clock.c revision 1.14 1 1.14 ad /* $NetBSD: clock.c,v 1.14 2007/12/04 16:05:34 ad Exp $ */
2 1.1 perry
3 1.1 perry /*-
4 1.1 perry * Copyright (c) 1990 The Regents of the University of California.
5 1.1 perry * All rights reserved.
6 1.1 perry *
7 1.1 perry * This code is derived from software contributed to Berkeley by
8 1.1 perry * William Jolitz and Don Ahn.
9 1.1 perry *
10 1.1 perry * Redistribution and use in source and binary forms, with or without
11 1.1 perry * modification, are permitted provided that the following conditions
12 1.1 perry * are met:
13 1.1 perry * 1. Redistributions of source code must retain the above copyright
14 1.1 perry * notice, this list of conditions and the following disclaimer.
15 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 perry * notice, this list of conditions and the following disclaimer in the
17 1.1 perry * documentation and/or other materials provided with the distribution.
18 1.1 perry * 3. Neither the name of the University nor the names of its contributors
19 1.1 perry * may be used to endorse or promote products derived from this software
20 1.1 perry * without specific prior written permission.
21 1.1 perry *
22 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 perry * SUCH DAMAGE.
33 1.1 perry *
34 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
35 1.1 perry */
36 1.1 perry /*-
37 1.1 perry * Copyright (c) 1993, 1994 Charles M. Hannum.
38 1.1 perry *
39 1.1 perry * This code is derived from software contributed to Berkeley by
40 1.1 perry * William Jolitz and Don Ahn.
41 1.1 perry *
42 1.1 perry * Redistribution and use in source and binary forms, with or without
43 1.1 perry * modification, are permitted provided that the following conditions
44 1.1 perry * are met:
45 1.1 perry * 1. Redistributions of source code must retain the above copyright
46 1.1 perry * notice, this list of conditions and the following disclaimer.
47 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 perry * notice, this list of conditions and the following disclaimer in the
49 1.1 perry * documentation and/or other materials provided with the distribution.
50 1.1 perry * 3. All advertising materials mentioning features or use of this software
51 1.1 perry * must display the following acknowledgement:
52 1.1 perry * This product includes software developed by the University of
53 1.1 perry * California, Berkeley and its contributors.
54 1.1 perry * 4. Neither the name of the University nor the names of its contributors
55 1.1 perry * may be used to endorse or promote products derived from this software
56 1.1 perry * without specific prior written permission.
57 1.1 perry *
58 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.1 perry * SUCH DAMAGE.
69 1.1 perry *
70 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
71 1.1 perry */
72 1.1 perry /*
73 1.1 perry * Mach Operating System
74 1.1 perry * Copyright (c) 1991,1990,1989 Carnegie Mellon University
75 1.1 perry * All Rights Reserved.
76 1.1 perry *
77 1.1 perry * Permission to use, copy, modify and distribute this software and its
78 1.1 perry * documentation is hereby granted, provided that both the copyright
79 1.1 perry * notice and this permission notice appear in all copies of the
80 1.1 perry * software, derivative works or modified versions, and any portions
81 1.1 perry * thereof, and that both notices appear in supporting documentation.
82 1.1 perry *
83 1.1 perry * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
84 1.1 perry * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
85 1.1 perry * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
86 1.1 perry *
87 1.1 perry * Carnegie Mellon requests users of this software to return to
88 1.1 perry *
89 1.1 perry * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
90 1.1 perry * School of Computer Science
91 1.1 perry * Carnegie Mellon University
92 1.1 perry * Pittsburgh PA 15213-3890
93 1.1 perry *
94 1.1 perry * any improvements or extensions that they make and grant Carnegie Mellon
95 1.1 perry * the rights to redistribute these changes.
96 1.1 perry */
97 1.1 perry /*
98 1.1 perry Copyright 1988, 1989 by Intel Corporation, Santa Clara, California.
99 1.1 perry
100 1.1 perry All Rights Reserved
101 1.1 perry
102 1.1 perry Permission to use, copy, modify, and distribute this software and
103 1.1 perry its documentation for any purpose and without fee is hereby
104 1.1 perry granted, provided that the above copyright notice appears in all
105 1.1 perry copies and that both the copyright notice and this permission notice
106 1.1 perry appear in supporting documentation, and that the name of Intel
107 1.1 perry not be used in advertising or publicity pertaining to distribution
108 1.1 perry of the software without specific, written prior permission.
109 1.1 perry
110 1.1 perry INTEL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
111 1.1 perry INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
112 1.1 perry IN NO EVENT SHALL INTEL BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
113 1.1 perry CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
114 1.1 perry LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
115 1.1 perry NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
116 1.1 perry WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
117 1.1 perry */
118 1.1 perry
119 1.1 perry /*
120 1.1 perry * Primitive clock interrupt routines.
121 1.1 perry */
122 1.1 perry
123 1.1 perry #include <sys/cdefs.h>
124 1.14 ad __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.14 2007/12/04 16:05:34 ad Exp $");
125 1.1 perry
126 1.1 perry /* #define CLOCKDEBUG */
127 1.1 perry /* #define CLOCK_PARANOIA */
128 1.1 perry
129 1.1 perry #include "opt_multiprocessor.h"
130 1.1 perry #include "opt_ntp.h"
131 1.1 perry
132 1.1 perry #include <sys/param.h>
133 1.1 perry #include <sys/systm.h>
134 1.1 perry #include <sys/time.h>
135 1.1 perry #include <sys/timetc.h>
136 1.1 perry #include <sys/kernel.h>
137 1.1 perry #include <sys/device.h>
138 1.9 ad #include <sys/mutex.h>
139 1.1 perry
140 1.1 perry #include <machine/cpu.h>
141 1.1 perry #include <machine/intr.h>
142 1.1 perry #include <machine/pio.h>
143 1.1 perry #include <machine/cpufunc.h>
144 1.1 perry
145 1.1 perry #include <dev/isa/isareg.h>
146 1.1 perry #include <dev/isa/isavar.h>
147 1.1 perry #include <dev/ic/mc146818reg.h>
148 1.1 perry #include <dev/ic/i8253reg.h>
149 1.1 perry #include <i386/isa/nvram.h>
150 1.1 perry #include <x86/x86/tsc.h>
151 1.1 perry #include <dev/clock_subr.h>
152 1.1 perry #include <machine/specialreg.h>
153 1.1 perry
154 1.1 perry #include "config_time.h" /* for CONFIG_TIME */
155 1.1 perry
156 1.1 perry #ifndef __x86_64__
157 1.1 perry #include "mca.h"
158 1.1 perry #endif
159 1.1 perry #if NMCA > 0
160 1.1 perry #include <machine/mca_machdep.h> /* for MCA_system */
161 1.1 perry #endif
162 1.1 perry
163 1.1 perry #include "pcppi.h"
164 1.1 perry #if (NPCPPI > 0)
165 1.1 perry #include <dev/isa/pcppivar.h>
166 1.1 perry
167 1.1 perry int sysbeepmatch(struct device *, struct cfdata *, void *);
168 1.1 perry void sysbeepattach(struct device *, struct device *, void *);
169 1.1 perry
170 1.1 perry CFATTACH_DECL(sysbeep, sizeof(struct device),
171 1.1 perry sysbeepmatch, sysbeepattach, NULL, NULL);
172 1.1 perry
173 1.1 perry static int ppi_attached;
174 1.1 perry static pcppi_tag_t ppicookie;
175 1.1 perry #endif /* PCPPI */
176 1.1 perry
177 1.1 perry #ifdef CLOCKDEBUG
178 1.1 perry int clock_debug = 0;
179 1.1 perry #define DPRINTF(arg) if (clock_debug) printf arg
180 1.1 perry #else
181 1.1 perry #define DPRINTF(arg)
182 1.1 perry #endif
183 1.1 perry
184 1.12 joerg /* Used by lapic.c */
185 1.12 joerg unsigned int gettick(void);
186 1.1 perry void sysbeep(int, int);
187 1.1 perry static void tickle_tc(void);
188 1.1 perry
189 1.8 yamt static int clockintr(void *, struct intrframe *);
190 1.1 perry static void rtcinit(void);
191 1.1 perry static int rtcget(mc_todregs *);
192 1.1 perry static void rtcput(mc_todregs *);
193 1.1 perry
194 1.1 perry static int cmoscheck(void);
195 1.1 perry
196 1.1 perry static int clock_expandyear(int);
197 1.1 perry
198 1.12 joerg static unsigned int gettick_broken_latch(void);
199 1.1 perry
200 1.1 perry static volatile uint32_t i8254_lastcount;
201 1.1 perry static volatile uint32_t i8254_offset;
202 1.1 perry static volatile int i8254_ticked;
203 1.1 perry
204 1.9 ad /* to protect TC timer variables */
205 1.9 ad static __cpu_simple_lock_t tmr_lock = __SIMPLELOCK_UNLOCKED;
206 1.1 perry
207 1.1 perry inline u_int mc146818_read(void *, u_int);
208 1.1 perry inline void mc146818_write(void *, u_int, u_int);
209 1.1 perry
210 1.1 perry u_int i8254_get_timecount(struct timecounter *);
211 1.1 perry static void rtc_register(void);
212 1.1 perry
213 1.1 perry static struct timecounter i8254_timecounter = {
214 1.1 perry i8254_get_timecount, /* get_timecount */
215 1.1 perry 0, /* no poll_pps */
216 1.1 perry ~0u, /* counter_mask */
217 1.1 perry TIMER_FREQ, /* frequency */
218 1.1 perry "i8254", /* name */
219 1.1 perry 100, /* quality */
220 1.1 perry NULL, /* prev */
221 1.1 perry NULL, /* next */
222 1.1 perry };
223 1.1 perry
224 1.1 perry /* XXX use sc? */
225 1.1 perry inline u_int
226 1.7 christos mc146818_read(void *sc, u_int reg)
227 1.1 perry {
228 1.1 perry
229 1.1 perry outb(IO_RTC, reg);
230 1.1 perry return (inb(IO_RTC+1));
231 1.1 perry }
232 1.1 perry
233 1.1 perry /* XXX use sc? */
234 1.1 perry inline void
235 1.7 christos mc146818_write(void *sc, u_int reg, u_int datum)
236 1.1 perry {
237 1.1 perry
238 1.1 perry outb(IO_RTC, reg);
239 1.1 perry outb(IO_RTC+1, datum);
240 1.1 perry }
241 1.1 perry
242 1.1 perry u_long rtclock_tval; /* i8254 reload value for countdown */
243 1.1 perry int rtclock_init = 0;
244 1.1 perry
245 1.1 perry int clock_broken_latch = 0;
246 1.1 perry
247 1.1 perry #ifdef CLOCK_PARANOIA
248 1.1 perry static int ticks[6];
249 1.1 perry #endif
250 1.1 perry /*
251 1.1 perry * i8254 latch check routine:
252 1.1 perry * National Geode (formerly Cyrix MediaGX) has a serious bug in
253 1.1 perry * its built-in i8254-compatible clock module.
254 1.1 perry * machdep sets the variable 'clock_broken_latch' to indicate it.
255 1.1 perry */
256 1.1 perry
257 1.12 joerg static unsigned int
258 1.1 perry gettick_broken_latch(void)
259 1.1 perry {
260 1.1 perry int v1, v2, v3;
261 1.1 perry int w1, w2, w3;
262 1.14 ad int s;
263 1.1 perry
264 1.1 perry /* Don't want someone screwing with the counter while we're here. */
265 1.14 ad s = splhigh();
266 1.14 ad __cpu_simple_lock(&tmr_lock);
267 1.1 perry v1 = inb(IO_TIMER1+TIMER_CNTR0);
268 1.1 perry v1 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
269 1.1 perry v2 = inb(IO_TIMER1+TIMER_CNTR0);
270 1.1 perry v2 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
271 1.1 perry v3 = inb(IO_TIMER1+TIMER_CNTR0);
272 1.1 perry v3 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
273 1.14 ad __cpu_simple_unlock(&tmr_lock);
274 1.14 ad splx(s);
275 1.1 perry
276 1.1 perry #ifdef CLOCK_PARANOIA
277 1.1 perry if (clock_debug) {
278 1.1 perry ticks[0] = ticks[3];
279 1.1 perry ticks[1] = ticks[4];
280 1.1 perry ticks[2] = ticks[5];
281 1.1 perry ticks[3] = v1;
282 1.1 perry ticks[4] = v2;
283 1.1 perry ticks[5] = v3;
284 1.1 perry }
285 1.1 perry #endif
286 1.1 perry
287 1.1 perry if (v1 >= v2 && v2 >= v3 && v1 - v3 < 0x200)
288 1.1 perry return (v2);
289 1.1 perry
290 1.1 perry #define _swap_val(a, b) do { \
291 1.1 perry int c = a; \
292 1.1 perry a = b; \
293 1.1 perry b = c; \
294 1.1 perry } while (0)
295 1.1 perry
296 1.1 perry /*
297 1.1 perry * sort v1 v2 v3
298 1.1 perry */
299 1.1 perry if (v1 < v2)
300 1.1 perry _swap_val(v1, v2);
301 1.1 perry if (v2 < v3)
302 1.1 perry _swap_val(v2, v3);
303 1.1 perry if (v1 < v2)
304 1.1 perry _swap_val(v1, v2);
305 1.1 perry
306 1.1 perry /*
307 1.1 perry * compute the middle value
308 1.1 perry */
309 1.1 perry
310 1.1 perry if (v1 - v3 < 0x200)
311 1.1 perry return (v2);
312 1.1 perry
313 1.1 perry w1 = v2 - v3;
314 1.1 perry w2 = v3 - v1 + rtclock_tval;
315 1.1 perry w3 = v1 - v2;
316 1.1 perry if (w1 >= w2) {
317 1.1 perry if (w1 >= w3)
318 1.1 perry return (v1);
319 1.1 perry } else {
320 1.1 perry if (w2 >= w3)
321 1.1 perry return (v2);
322 1.1 perry }
323 1.1 perry return (v3);
324 1.1 perry }
325 1.1 perry
326 1.1 perry /* minimal initialization, enough for delay() */
327 1.1 perry void
328 1.1 perry initrtclock(u_long freq)
329 1.1 perry {
330 1.1 perry u_long tval;
331 1.9 ad
332 1.1 perry /*
333 1.1 perry * Compute timer_count, the count-down count the timer will be
334 1.1 perry * set to. Also, correctly round
335 1.1 perry * this by carrying an extra bit through the division.
336 1.1 perry */
337 1.1 perry tval = (freq * 2) / (u_long) hz;
338 1.1 perry tval = (tval / 2) + (tval & 0x1);
339 1.1 perry
340 1.1 perry /* initialize 8254 clock */
341 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
342 1.1 perry
343 1.1 perry /* Correct rounding will buy us a better precision in timekeeping */
344 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval % 256);
345 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval / 256);
346 1.1 perry
347 1.1 perry rtclock_tval = tval ? tval : 0xFFFF;
348 1.1 perry rtclock_init = 1;
349 1.1 perry }
350 1.1 perry
351 1.1 perry void
352 1.1 perry startrtclock(void)
353 1.1 perry {
354 1.1 perry int s;
355 1.1 perry
356 1.1 perry if (!rtclock_init)
357 1.1 perry initrtclock(TIMER_FREQ);
358 1.1 perry
359 1.1 perry /* Check diagnostic status */
360 1.1 perry if ((s = mc146818_read(NULL, NVRAM_DIAG)) != 0) { /* XXX softc */
361 1.1 perry char bits[128];
362 1.1 perry printf("RTC BIOS diagnostic error %s\n",
363 1.1 perry bitmask_snprintf(s, NVRAM_DIAG_BITS, bits, sizeof(bits)));
364 1.1 perry }
365 1.1 perry
366 1.1 perry tc_init(&i8254_timecounter);
367 1.1 perry
368 1.1 perry init_TSC();
369 1.1 perry rtc_register();
370 1.1 perry }
371 1.1 perry
372 1.9 ad /*
373 1.14 ad * Must be called at splsched().
374 1.9 ad */
375 1.1 perry static void
376 1.1 perry tickle_tc(void)
377 1.1 perry {
378 1.1 perry #if defined(MULTIPROCESSOR)
379 1.1 perry struct cpu_info *ci = curcpu();
380 1.1 perry /*
381 1.1 perry * If we are not the primary CPU, we're not allowed to do
382 1.1 perry * any more work.
383 1.1 perry */
384 1.1 perry if (CPU_IS_PRIMARY(ci) == 0)
385 1.1 perry return;
386 1.1 perry #endif
387 1.1 perry if (rtclock_tval && timecounter->tc_get_timecount == i8254_get_timecount) {
388 1.9 ad __cpu_simple_lock(&tmr_lock);
389 1.1 perry if (i8254_ticked)
390 1.1 perry i8254_ticked = 0;
391 1.1 perry else {
392 1.1 perry i8254_offset += rtclock_tval;
393 1.1 perry i8254_lastcount = 0;
394 1.1 perry }
395 1.9 ad __cpu_simple_unlock(&tmr_lock);
396 1.1 perry }
397 1.1 perry
398 1.1 perry }
399 1.1 perry
400 1.1 perry static int
401 1.8 yamt clockintr(void *arg, struct intrframe *frame)
402 1.1 perry {
403 1.1 perry tickle_tc();
404 1.1 perry
405 1.8 yamt hardclock((struct clockframe *)frame);
406 1.1 perry
407 1.1 perry #if NMCA > 0
408 1.1 perry if (MCA_system) {
409 1.1 perry /* Reset PS/2 clock interrupt by asserting bit 7 of port 0x61 */
410 1.1 perry outb(0x61, inb(0x61) | 0x80);
411 1.1 perry }
412 1.1 perry #endif
413 1.1 perry return -1;
414 1.1 perry }
415 1.1 perry
416 1.1 perry u_int
417 1.7 christos i8254_get_timecount(struct timecounter *tc)
418 1.1 perry {
419 1.1 perry u_int count;
420 1.14 ad uint16_t rdval;
421 1.14 ad int s;
422 1.1 perry
423 1.1 perry /* Don't want someone screwing with the counter while we're here. */
424 1.14 ad s = splhigh();
425 1.9 ad __cpu_simple_lock(&tmr_lock);
426 1.1 perry /* Select timer0 and latch counter value. */
427 1.1 perry outb(IO_TIMER1 + TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
428 1.14 ad /* insb to make the read atomic */
429 1.14 ad insb(IO_TIMER1+TIMER_CNTR0, &rdval, 2);
430 1.14 ad count = rtclock_tval - rdval;
431 1.1 perry if (rtclock_tval && (count < i8254_lastcount || !i8254_ticked)) {
432 1.1 perry i8254_ticked = 1;
433 1.1 perry i8254_offset += rtclock_tval;
434 1.1 perry }
435 1.1 perry i8254_lastcount = count;
436 1.1 perry count += i8254_offset;
437 1.9 ad __cpu_simple_unlock(&tmr_lock);
438 1.14 ad splx(s);
439 1.1 perry
440 1.1 perry return (count);
441 1.1 perry }
442 1.1 perry
443 1.12 joerg unsigned int
444 1.1 perry gettick(void)
445 1.1 perry {
446 1.14 ad uint16_t rdval;
447 1.14 ad int s;
448 1.14 ad
449 1.1 perry if (clock_broken_latch)
450 1.1 perry return (gettick_broken_latch());
451 1.1 perry
452 1.1 perry /* Don't want someone screwing with the counter while we're here. */
453 1.14 ad s = splhigh();
454 1.14 ad __cpu_simple_lock(&tmr_lock);
455 1.1 perry /* Select counter 0 and latch it. */
456 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
457 1.14 ad /* insb to make the read atomic */
458 1.14 ad insb(IO_TIMER1+TIMER_CNTR0, &rdval, 2);
459 1.14 ad __cpu_simple_unlock(&tmr_lock);
460 1.14 ad splx(s);
461 1.14 ad
462 1.14 ad return rdval;
463 1.1 perry }
464 1.1 perry
465 1.1 perry /*
466 1.1 perry * Wait approximately `n' microseconds.
467 1.1 perry * Relies on timer 1 counting down from (TIMER_FREQ / hz) at TIMER_FREQ Hz.
468 1.1 perry * Note: timer had better have been programmed before this is first used!
469 1.1 perry * (Note that we use `rate generator' mode, which counts at 1:1; `square
470 1.1 perry * wave' mode counts at 2:1).
471 1.1 perry * Don't rely on this being particularly accurate.
472 1.1 perry */
473 1.1 perry void
474 1.12 joerg i8254_delay(unsigned int n)
475 1.1 perry {
476 1.12 joerg unsigned int cur_tick, initial_tick;
477 1.12 joerg int remaining;
478 1.1 perry static const int delaytab[26] = {
479 1.1 perry 0, 2, 3, 4, 5, 6, 7, 9, 10, 11,
480 1.1 perry 12, 13, 15, 16, 17, 18, 19, 21, 22, 23,
481 1.1 perry 24, 25, 27, 28, 29, 30,
482 1.1 perry };
483 1.1 perry
484 1.1 perry /* allow DELAY() to be used before startrtclock() */
485 1.1 perry if (!rtclock_init)
486 1.1 perry initrtclock(TIMER_FREQ);
487 1.1 perry
488 1.1 perry /*
489 1.1 perry * Read the counter first, so that the rest of the setup overhead is
490 1.1 perry * counted.
491 1.1 perry */
492 1.12 joerg initial_tick = gettick();
493 1.1 perry
494 1.1 perry if (n <= 25)
495 1.12 joerg remaining = delaytab[n];
496 1.12 joerg else if (n <= UINT_MAX / TIMER_FREQ) {
497 1.1 perry /*
498 1.12 joerg * For unsigned arithmetic, division can be replaced with
499 1.12 joerg * multiplication with the inverse and a shift.
500 1.1 perry */
501 1.12 joerg remaining = n * TIMER_FREQ / 1000000;
502 1.12 joerg } else {
503 1.12 joerg /* This is a very long delay.
504 1.12 joerg * Being slow here doesn't matter.
505 1.1 perry */
506 1.12 joerg remaining = (unsigned long long) n * TIMER_FREQ / 1000000;
507 1.1 perry }
508 1.1 perry
509 1.12 joerg while (remaining > 0) {
510 1.1 perry #ifdef CLOCK_PARANOIA
511 1.1 perry int delta;
512 1.12 joerg cur_tick = gettick();
513 1.12 joerg if (cur_tick > initial_tick)
514 1.12 joerg delta = rtclock_tval - (cur_tick - initial_tick);
515 1.1 perry else
516 1.12 joerg delta = initial_tick - cur_tick;
517 1.1 perry if (delta < 0 || delta >= rtclock_tval / 2) {
518 1.1 perry DPRINTF(("delay: ignore ticks %.4x-%.4x",
519 1.12 joerg initial_tick, cur_tick));
520 1.1 perry if (clock_broken_latch) {
521 1.1 perry DPRINTF((" (%.4x %.4x %.4x %.4x %.4x %.4x)\n",
522 1.1 perry ticks[0], ticks[1], ticks[2],
523 1.1 perry ticks[3], ticks[4], ticks[5]));
524 1.1 perry } else {
525 1.1 perry DPRINTF(("\n"));
526 1.1 perry }
527 1.1 perry } else
528 1.12 joerg remaining -= delta;
529 1.1 perry #else
530 1.12 joerg cur_tick = gettick();
531 1.12 joerg if (cur_tick > initial_tick)
532 1.12 joerg remaining -= rtclock_tval - (cur_tick - initial_tick);
533 1.1 perry else
534 1.12 joerg remaining -= initial_tick - cur_tick;
535 1.1 perry #endif
536 1.12 joerg initial_tick = cur_tick;
537 1.1 perry }
538 1.1 perry }
539 1.1 perry
540 1.1 perry #if (NPCPPI > 0)
541 1.1 perry int
542 1.7 christos sysbeepmatch(struct device *parent, struct cfdata *match,
543 1.7 christos void *aux)
544 1.1 perry {
545 1.1 perry return (!ppi_attached);
546 1.1 perry }
547 1.1 perry
548 1.1 perry void
549 1.7 christos sysbeepattach(struct device *parent, struct device *self,
550 1.5 christos void *aux)
551 1.1 perry {
552 1.1 perry aprint_naive("\n");
553 1.1 perry aprint_normal("\n");
554 1.1 perry
555 1.1 perry ppicookie = ((struct pcppi_attach_args *)aux)->pa_cookie;
556 1.1 perry ppi_attached = 1;
557 1.1 perry }
558 1.1 perry #endif
559 1.1 perry
560 1.1 perry void
561 1.7 christos sysbeep(int pitch, int period)
562 1.1 perry {
563 1.1 perry #if (NPCPPI > 0)
564 1.1 perry if (ppi_attached)
565 1.1 perry pcppi_bell(ppicookie, pitch, period, 0);
566 1.1 perry #endif
567 1.1 perry }
568 1.1 perry
569 1.1 perry void
570 1.1 perry i8254_initclocks(void)
571 1.1 perry {
572 1.1 perry
573 1.1 perry /*
574 1.1 perry * XXX If you're doing strange things with multiple clocks, you might
575 1.1 perry * want to keep track of clock handlers.
576 1.1 perry */
577 1.1 perry (void)isa_intr_establish(NULL, 0, IST_PULSE, IPL_CLOCK,
578 1.1 perry (int (*)(void *))clockintr, 0);
579 1.1 perry }
580 1.1 perry
581 1.1 perry static void
582 1.1 perry rtcinit(void)
583 1.1 perry {
584 1.1 perry static int first_rtcopen_ever = 1;
585 1.1 perry
586 1.1 perry if (!first_rtcopen_ever)
587 1.1 perry return;
588 1.1 perry first_rtcopen_ever = 0;
589 1.1 perry
590 1.1 perry mc146818_write(NULL, MC_REGA, /* XXX softc */
591 1.1 perry MC_BASE_32_KHz | MC_RATE_1024_Hz);
592 1.1 perry mc146818_write(NULL, MC_REGB, MC_REGB_24HR); /* XXX softc */
593 1.1 perry }
594 1.1 perry
595 1.1 perry static int
596 1.1 perry rtcget(mc_todregs *regs)
597 1.1 perry {
598 1.1 perry
599 1.1 perry rtcinit();
600 1.1 perry if ((mc146818_read(NULL, MC_REGD) & MC_REGD_VRT) == 0) /* XXX softc */
601 1.1 perry return (-1);
602 1.1 perry MC146818_GETTOD(NULL, regs); /* XXX softc */
603 1.1 perry return (0);
604 1.1 perry }
605 1.1 perry
606 1.1 perry static void
607 1.1 perry rtcput(mc_todregs *regs)
608 1.1 perry {
609 1.1 perry
610 1.1 perry rtcinit();
611 1.1 perry MC146818_PUTTOD(NULL, regs); /* XXX softc */
612 1.1 perry }
613 1.1 perry
614 1.1 perry /*
615 1.1 perry * check whether the CMOS layout is "standard"-like (ie, not PS/2-like),
616 1.1 perry * to be called at splclock()
617 1.1 perry */
618 1.1 perry static int
619 1.1 perry cmoscheck(void)
620 1.1 perry {
621 1.1 perry int i;
622 1.1 perry unsigned short cksum = 0;
623 1.1 perry
624 1.1 perry for (i = 0x10; i <= 0x2d; i++)
625 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
626 1.1 perry
627 1.1 perry return (cksum == (mc146818_read(NULL, 0x2e) << 8)
628 1.1 perry + mc146818_read(NULL, 0x2f));
629 1.1 perry }
630 1.1 perry
631 1.1 perry #if NMCA > 0
632 1.1 perry /*
633 1.1 perry * Check whether the CMOS layout is PS/2 like, to be called at splclock().
634 1.1 perry */
635 1.1 perry static int cmoscheckps2(void);
636 1.1 perry static int
637 1.1 perry cmoscheckps2(void)
638 1.1 perry {
639 1.1 perry #if 0
640 1.1 perry /* Disabled until I find out the CRC checksum algorithm IBM uses */
641 1.1 perry int i;
642 1.1 perry unsigned short cksum = 0;
643 1.1 perry
644 1.1 perry for (i = 0x10; i <= 0x31; i++)
645 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
646 1.1 perry
647 1.1 perry return (cksum == (mc146818_read(NULL, 0x32) << 8)
648 1.1 perry + mc146818_read(NULL, 0x33));
649 1.1 perry #else
650 1.1 perry /* Check 'incorrect checksum' bit of IBM PS/2 Diagnostic Status Byte */
651 1.1 perry return ((mc146818_read(NULL, NVRAM_DIAG) & (1<<6)) == 0);
652 1.1 perry #endif
653 1.1 perry }
654 1.1 perry #endif /* NMCA > 0 */
655 1.1 perry
656 1.1 perry /*
657 1.1 perry * patchable to control century byte handling:
658 1.1 perry * 1: always update
659 1.1 perry * -1: never touch
660 1.1 perry * 0: try to figure out itself
661 1.1 perry */
662 1.1 perry int rtc_update_century = 0;
663 1.1 perry
664 1.1 perry /*
665 1.1 perry * Expand a two-digit year as read from the clock chip
666 1.1 perry * into full width.
667 1.1 perry * Being here, deal with the CMOS century byte.
668 1.1 perry */
669 1.1 perry static int centb = NVRAM_CENTURY;
670 1.1 perry static int
671 1.1 perry clock_expandyear(int clockyear)
672 1.1 perry {
673 1.1 perry int s, clockcentury, cmoscentury;
674 1.1 perry
675 1.1 perry clockcentury = (clockyear < 70) ? 20 : 19;
676 1.1 perry clockyear += 100 * clockcentury;
677 1.1 perry
678 1.1 perry if (rtc_update_century < 0)
679 1.1 perry return (clockyear);
680 1.1 perry
681 1.1 perry s = splclock();
682 1.1 perry if (cmoscheck())
683 1.1 perry cmoscentury = mc146818_read(NULL, NVRAM_CENTURY);
684 1.1 perry #if NMCA > 0
685 1.1 perry else if (MCA_system && cmoscheckps2())
686 1.1 perry cmoscentury = mc146818_read(NULL, (centb = 0x37));
687 1.1 perry #endif
688 1.1 perry else
689 1.1 perry cmoscentury = 0;
690 1.1 perry splx(s);
691 1.1 perry if (!cmoscentury) {
692 1.1 perry #ifdef DIAGNOSTIC
693 1.1 perry printf("clock: unknown CMOS layout\n");
694 1.1 perry #endif
695 1.1 perry return (clockyear);
696 1.1 perry }
697 1.1 perry cmoscentury = bcdtobin(cmoscentury);
698 1.1 perry
699 1.1 perry if (cmoscentury != clockcentury) {
700 1.1 perry /* XXX note: saying "century is 20" might confuse the naive. */
701 1.1 perry printf("WARNING: NVRAM century is %d but RTC year is %d\n",
702 1.1 perry cmoscentury, clockyear);
703 1.1 perry
704 1.1 perry /* Kludge to roll over century. */
705 1.1 perry if ((rtc_update_century > 0) ||
706 1.1 perry ((cmoscentury == 19) && (clockcentury == 20) &&
707 1.1 perry (clockyear == 2000))) {
708 1.1 perry printf("WARNING: Setting NVRAM century to %d\n",
709 1.1 perry clockcentury);
710 1.1 perry s = splclock();
711 1.1 perry mc146818_write(NULL, centb, bintobcd(clockcentury));
712 1.1 perry splx(s);
713 1.1 perry }
714 1.1 perry } else if (cmoscentury == 19 && rtc_update_century == 0)
715 1.1 perry rtc_update_century = 1; /* will update later in resettodr() */
716 1.1 perry
717 1.1 perry return (clockyear);
718 1.1 perry }
719 1.1 perry
720 1.1 perry static int
721 1.7 christos rtc_get_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
722 1.1 perry {
723 1.1 perry int s;
724 1.1 perry mc_todregs rtclk;
725 1.1 perry
726 1.1 perry s = splclock();
727 1.1 perry if (rtcget(&rtclk)) {
728 1.1 perry splx(s);
729 1.1 perry return -1;
730 1.1 perry }
731 1.1 perry splx(s);
732 1.1 perry
733 1.4 gdamore dt->dt_sec = bcdtobin(rtclk[MC_SEC]);
734 1.4 gdamore dt->dt_min = bcdtobin(rtclk[MC_MIN]);
735 1.4 gdamore dt->dt_hour = bcdtobin(rtclk[MC_HOUR]);
736 1.4 gdamore dt->dt_day = bcdtobin(rtclk[MC_DOM]);
737 1.4 gdamore dt->dt_mon = bcdtobin(rtclk[MC_MONTH]);
738 1.4 gdamore dt->dt_year = clock_expandyear(bcdtobin(rtclk[MC_YEAR]));
739 1.1 perry
740 1.1 perry return 0;
741 1.1 perry }
742 1.1 perry
743 1.1 perry static int
744 1.7 christos rtc_set_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
745 1.1 perry {
746 1.1 perry mc_todregs rtclk;
747 1.1 perry int century;
748 1.1 perry int s;
749 1.1 perry
750 1.1 perry s = splclock();
751 1.1 perry if (rtcget(&rtclk))
752 1.1 perry memset(&rtclk, 0, sizeof(rtclk));
753 1.1 perry splx(s);
754 1.1 perry
755 1.4 gdamore rtclk[MC_SEC] = bintobcd(dt->dt_sec);
756 1.4 gdamore rtclk[MC_MIN] = bintobcd(dt->dt_min);
757 1.4 gdamore rtclk[MC_HOUR] = bintobcd(dt->dt_hour);
758 1.4 gdamore rtclk[MC_DOW] = dt->dt_wday + 1;
759 1.4 gdamore rtclk[MC_YEAR] = bintobcd(dt->dt_year % 100);
760 1.4 gdamore rtclk[MC_MONTH] = bintobcd(dt->dt_mon);
761 1.4 gdamore rtclk[MC_DOM] = bintobcd(dt->dt_day);
762 1.1 perry
763 1.1 perry #ifdef DEBUG_CLOCK
764 1.1 perry printf("setclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR], rtclk[MC_MONTH],
765 1.1 perry rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN], rtclk[MC_SEC]);
766 1.1 perry #endif
767 1.1 perry s = splclock();
768 1.1 perry rtcput(&rtclk);
769 1.1 perry if (rtc_update_century > 0) {
770 1.4 gdamore century = bintobcd(dt->dt_year / 100);
771 1.1 perry mc146818_write(NULL, centb, century); /* XXX softc */
772 1.1 perry }
773 1.1 perry splx(s);
774 1.1 perry return 0;
775 1.1 perry
776 1.1 perry }
777 1.1 perry
778 1.1 perry static void
779 1.1 perry rtc_register(void)
780 1.1 perry {
781 1.1 perry static struct todr_chip_handle tch;
782 1.4 gdamore tch.todr_gettime_ymdhms = rtc_get_ymdhms;
783 1.4 gdamore tch.todr_settime_ymdhms = rtc_set_ymdhms;
784 1.1 perry tch.todr_setwen = NULL;
785 1.1 perry
786 1.1 perry todr_attach(&tch);
787 1.1 perry }
788 1.1 perry
789 1.1 perry void
790 1.7 christos setstatclockrate(int arg)
791 1.1 perry {
792 1.1 perry }
793