floating
523 1.1 perry * point and without any avoidable overflows.
524 1.1 perry */
525 1.1 perry int sec = n / 1000000,
526 1.1 perry usec = n % 1000000;
527 1.1 perry n = sec * TIMER_FREQ +
528 1.1 perry usec * (TIMER_FREQ / 1000000) +
529 1.1 perry usec * ((TIMER_FREQ % 1000000) / 1000) / 1000 +
530 1.1 perry usec * (TIMER_FREQ % 1000) / 1000000;
531 1.1 perry #endif
532 1.1 perry }
533 1.1 perry
534 1.1 perry while (n > 0) {
535 1.1 perry #ifdef CLOCK_PARANOIA
536 1.1 perry int delta;
537 1.1 perry delay_tick = gettick();
538 1.1 perry if (delay_tick > odelay_tick)
539 1.1 perry delta = rtclock_tval - (delay_tick - odelay_tick);
540 1.1 perry else
541 1.1 perry delta = odelay_tick - delay_tick;
542 1.1 perry if (delta < 0 || delta >= rtclock_tval / 2) {
543 1.1 perry DPRINTF(("delay: ignore ticks %.4x-%.4x",
544 1.1 perry odelay_tick, delay_tick));
545 1.1 perry if (clock_broken_latch) {
546 1.1 perry DPRINTF((" (%.4x %.4x %.4x %.4x %.4x %.4x)\n",
547 1.1 perry ticks[0], ticks[1], ticks[2],
548 1.1 perry ticks[3], ticks[4], ticks[5]));
549 1.1 perry } else {
550 1.1 perry DPRINTF(("\n"));
551 1.1 perry }
552 1.1 perry } else
553 1.1 perry n -= delta;
554 1.1 perry #else
555 1.1 perry delay_tick = gettick();
556 1.1 perry if (delay_tick > odelay_tick)
557 1.1 perry n -= rtclock_tval - (delay_tick - odelay_tick);
558 1.1 perry else
559 1.1 perry n -= odelay_tick - delay_tick;
560 1.1 perry #endif
561 1.1 perry odelay_tick = delay_tick;
562 1.1 perry }
563 1.1 perry }
564 1.1 perry
565 1.1 perry #if (NPCPPI > 0)
566 1.1 perry int
567 1.1 perry sysbeepmatch(struct device *parent, struct cfdata *match, void *aux)
568 1.1 perry {
569 1.1 perry return (!ppi_attached);
570 1.1 perry }
571 1.1 perry
572 1.1 perry void
573 1.1 perry sysbeepattach(struct device *parent, struct device *self, void *aux)
574 1.1 perry {
575 1.1 perry aprint_naive("\n");
576 1.1 perry aprint_normal("\n");
577 1.1 perry
578 1.1 perry ppicookie = ((struct pcppi_attach_args *)aux)->pa_cookie;
579 1.1 perry ppi_attached = 1;
580 1.1 perry }
581 1.1 perry #endif
582 1.1 perry
583 1.1 perry void
584 1.1 perry sysbeep(int pitch, int period)
585 1.1 perry {
586 1.1 perry #if (NPCPPI > 0)
587 1.1 perry if (ppi_attached)
588 1.1 perry pcppi_bell(ppicookie, pitch, period, 0);
589 1.1 perry #endif
590 1.1 perry }
591 1.1 perry
592 1.1 perry void
593 1.1 perry i8254_initclocks(void)
594 1.1 perry {
595 1.1 perry
596 1.1 perry /*
597 1.1 perry * XXX If you're doing strange things with multiple clocks, you might
598 1.1 perry * want to keep track of clock handlers.
599 1.1 perry */
600 1.1 perry (void)isa_intr_establish(NULL, 0, IST_PULSE, IPL_CLOCK,
601 1.1 perry (int (*)(void *))clockintr, 0);
602 1.1 perry }
603 1.1 perry
604 1.1 perry static void
605 1.1 perry rtcinit(void)
606 1.1 perry {
607 1.1 perry static int first_rtcopen_ever = 1;
608 1.1 perry
609 1.1 perry if (!first_rtcopen_ever)
610 1.1 perry return;
611 1.1 perry first_rtcopen_ever = 0;
612 1.1 perry
613 1.1 perry mc146818_write(NULL, MC_REGA, /* XXX softc */
614 1.1 perry MC_BASE_32_KHz | MC_RATE_1024_Hz);
615 1.1 perry mc146818_write(NULL, MC_REGB, MC_REGB_24HR); /* XXX softc */
616 1.1 perry }
617 1.1 perry
618 1.1 perry static int
619 1.1 perry rtcget(mc_todregs *regs)
620 1.1 perry {
621 1.1 perry
622 1.1 perry rtcinit();
623 1.1 perry if ((mc146818_read(NULL, MC_REGD) & MC_REGD_VRT) == 0) /* XXX softc */
624 1.1 perry return (-1);
625 1.1 perry MC146818_GETTOD(NULL, regs); /* XXX softc */
626 1.1 perry return (0);
627 1.1 perry }
628 1.1 perry
629 1.1 perry static void
630 1.1 perry rtcput(mc_todregs *regs)
631 1.1 perry {
632 1.1 perry
633 1.1 perry rtcinit();
634 1.1 perry MC146818_PUTTOD(NULL, regs); /* XXX softc */
635 1.1 perry }
636 1.1 perry
637 1.1 perry static int timeset;
638 1.1 perry
639 1.1 perry /*
640 1.1 perry * check whether the CMOS layout is "standard"-like (ie, not PS/2-like),
641 1.1 perry * to be called at splclock()
642 1.1 perry */
643 1.1 perry static int
644 1.1 perry cmoscheck(void)
645 1.1 perry {
646 1.1 perry int i;
647 1.1 perry unsigned short cksum = 0;
648 1.1 perry
649 1.1 perry for (i = 0x10; i <= 0x2d; i++)
650 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
651 1.1 perry
652 1.1 perry return (cksum == (mc146818_read(NULL, 0x2e) << 8)
653 1.1 perry + mc146818_read(NULL, 0x2f));
654 1.1 perry }
655 1.1 perry
656 1.1 perry #if NMCA > 0
657 1.1 perry /*
658 1.1 perry * Check whether the CMOS layout is PS/2 like, to be called at splclock().
659 1.1 perry */
660 1.1 perry static int cmoscheckps2(void);
661 1.1 perry static int
662 1.1 perry cmoscheckps2(void)
663 1.1 perry {
664 1.1 perry #if 0
665 1.1 perry /* Disabled until I find out the CRC checksum algorithm IBM uses */
666 1.1 perry int i;
667 1.1 perry unsigned short cksum = 0;
668 1.1 perry
669 1.1 perry for (i = 0x10; i <= 0x31; i++)
670 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
671 1.1 perry
672 1.1 perry return (cksum == (mc146818_read(NULL, 0x32) << 8)
673 1.1 perry + mc146818_read(NULL, 0x33));
674 1.1 perry #else
675 1.1 perry /* Check 'incorrect checksum' bit of IBM PS/2 Diagnostic Status Byte */
676 1.1 perry return ((mc146818_read(NULL, NVRAM_DIAG) & (1<<6)) == 0);
677 1.1 perry #endif
678 1.1 perry }
679 1.1 perry #endif /* NMCA > 0 */
680 1.1 perry
681 1.1 perry /*
682 1.1 perry * patchable to control century byte handling:
683 1.1 perry * 1: always update
684 1.1 perry * -1: never touch
685 1.1 perry * 0: try to figure out itself
686 1.1 perry */
687 1.1 perry int rtc_update_century = 0;
688 1.1 perry
689 1.1 perry /*
690 1.1 perry * Expand a two-digit year as read from the clock chip
691 1.1 perry * into full width.
692 1.1 perry * Being here, deal with the CMOS century byte.
693 1.1 perry */
694 1.1 perry static int centb = NVRAM_CENTURY;
695 1.1 perry static int
696 1.1 perry clock_expandyear(int clockyear)
697 1.1 perry {
698 1.1 perry int s, clockcentury, cmoscentury;
699 1.1 perry
700 1.1 perry clockcentury = (clockyear < 70) ? 20 : 19;
701 1.1 perry clockyear += 100 * clockcentury;
702 1.1 perry
703 1.1 perry if (rtc_update_century < 0)
704 1.1 perry return (clockyear);
705 1.1 perry
706 1.1 perry s = splclock();
707 1.1 perry if (cmoscheck())
708 1.1 perry cmoscentury = mc146818_read(NULL, NVRAM_CENTURY);
709 1.1 perry #if NMCA > 0
710 1.1 perry else if (MCA_system && cmoscheckps2())
711 1.1 perry cmoscentury = mc146818_read(NULL, (centb = 0x37));
712 1.1 perry #endif
713 1.1 perry else
714 1.1 perry cmoscentury = 0;
715 1.1 perry splx(s);
716 1.1 perry if (!cmoscentury) {
717 1.1 perry #ifdef DIAGNOSTIC
718 1.1 perry printf("clock: unknown CMOS layout\n");
719 1.1 perry #endif
720 1.1 perry return (clockyear);
721 1.1 perry }
722 1.1 perry cmoscentury = bcdtobin(cmoscentury);
723 1.1 perry
724 1.1 perry if (cmoscentury != clockcentury) {
725 1.1 perry /* XXX note: saying "century is 20" might confuse the naive. */
726 1.1 perry printf("WARNING: NVRAM century is %d but RTC year is %d\n",
727 1.1 perry cmoscentury, clockyear);
728 1.1 perry
729 1.1 perry /* Kludge to roll over century. */
730 1.1 perry if ((rtc_update_century > 0) ||
731 1.1 perry ((cmoscentury == 19) && (clockcentury == 20) &&
732 1.1 perry (clockyear == 2000))) {
733 1.1 perry printf("WARNING: Setting NVRAM century to %d\n",
734 1.1 perry clockcentury);
735 1.1 perry s = splclock();
736 1.1 perry mc146818_write(NULL, centb, bintobcd(clockcentury));
737 1.1 perry splx(s);
738 1.1 perry }
739 1.1 perry } else if (cmoscentury == 19 && rtc_update_century == 0)
740 1.1 perry rtc_update_century = 1; /* will update later in resettodr() */
741 1.1 perry
742 1.1 perry return (clockyear);
743 1.1 perry }
744 1.1 perry
745 1.1 perry static int
746 1.1 perry rtc_gettime(todr_chip_handle_t tch, volatile struct timeval *tv)
747 1.1 perry {
748 1.1 perry int s;
749 1.1 perry mc_todregs rtclk;
750 1.1 perry struct clock_ymdhms dt;
751 1.1 perry
752 1.1 perry s = splclock();
753 1.1 perry if (rtcget(&rtclk)) {
754 1.1 perry splx(s);
755 1.1 perry return -1;
756 1.1 perry }
757 1.1 perry splx(s);
758 1.1 perry
759 1.1 perry dt.dt_sec = bcdtobin(rtclk[MC_SEC]);
760 1.1 perry dt.dt_min = bcdtobin(rtclk[MC_MIN]);
761 1.1 perry dt.dt_hour = bcdtobin(rtclk[MC_HOUR]);
762 1.1 perry dt.dt_day = bcdtobin(rtclk[MC_DOM]);
763 1.1 perry dt.dt_mon = bcdtobin(rtclk[MC_MONTH]);
764 1.1 perry dt.dt_year = clock_expandyear(bcdtobin(rtclk[MC_YEAR]));
765 1.1 perry
766 1.1 perry /*
767 1.1 perry * If time_t is 32 bits, then the "End of Time" is
768 1.1 perry * Mon Jan 18 22:14:07 2038 (US/Eastern)
769 1.1 perry * This code copes with RTC's past the end of time if time_t
770 1.1 perry * is an int32 or less. Needed because sometimes RTCs screw
771 1.1 perry * up or are badly set, and that would cause the time to go
772 1.1 perry * negative in the calculation below, which causes Very Bad
773 1.1 perry * Mojo. This at least lets the user boot and fix the problem.
774 1.1 perry * Note the code is self eliminating once time_t goes to 64 bits.
775 1.1 perry */
776 1.1 perry if (sizeof(time_t) <= sizeof(int32_t)) {
777 1.1 perry if (dt.dt_year >= 2038) {
778 1.1 perry return -1;
779 1.1 perry }
780 1.1 perry }
781 1.1 perry
782 1.1 perry tv->tv_sec = clock_ymdhms_to_secs(&dt) + rtc_offset * 60;
783 1.1 perry tv->tv_usec = 0;
784 1.1 perry return 0;
785 1.1 perry }
786 1.1 perry
787 1.1 perry static int
788 1.1 perry rtc_settime(todr_chip_handle_t tch, volatile struct timeval *tvp)
789 1.1 perry {
790 1.1 perry mc_todregs rtclk;
791 1.1 perry struct clock_ymdhms dt;
792 1.1 perry int century;
793 1.1 perry int s;
794 1.1 perry
795 1.1 perry /*
796 1.1 perry * We might have been called by boot() due to a crash early
797 1.1 perry * on. Don't reset the clock chip in this case.
798 1.1 perry */
799 1.1 perry if (!timeset)
800 1.1 perry return 0;
801 1.1 perry
802 1.1 perry s = splclock();
803 1.1 perry if (rtcget(&rtclk))
804 1.1 perry memset(&rtclk, 0, sizeof(rtclk));
805 1.1 perry splx(s);
806 1.1 perry
807 1.1 perry clock_secs_to_ymdhms(time_second - rtc_offset * 60, &dt);
808 1.1 perry
809 1.1 perry rtclk[MC_SEC] = bintobcd(dt.dt_sec);
810 1.1 perry rtclk[MC_MIN] = bintobcd(dt.dt_min);
811 1.1 perry rtclk[MC_HOUR] = bintobcd(dt.dt_hour);
812 1.1 perry rtclk[MC_DOW] = dt.dt_wday + 1;
813 1.1 perry rtclk[MC_YEAR] = bintobcd(dt.dt_year % 100);
814 1.1 perry rtclk[MC_MONTH] = bintobcd(dt.dt_mon);
815 1.1 perry rtclk[MC_DOM] = bintobcd(dt.dt_day);
816 1.1 perry
817 1.1 perry #ifdef DEBUG_CLOCK
818 1.1 perry printf("setclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR], rtclk[MC_MONTH],
819 1.1 perry rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN], rtclk[MC_SEC]);
820 1.1 perry #endif
821 1.1 perry s = splclock();
822 1.1 perry rtcput(&rtclk);
823 1.1 perry if (rtc_update_century > 0) {
824 1.1 perry century = bintobcd(dt.dt_year / 100);
825 1.1 perry mc146818_write(NULL, centb, century); /* XXX softc */
826 1.1 perry }
827 1.1 perry splx(s);
828 1.1 perry return 0;
829 1.1 perry
830 1.1 perry }
831 1.1 perry
832 1.1 perry static int
833 1.1 perry rtc_getcal(todr_chip_handle_t tch, int *vp)
834 1.1 perry {
835 1.1 perry return EOPNOTSUPP;
836 1.1 perry }
837 1.1 perry
838 1.1 perry static int
839 1.1 perry rtc_setcal(todr_chip_handle_t tch, int v)
840 1.1 perry {
841 1.1 perry return EOPNOTSUPP;
842 1.1 perry }
843 1.1 perry
844 1.1 perry static void
845 1.1 perry rtc_register(void)
846 1.1 perry {
847 1.1 perry static struct todr_chip_handle tch;
848 1.1 perry tch.todr_gettime = rtc_gettime;
849 1.1 perry tch.todr_settime = rtc_settime;
850 1.1 perry tch.todr_getcal = rtc_getcal;
851 1.1 perry tch.todr_setcal = rtc_setcal;
852 1.1 perry tch.todr_setwen = NULL;
853 1.1 perry
854 1.1 perry todr_attach(&tch);
855 1.1 perry }
856 1.1 perry
857 1.1 perry void
858 1.1 perry setstatclockrate(int arg)
859 1.1 perry {
860 1.1 perry }
861