clock.c revision 1.19 1 1.19 christos /* $NetBSD: clock.c,v 1.19 2008/01/04 20:38:01 christos Exp $ */
2 1.1 perry
3 1.1 perry /*-
4 1.1 perry * Copyright (c) 1990 The Regents of the University of California.
5 1.1 perry * All rights reserved.
6 1.1 perry *
7 1.1 perry * This code is derived from software contributed to Berkeley by
8 1.1 perry * William Jolitz and Don Ahn.
9 1.1 perry *
10 1.1 perry * Redistribution and use in source and binary forms, with or without
11 1.1 perry * modification, are permitted provided that the following conditions
12 1.1 perry * are met:
13 1.1 perry * 1. Redistributions of source code must retain the above copyright
14 1.1 perry * notice, this list of conditions and the following disclaimer.
15 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 perry * notice, this list of conditions and the following disclaimer in the
17 1.1 perry * documentation and/or other materials provided with the distribution.
18 1.1 perry * 3. Neither the name of the University nor the names of its contributors
19 1.1 perry * may be used to endorse or promote products derived from this software
20 1.1 perry * without specific prior written permission.
21 1.1 perry *
22 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 perry * SUCH DAMAGE.
33 1.1 perry *
34 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
35 1.1 perry */
36 1.1 perry /*-
37 1.1 perry * Copyright (c) 1993, 1994 Charles M. Hannum.
38 1.1 perry *
39 1.1 perry * This code is derived from software contributed to Berkeley by
40 1.1 perry * William Jolitz and Don Ahn.
41 1.1 perry *
42 1.1 perry * Redistribution and use in source and binary forms, with or without
43 1.1 perry * modification, are permitted provided that the following conditions
44 1.1 perry * are met:
45 1.1 perry * 1. Redistributions of source code must retain the above copyright
46 1.1 perry * notice, this list of conditions and the following disclaimer.
47 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 perry * notice, this list of conditions and the following disclaimer in the
49 1.1 perry * documentation and/or other materials provided with the distribution.
50 1.1 perry * 3. All advertising materials mentioning features or use of this software
51 1.1 perry * must display the following acknowledgement:
52 1.1 perry * This product includes software developed by the University of
53 1.1 perry * California, Berkeley and its contributors.
54 1.1 perry * 4. Neither the name of the University nor the names of its contributors
55 1.1 perry * may be used to endorse or promote products derived from this software
56 1.1 perry * without specific prior written permission.
57 1.1 perry *
58 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.1 perry * SUCH DAMAGE.
69 1.1 perry *
70 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
71 1.1 perry */
72 1.1 perry /*
73 1.1 perry * Mach Operating System
74 1.1 perry * Copyright (c) 1991,1990,1989 Carnegie Mellon University
75 1.1 perry * All Rights Reserved.
76 1.1 perry *
77 1.1 perry * Permission to use, copy, modify and distribute this software and its
78 1.1 perry * documentation is hereby granted, provided that both the copyright
79 1.1 perry * notice and this permission notice appear in all copies of the
80 1.1 perry * software, derivative works or modified versions, and any portions
81 1.1 perry * thereof, and that both notices appear in supporting documentation.
82 1.1 perry *
83 1.1 perry * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
84 1.1 perry * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
85 1.1 perry * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
86 1.1 perry *
87 1.1 perry * Carnegie Mellon requests users of this software to return to
88 1.1 perry *
89 1.1 perry * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
90 1.1 perry * School of Computer Science
91 1.1 perry * Carnegie Mellon University
92 1.1 perry * Pittsburgh PA 15213-3890
93 1.1 perry *
94 1.1 perry * any improvements or extensions that they make and grant Carnegie Mellon
95 1.1 perry * the rights to redistribute these changes.
96 1.1 perry */
97 1.1 perry /*
98 1.1 perry Copyright 1988, 1989 by Intel Corporation, Santa Clara, California.
99 1.1 perry
100 1.1 perry All Rights Reserved
101 1.1 perry
102 1.1 perry Permission to use, copy, modify, and distribute this software and
103 1.1 perry its documentation for any purpose and without fee is hereby
104 1.1 perry granted, provided that the above copyright notice appears in all
105 1.1 perry copies and that both the copyright notice and this permission notice
106 1.1 perry appear in supporting documentation, and that the name of Intel
107 1.1 perry not be used in advertising or publicity pertaining to distribution
108 1.1 perry of the software without specific, written prior permission.
109 1.1 perry
110 1.1 perry INTEL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
111 1.1 perry INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
112 1.1 perry IN NO EVENT SHALL INTEL BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
113 1.1 perry CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
114 1.1 perry LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
115 1.1 perry NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
116 1.1 perry WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
117 1.1 perry */
118 1.1 perry
119 1.1 perry /*
120 1.1 perry * Primitive clock interrupt routines.
121 1.1 perry */
122 1.1 perry
123 1.1 perry #include <sys/cdefs.h>
124 1.19 christos __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.19 2008/01/04 20:38:01 christos Exp $");
125 1.1 perry
126 1.1 perry /* #define CLOCKDEBUG */
127 1.1 perry /* #define CLOCK_PARANOIA */
128 1.1 perry
129 1.1 perry #include "opt_multiprocessor.h"
130 1.1 perry #include "opt_ntp.h"
131 1.1 perry
132 1.1 perry #include <sys/param.h>
133 1.1 perry #include <sys/systm.h>
134 1.1 perry #include <sys/time.h>
135 1.1 perry #include <sys/timetc.h>
136 1.1 perry #include <sys/kernel.h>
137 1.1 perry #include <sys/device.h>
138 1.9 ad #include <sys/mutex.h>
139 1.1 perry
140 1.1 perry #include <machine/cpu.h>
141 1.1 perry #include <machine/intr.h>
142 1.1 perry #include <machine/pio.h>
143 1.1 perry #include <machine/cpufunc.h>
144 1.1 perry
145 1.1 perry #include <dev/isa/isareg.h>
146 1.1 perry #include <dev/isa/isavar.h>
147 1.1 perry #include <dev/ic/mc146818reg.h>
148 1.1 perry #include <dev/ic/i8253reg.h>
149 1.1 perry #include <i386/isa/nvram.h>
150 1.1 perry #include <x86/x86/tsc.h>
151 1.19 christos #include <x86/lock.h>
152 1.1 perry #include <dev/clock_subr.h>
153 1.1 perry #include <machine/specialreg.h>
154 1.1 perry
155 1.1 perry #include "config_time.h" /* for CONFIG_TIME */
156 1.1 perry
157 1.1 perry #ifndef __x86_64__
158 1.1 perry #include "mca.h"
159 1.1 perry #endif
160 1.1 perry #if NMCA > 0
161 1.1 perry #include <machine/mca_machdep.h> /* for MCA_system */
162 1.1 perry #endif
163 1.1 perry
164 1.1 perry #include "pcppi.h"
165 1.1 perry #if (NPCPPI > 0)
166 1.1 perry #include <dev/isa/pcppivar.h>
167 1.1 perry
168 1.1 perry int sysbeepmatch(struct device *, struct cfdata *, void *);
169 1.1 perry void sysbeepattach(struct device *, struct device *, void *);
170 1.17 dyoung int sysbeepdetach(device_t, int);
171 1.1 perry
172 1.1 perry CFATTACH_DECL(sysbeep, sizeof(struct device),
173 1.17 dyoung sysbeepmatch, sysbeepattach, sysbeepdetach, NULL);
174 1.1 perry
175 1.1 perry static int ppi_attached;
176 1.1 perry static pcppi_tag_t ppicookie;
177 1.1 perry #endif /* PCPPI */
178 1.1 perry
179 1.1 perry #ifdef CLOCKDEBUG
180 1.1 perry int clock_debug = 0;
181 1.1 perry #define DPRINTF(arg) if (clock_debug) printf arg
182 1.1 perry #else
183 1.1 perry #define DPRINTF(arg)
184 1.1 perry #endif
185 1.1 perry
186 1.12 joerg /* Used by lapic.c */
187 1.12 joerg unsigned int gettick(void);
188 1.1 perry void sysbeep(int, int);
189 1.1 perry static void tickle_tc(void);
190 1.1 perry
191 1.8 yamt static int clockintr(void *, struct intrframe *);
192 1.1 perry static void rtcinit(void);
193 1.1 perry static int rtcget(mc_todregs *);
194 1.1 perry static void rtcput(mc_todregs *);
195 1.1 perry
196 1.1 perry static int cmoscheck(void);
197 1.1 perry
198 1.1 perry static int clock_expandyear(int);
199 1.18 he int sysbeepdetach(device_t, int);
200 1.1 perry
201 1.12 joerg static unsigned int gettick_broken_latch(void);
202 1.1 perry
203 1.1 perry static volatile uint32_t i8254_lastcount;
204 1.1 perry static volatile uint32_t i8254_offset;
205 1.1 perry static volatile int i8254_ticked;
206 1.1 perry
207 1.9 ad /* to protect TC timer variables */
208 1.9 ad static __cpu_simple_lock_t tmr_lock = __SIMPLELOCK_UNLOCKED;
209 1.1 perry
210 1.1 perry inline u_int mc146818_read(void *, u_int);
211 1.1 perry inline void mc146818_write(void *, u_int, u_int);
212 1.1 perry
213 1.1 perry u_int i8254_get_timecount(struct timecounter *);
214 1.1 perry static void rtc_register(void);
215 1.1 perry
216 1.1 perry static struct timecounter i8254_timecounter = {
217 1.1 perry i8254_get_timecount, /* get_timecount */
218 1.1 perry 0, /* no poll_pps */
219 1.1 perry ~0u, /* counter_mask */
220 1.1 perry TIMER_FREQ, /* frequency */
221 1.1 perry "i8254", /* name */
222 1.1 perry 100, /* quality */
223 1.1 perry NULL, /* prev */
224 1.1 perry NULL, /* next */
225 1.1 perry };
226 1.1 perry
227 1.1 perry /* XXX use sc? */
228 1.1 perry inline u_int
229 1.7 christos mc146818_read(void *sc, u_int reg)
230 1.1 perry {
231 1.1 perry
232 1.1 perry outb(IO_RTC, reg);
233 1.1 perry return (inb(IO_RTC+1));
234 1.1 perry }
235 1.1 perry
236 1.1 perry /* XXX use sc? */
237 1.1 perry inline void
238 1.7 christos mc146818_write(void *sc, u_int reg, u_int datum)
239 1.1 perry {
240 1.1 perry
241 1.1 perry outb(IO_RTC, reg);
242 1.1 perry outb(IO_RTC+1, datum);
243 1.1 perry }
244 1.1 perry
245 1.1 perry u_long rtclock_tval; /* i8254 reload value for countdown */
246 1.1 perry int rtclock_init = 0;
247 1.1 perry
248 1.1 perry int clock_broken_latch = 0;
249 1.1 perry
250 1.1 perry #ifdef CLOCK_PARANOIA
251 1.1 perry static int ticks[6];
252 1.1 perry #endif
253 1.1 perry /*
254 1.1 perry * i8254 latch check routine:
255 1.1 perry * National Geode (formerly Cyrix MediaGX) has a serious bug in
256 1.1 perry * its built-in i8254-compatible clock module.
257 1.1 perry * machdep sets the variable 'clock_broken_latch' to indicate it.
258 1.1 perry */
259 1.1 perry
260 1.12 joerg static unsigned int
261 1.1 perry gettick_broken_latch(void)
262 1.1 perry {
263 1.1 perry int v1, v2, v3;
264 1.1 perry int w1, w2, w3;
265 1.14 ad int s;
266 1.1 perry
267 1.1 perry /* Don't want someone screwing with the counter while we're here. */
268 1.14 ad s = splhigh();
269 1.14 ad __cpu_simple_lock(&tmr_lock);
270 1.1 perry v1 = inb(IO_TIMER1+TIMER_CNTR0);
271 1.1 perry v1 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
272 1.1 perry v2 = inb(IO_TIMER1+TIMER_CNTR0);
273 1.1 perry v2 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
274 1.1 perry v3 = inb(IO_TIMER1+TIMER_CNTR0);
275 1.1 perry v3 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
276 1.14 ad __cpu_simple_unlock(&tmr_lock);
277 1.14 ad splx(s);
278 1.1 perry
279 1.1 perry #ifdef CLOCK_PARANOIA
280 1.1 perry if (clock_debug) {
281 1.1 perry ticks[0] = ticks[3];
282 1.1 perry ticks[1] = ticks[4];
283 1.1 perry ticks[2] = ticks[5];
284 1.1 perry ticks[3] = v1;
285 1.1 perry ticks[4] = v2;
286 1.1 perry ticks[5] = v3;
287 1.1 perry }
288 1.1 perry #endif
289 1.1 perry
290 1.1 perry if (v1 >= v2 && v2 >= v3 && v1 - v3 < 0x200)
291 1.1 perry return (v2);
292 1.1 perry
293 1.1 perry #define _swap_val(a, b) do { \
294 1.1 perry int c = a; \
295 1.1 perry a = b; \
296 1.1 perry b = c; \
297 1.1 perry } while (0)
298 1.1 perry
299 1.1 perry /*
300 1.1 perry * sort v1 v2 v3
301 1.1 perry */
302 1.1 perry if (v1 < v2)
303 1.1 perry _swap_val(v1, v2);
304 1.1 perry if (v2 < v3)
305 1.1 perry _swap_val(v2, v3);
306 1.1 perry if (v1 < v2)
307 1.1 perry _swap_val(v1, v2);
308 1.1 perry
309 1.1 perry /*
310 1.1 perry * compute the middle value
311 1.1 perry */
312 1.1 perry
313 1.1 perry if (v1 - v3 < 0x200)
314 1.1 perry return (v2);
315 1.1 perry
316 1.1 perry w1 = v2 - v3;
317 1.1 perry w2 = v3 - v1 + rtclock_tval;
318 1.1 perry w3 = v1 - v2;
319 1.1 perry if (w1 >= w2) {
320 1.1 perry if (w1 >= w3)
321 1.1 perry return (v1);
322 1.1 perry } else {
323 1.1 perry if (w2 >= w3)
324 1.1 perry return (v2);
325 1.1 perry }
326 1.1 perry return (v3);
327 1.1 perry }
328 1.1 perry
329 1.1 perry /* minimal initialization, enough for delay() */
330 1.1 perry void
331 1.1 perry initrtclock(u_long freq)
332 1.1 perry {
333 1.1 perry u_long tval;
334 1.9 ad
335 1.1 perry /*
336 1.1 perry * Compute timer_count, the count-down count the timer will be
337 1.1 perry * set to. Also, correctly round
338 1.1 perry * this by carrying an extra bit through the division.
339 1.1 perry */
340 1.1 perry tval = (freq * 2) / (u_long) hz;
341 1.1 perry tval = (tval / 2) + (tval & 0x1);
342 1.1 perry
343 1.1 perry /* initialize 8254 clock */
344 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
345 1.1 perry
346 1.1 perry /* Correct rounding will buy us a better precision in timekeeping */
347 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval % 256);
348 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval / 256);
349 1.1 perry
350 1.1 perry rtclock_tval = tval ? tval : 0xFFFF;
351 1.1 perry rtclock_init = 1;
352 1.1 perry }
353 1.1 perry
354 1.1 perry void
355 1.1 perry startrtclock(void)
356 1.1 perry {
357 1.1 perry int s;
358 1.1 perry
359 1.1 perry if (!rtclock_init)
360 1.1 perry initrtclock(TIMER_FREQ);
361 1.1 perry
362 1.1 perry /* Check diagnostic status */
363 1.1 perry if ((s = mc146818_read(NULL, NVRAM_DIAG)) != 0) { /* XXX softc */
364 1.1 perry char bits[128];
365 1.1 perry printf("RTC BIOS diagnostic error %s\n",
366 1.1 perry bitmask_snprintf(s, NVRAM_DIAG_BITS, bits, sizeof(bits)));
367 1.1 perry }
368 1.1 perry
369 1.1 perry tc_init(&i8254_timecounter);
370 1.1 perry
371 1.1 perry init_TSC();
372 1.1 perry rtc_register();
373 1.1 perry }
374 1.1 perry
375 1.9 ad /*
376 1.14 ad * Must be called at splsched().
377 1.9 ad */
378 1.1 perry static void
379 1.1 perry tickle_tc(void)
380 1.1 perry {
381 1.1 perry #if defined(MULTIPROCESSOR)
382 1.1 perry struct cpu_info *ci = curcpu();
383 1.1 perry /*
384 1.1 perry * If we are not the primary CPU, we're not allowed to do
385 1.1 perry * any more work.
386 1.1 perry */
387 1.1 perry if (CPU_IS_PRIMARY(ci) == 0)
388 1.1 perry return;
389 1.1 perry #endif
390 1.1 perry if (rtclock_tval && timecounter->tc_get_timecount == i8254_get_timecount) {
391 1.9 ad __cpu_simple_lock(&tmr_lock);
392 1.1 perry if (i8254_ticked)
393 1.1 perry i8254_ticked = 0;
394 1.1 perry else {
395 1.1 perry i8254_offset += rtclock_tval;
396 1.1 perry i8254_lastcount = 0;
397 1.1 perry }
398 1.9 ad __cpu_simple_unlock(&tmr_lock);
399 1.1 perry }
400 1.1 perry
401 1.1 perry }
402 1.1 perry
403 1.1 perry static int
404 1.8 yamt clockintr(void *arg, struct intrframe *frame)
405 1.1 perry {
406 1.1 perry tickle_tc();
407 1.1 perry
408 1.8 yamt hardclock((struct clockframe *)frame);
409 1.1 perry
410 1.1 perry #if NMCA > 0
411 1.1 perry if (MCA_system) {
412 1.1 perry /* Reset PS/2 clock interrupt by asserting bit 7 of port 0x61 */
413 1.1 perry outb(0x61, inb(0x61) | 0x80);
414 1.1 perry }
415 1.1 perry #endif
416 1.1 perry return -1;
417 1.1 perry }
418 1.1 perry
419 1.1 perry u_int
420 1.7 christos i8254_get_timecount(struct timecounter *tc)
421 1.1 perry {
422 1.1 perry u_int count;
423 1.14 ad uint16_t rdval;
424 1.14 ad int s;
425 1.1 perry
426 1.1 perry /* Don't want someone screwing with the counter while we're here. */
427 1.14 ad s = splhigh();
428 1.9 ad __cpu_simple_lock(&tmr_lock);
429 1.1 perry /* Select timer0 and latch counter value. */
430 1.1 perry outb(IO_TIMER1 + TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
431 1.14 ad /* insb to make the read atomic */
432 1.14 ad insb(IO_TIMER1+TIMER_CNTR0, &rdval, 2);
433 1.14 ad count = rtclock_tval - rdval;
434 1.1 perry if (rtclock_tval && (count < i8254_lastcount || !i8254_ticked)) {
435 1.1 perry i8254_ticked = 1;
436 1.1 perry i8254_offset += rtclock_tval;
437 1.1 perry }
438 1.1 perry i8254_lastcount = count;
439 1.1 perry count += i8254_offset;
440 1.9 ad __cpu_simple_unlock(&tmr_lock);
441 1.14 ad splx(s);
442 1.1 perry
443 1.1 perry return (count);
444 1.1 perry }
445 1.1 perry
446 1.12 joerg unsigned int
447 1.1 perry gettick(void)
448 1.1 perry {
449 1.14 ad uint16_t rdval;
450 1.14 ad int s;
451 1.14 ad
452 1.1 perry if (clock_broken_latch)
453 1.1 perry return (gettick_broken_latch());
454 1.1 perry
455 1.1 perry /* Don't want someone screwing with the counter while we're here. */
456 1.14 ad s = splhigh();
457 1.14 ad __cpu_simple_lock(&tmr_lock);
458 1.1 perry /* Select counter 0 and latch it. */
459 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
460 1.14 ad /* insb to make the read atomic */
461 1.14 ad insb(IO_TIMER1+TIMER_CNTR0, &rdval, 2);
462 1.14 ad __cpu_simple_unlock(&tmr_lock);
463 1.14 ad splx(s);
464 1.14 ad
465 1.14 ad return rdval;
466 1.1 perry }
467 1.1 perry
468 1.1 perry /*
469 1.1 perry * Wait approximately `n' microseconds.
470 1.1 perry * Relies on timer 1 counting down from (TIMER_FREQ / hz) at TIMER_FREQ Hz.
471 1.1 perry * Note: timer had better have been programmed before this is first used!
472 1.1 perry * (Note that we use `rate generator' mode, which counts at 1:1; `square
473 1.1 perry * wave' mode counts at 2:1).
474 1.1 perry * Don't rely on this being particularly accurate.
475 1.1 perry */
476 1.1 perry void
477 1.12 joerg i8254_delay(unsigned int n)
478 1.1 perry {
479 1.12 joerg unsigned int cur_tick, initial_tick;
480 1.12 joerg int remaining;
481 1.1 perry
482 1.1 perry /* allow DELAY() to be used before startrtclock() */
483 1.1 perry if (!rtclock_init)
484 1.1 perry initrtclock(TIMER_FREQ);
485 1.1 perry
486 1.1 perry /*
487 1.1 perry * Read the counter first, so that the rest of the setup overhead is
488 1.1 perry * counted.
489 1.1 perry */
490 1.12 joerg initial_tick = gettick();
491 1.1 perry
492 1.16 joerg if (n <= UINT_MAX / TIMER_FREQ) {
493 1.1 perry /*
494 1.12 joerg * For unsigned arithmetic, division can be replaced with
495 1.12 joerg * multiplication with the inverse and a shift.
496 1.1 perry */
497 1.12 joerg remaining = n * TIMER_FREQ / 1000000;
498 1.12 joerg } else {
499 1.12 joerg /* This is a very long delay.
500 1.12 joerg * Being slow here doesn't matter.
501 1.1 perry */
502 1.12 joerg remaining = (unsigned long long) n * TIMER_FREQ / 1000000;
503 1.1 perry }
504 1.1 perry
505 1.12 joerg while (remaining > 0) {
506 1.1 perry #ifdef CLOCK_PARANOIA
507 1.1 perry int delta;
508 1.12 joerg cur_tick = gettick();
509 1.12 joerg if (cur_tick > initial_tick)
510 1.12 joerg delta = rtclock_tval - (cur_tick - initial_tick);
511 1.1 perry else
512 1.12 joerg delta = initial_tick - cur_tick;
513 1.1 perry if (delta < 0 || delta >= rtclock_tval / 2) {
514 1.1 perry DPRINTF(("delay: ignore ticks %.4x-%.4x",
515 1.12 joerg initial_tick, cur_tick));
516 1.1 perry if (clock_broken_latch) {
517 1.1 perry DPRINTF((" (%.4x %.4x %.4x %.4x %.4x %.4x)\n",
518 1.1 perry ticks[0], ticks[1], ticks[2],
519 1.1 perry ticks[3], ticks[4], ticks[5]));
520 1.1 perry } else {
521 1.1 perry DPRINTF(("\n"));
522 1.1 perry }
523 1.1 perry } else
524 1.12 joerg remaining -= delta;
525 1.1 perry #else
526 1.12 joerg cur_tick = gettick();
527 1.12 joerg if (cur_tick > initial_tick)
528 1.12 joerg remaining -= rtclock_tval - (cur_tick - initial_tick);
529 1.1 perry else
530 1.12 joerg remaining -= initial_tick - cur_tick;
531 1.1 perry #endif
532 1.12 joerg initial_tick = cur_tick;
533 1.1 perry }
534 1.1 perry }
535 1.1 perry
536 1.1 perry #if (NPCPPI > 0)
537 1.1 perry int
538 1.7 christos sysbeepmatch(struct device *parent, struct cfdata *match,
539 1.7 christos void *aux)
540 1.1 perry {
541 1.1 perry return (!ppi_attached);
542 1.1 perry }
543 1.1 perry
544 1.1 perry void
545 1.7 christos sysbeepattach(struct device *parent, struct device *self,
546 1.5 christos void *aux)
547 1.1 perry {
548 1.1 perry aprint_naive("\n");
549 1.1 perry aprint_normal("\n");
550 1.1 perry
551 1.1 perry ppicookie = ((struct pcppi_attach_args *)aux)->pa_cookie;
552 1.1 perry ppi_attached = 1;
553 1.15 jmcneill
554 1.15 jmcneill if (!pmf_device_register(self, NULL, NULL))
555 1.15 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
556 1.1 perry }
557 1.1 perry #endif
558 1.1 perry
559 1.17 dyoung int
560 1.17 dyoung sysbeepdetach(device_t self, int flags)
561 1.17 dyoung {
562 1.17 dyoung pmf_device_deregister(self);
563 1.18 he #if (NPCPPI > 0)
564 1.17 dyoung ppi_attached = 0;
565 1.18 he #endif
566 1.17 dyoung return 0;
567 1.17 dyoung }
568 1.17 dyoung
569 1.1 perry void
570 1.7 christos sysbeep(int pitch, int period)
571 1.1 perry {
572 1.1 perry #if (NPCPPI > 0)
573 1.1 perry if (ppi_attached)
574 1.1 perry pcppi_bell(ppicookie, pitch, period, 0);
575 1.1 perry #endif
576 1.1 perry }
577 1.1 perry
578 1.1 perry void
579 1.1 perry i8254_initclocks(void)
580 1.1 perry {
581 1.1 perry
582 1.1 perry /*
583 1.1 perry * XXX If you're doing strange things with multiple clocks, you might
584 1.1 perry * want to keep track of clock handlers.
585 1.1 perry */
586 1.1 perry (void)isa_intr_establish(NULL, 0, IST_PULSE, IPL_CLOCK,
587 1.1 perry (int (*)(void *))clockintr, 0);
588 1.1 perry }
589 1.1 perry
590 1.1 perry static void
591 1.1 perry rtcinit(void)
592 1.1 perry {
593 1.1 perry static int first_rtcopen_ever = 1;
594 1.1 perry
595 1.1 perry if (!first_rtcopen_ever)
596 1.1 perry return;
597 1.1 perry first_rtcopen_ever = 0;
598 1.1 perry
599 1.1 perry mc146818_write(NULL, MC_REGA, /* XXX softc */
600 1.1 perry MC_BASE_32_KHz | MC_RATE_1024_Hz);
601 1.1 perry mc146818_write(NULL, MC_REGB, MC_REGB_24HR); /* XXX softc */
602 1.1 perry }
603 1.1 perry
604 1.1 perry static int
605 1.1 perry rtcget(mc_todregs *regs)
606 1.1 perry {
607 1.1 perry
608 1.1 perry rtcinit();
609 1.1 perry if ((mc146818_read(NULL, MC_REGD) & MC_REGD_VRT) == 0) /* XXX softc */
610 1.1 perry return (-1);
611 1.1 perry MC146818_GETTOD(NULL, regs); /* XXX softc */
612 1.1 perry return (0);
613 1.1 perry }
614 1.1 perry
615 1.1 perry static void
616 1.1 perry rtcput(mc_todregs *regs)
617 1.1 perry {
618 1.1 perry
619 1.1 perry rtcinit();
620 1.1 perry MC146818_PUTTOD(NULL, regs); /* XXX softc */
621 1.1 perry }
622 1.1 perry
623 1.1 perry /*
624 1.1 perry * check whether the CMOS layout is "standard"-like (ie, not PS/2-like),
625 1.1 perry * to be called at splclock()
626 1.1 perry */
627 1.1 perry static int
628 1.1 perry cmoscheck(void)
629 1.1 perry {
630 1.1 perry int i;
631 1.1 perry unsigned short cksum = 0;
632 1.1 perry
633 1.1 perry for (i = 0x10; i <= 0x2d; i++)
634 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
635 1.1 perry
636 1.1 perry return (cksum == (mc146818_read(NULL, 0x2e) << 8)
637 1.1 perry + mc146818_read(NULL, 0x2f));
638 1.1 perry }
639 1.1 perry
640 1.1 perry #if NMCA > 0
641 1.1 perry /*
642 1.1 perry * Check whether the CMOS layout is PS/2 like, to be called at splclock().
643 1.1 perry */
644 1.1 perry static int cmoscheckps2(void);
645 1.1 perry static int
646 1.1 perry cmoscheckps2(void)
647 1.1 perry {
648 1.1 perry #if 0
649 1.1 perry /* Disabled until I find out the CRC checksum algorithm IBM uses */
650 1.1 perry int i;
651 1.1 perry unsigned short cksum = 0;
652 1.1 perry
653 1.1 perry for (i = 0x10; i <= 0x31; i++)
654 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
655 1.1 perry
656 1.1 perry return (cksum == (mc146818_read(NULL, 0x32) << 8)
657 1.1 perry + mc146818_read(NULL, 0x33));
658 1.1 perry #else
659 1.1 perry /* Check 'incorrect checksum' bit of IBM PS/2 Diagnostic Status Byte */
660 1.1 perry return ((mc146818_read(NULL, NVRAM_DIAG) & (1<<6)) == 0);
661 1.1 perry #endif
662 1.1 perry }
663 1.1 perry #endif /* NMCA > 0 */
664 1.1 perry
665 1.1 perry /*
666 1.1 perry * patchable to control century byte handling:
667 1.1 perry * 1: always update
668 1.1 perry * -1: never touch
669 1.1 perry * 0: try to figure out itself
670 1.1 perry */
671 1.1 perry int rtc_update_century = 0;
672 1.1 perry
673 1.1 perry /*
674 1.1 perry * Expand a two-digit year as read from the clock chip
675 1.1 perry * into full width.
676 1.1 perry * Being here, deal with the CMOS century byte.
677 1.1 perry */
678 1.1 perry static int centb = NVRAM_CENTURY;
679 1.1 perry static int
680 1.1 perry clock_expandyear(int clockyear)
681 1.1 perry {
682 1.1 perry int s, clockcentury, cmoscentury;
683 1.1 perry
684 1.1 perry clockcentury = (clockyear < 70) ? 20 : 19;
685 1.1 perry clockyear += 100 * clockcentury;
686 1.1 perry
687 1.1 perry if (rtc_update_century < 0)
688 1.1 perry return (clockyear);
689 1.1 perry
690 1.1 perry s = splclock();
691 1.1 perry if (cmoscheck())
692 1.1 perry cmoscentury = mc146818_read(NULL, NVRAM_CENTURY);
693 1.1 perry #if NMCA > 0
694 1.1 perry else if (MCA_system && cmoscheckps2())
695 1.1 perry cmoscentury = mc146818_read(NULL, (centb = 0x37));
696 1.1 perry #endif
697 1.1 perry else
698 1.1 perry cmoscentury = 0;
699 1.1 perry splx(s);
700 1.1 perry if (!cmoscentury) {
701 1.1 perry #ifdef DIAGNOSTIC
702 1.1 perry printf("clock: unknown CMOS layout\n");
703 1.1 perry #endif
704 1.1 perry return (clockyear);
705 1.1 perry }
706 1.1 perry cmoscentury = bcdtobin(cmoscentury);
707 1.1 perry
708 1.1 perry if (cmoscentury != clockcentury) {
709 1.1 perry /* XXX note: saying "century is 20" might confuse the naive. */
710 1.1 perry printf("WARNING: NVRAM century is %d but RTC year is %d\n",
711 1.1 perry cmoscentury, clockyear);
712 1.1 perry
713 1.1 perry /* Kludge to roll over century. */
714 1.1 perry if ((rtc_update_century > 0) ||
715 1.1 perry ((cmoscentury == 19) && (clockcentury == 20) &&
716 1.1 perry (clockyear == 2000))) {
717 1.1 perry printf("WARNING: Setting NVRAM century to %d\n",
718 1.1 perry clockcentury);
719 1.1 perry s = splclock();
720 1.1 perry mc146818_write(NULL, centb, bintobcd(clockcentury));
721 1.1 perry splx(s);
722 1.1 perry }
723 1.1 perry } else if (cmoscentury == 19 && rtc_update_century == 0)
724 1.1 perry rtc_update_century = 1; /* will update later in resettodr() */
725 1.1 perry
726 1.1 perry return (clockyear);
727 1.1 perry }
728 1.1 perry
729 1.1 perry static int
730 1.7 christos rtc_get_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
731 1.1 perry {
732 1.1 perry int s;
733 1.1 perry mc_todregs rtclk;
734 1.1 perry
735 1.1 perry s = splclock();
736 1.1 perry if (rtcget(&rtclk)) {
737 1.1 perry splx(s);
738 1.1 perry return -1;
739 1.1 perry }
740 1.1 perry splx(s);
741 1.1 perry
742 1.4 gdamore dt->dt_sec = bcdtobin(rtclk[MC_SEC]);
743 1.4 gdamore dt->dt_min = bcdtobin(rtclk[MC_MIN]);
744 1.4 gdamore dt->dt_hour = bcdtobin(rtclk[MC_HOUR]);
745 1.4 gdamore dt->dt_day = bcdtobin(rtclk[MC_DOM]);
746 1.4 gdamore dt->dt_mon = bcdtobin(rtclk[MC_MONTH]);
747 1.4 gdamore dt->dt_year = clock_expandyear(bcdtobin(rtclk[MC_YEAR]));
748 1.1 perry
749 1.1 perry return 0;
750 1.1 perry }
751 1.1 perry
752 1.1 perry static int
753 1.7 christos rtc_set_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
754 1.1 perry {
755 1.1 perry mc_todregs rtclk;
756 1.1 perry int century;
757 1.1 perry int s;
758 1.1 perry
759 1.1 perry s = splclock();
760 1.1 perry if (rtcget(&rtclk))
761 1.1 perry memset(&rtclk, 0, sizeof(rtclk));
762 1.1 perry splx(s);
763 1.1 perry
764 1.4 gdamore rtclk[MC_SEC] = bintobcd(dt->dt_sec);
765 1.4 gdamore rtclk[MC_MIN] = bintobcd(dt->dt_min);
766 1.4 gdamore rtclk[MC_HOUR] = bintobcd(dt->dt_hour);
767 1.4 gdamore rtclk[MC_DOW] = dt->dt_wday + 1;
768 1.4 gdamore rtclk[MC_YEAR] = bintobcd(dt->dt_year % 100);
769 1.4 gdamore rtclk[MC_MONTH] = bintobcd(dt->dt_mon);
770 1.4 gdamore rtclk[MC_DOM] = bintobcd(dt->dt_day);
771 1.1 perry
772 1.1 perry #ifdef DEBUG_CLOCK
773 1.1 perry printf("setclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR], rtclk[MC_MONTH],
774 1.1 perry rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN], rtclk[MC_SEC]);
775 1.1 perry #endif
776 1.1 perry s = splclock();
777 1.1 perry rtcput(&rtclk);
778 1.1 perry if (rtc_update_century > 0) {
779 1.4 gdamore century = bintobcd(dt->dt_year / 100);
780 1.1 perry mc146818_write(NULL, centb, century); /* XXX softc */
781 1.1 perry }
782 1.1 perry splx(s);
783 1.1 perry return 0;
784 1.1 perry
785 1.1 perry }
786 1.1 perry
787 1.1 perry static void
788 1.1 perry rtc_register(void)
789 1.1 perry {
790 1.1 perry static struct todr_chip_handle tch;
791 1.4 gdamore tch.todr_gettime_ymdhms = rtc_get_ymdhms;
792 1.4 gdamore tch.todr_settime_ymdhms = rtc_set_ymdhms;
793 1.1 perry tch.todr_setwen = NULL;
794 1.1 perry
795 1.1 perry todr_attach(&tch);
796 1.1 perry }
797 1.1 perry
798 1.1 perry void
799 1.7 christos setstatclockrate(int arg)
800 1.1 perry {
801 1.1 perry }
802