clock.c revision 1.21 1 1.21 dyoung /* $NetBSD: clock.c,v 1.21 2008/01/04 22:10:34 dyoung Exp $ */
2 1.1 perry
3 1.1 perry /*-
4 1.1 perry * Copyright (c) 1990 The Regents of the University of California.
5 1.1 perry * All rights reserved.
6 1.1 perry *
7 1.1 perry * This code is derived from software contributed to Berkeley by
8 1.1 perry * William Jolitz and Don Ahn.
9 1.1 perry *
10 1.1 perry * Redistribution and use in source and binary forms, with or without
11 1.1 perry * modification, are permitted provided that the following conditions
12 1.1 perry * are met:
13 1.1 perry * 1. Redistributions of source code must retain the above copyright
14 1.1 perry * notice, this list of conditions and the following disclaimer.
15 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 perry * notice, this list of conditions and the following disclaimer in the
17 1.1 perry * documentation and/or other materials provided with the distribution.
18 1.1 perry * 3. Neither the name of the University nor the names of its contributors
19 1.1 perry * may be used to endorse or promote products derived from this software
20 1.1 perry * without specific prior written permission.
21 1.1 perry *
22 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 perry * SUCH DAMAGE.
33 1.1 perry *
34 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
35 1.1 perry */
36 1.1 perry /*-
37 1.1 perry * Copyright (c) 1993, 1994 Charles M. Hannum.
38 1.1 perry *
39 1.1 perry * This code is derived from software contributed to Berkeley by
40 1.1 perry * William Jolitz and Don Ahn.
41 1.1 perry *
42 1.1 perry * Redistribution and use in source and binary forms, with or without
43 1.1 perry * modification, are permitted provided that the following conditions
44 1.1 perry * are met:
45 1.1 perry * 1. Redistributions of source code must retain the above copyright
46 1.1 perry * notice, this list of conditions and the following disclaimer.
47 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 perry * notice, this list of conditions and the following disclaimer in the
49 1.1 perry * documentation and/or other materials provided with the distribution.
50 1.1 perry * 3. All advertising materials mentioning features or use of this software
51 1.1 perry * must display the following acknowledgement:
52 1.1 perry * This product includes software developed by the University of
53 1.1 perry * California, Berkeley and its contributors.
54 1.1 perry * 4. Neither the name of the University nor the names of its contributors
55 1.1 perry * may be used to endorse or promote products derived from this software
56 1.1 perry * without specific prior written permission.
57 1.1 perry *
58 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.1 perry * SUCH DAMAGE.
69 1.1 perry *
70 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
71 1.1 perry */
72 1.1 perry /*
73 1.1 perry * Mach Operating System
74 1.1 perry * Copyright (c) 1991,1990,1989 Carnegie Mellon University
75 1.1 perry * All Rights Reserved.
76 1.1 perry *
77 1.1 perry * Permission to use, copy, modify and distribute this software and its
78 1.1 perry * documentation is hereby granted, provided that both the copyright
79 1.1 perry * notice and this permission notice appear in all copies of the
80 1.1 perry * software, derivative works or modified versions, and any portions
81 1.1 perry * thereof, and that both notices appear in supporting documentation.
82 1.1 perry *
83 1.1 perry * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
84 1.1 perry * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
85 1.1 perry * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
86 1.1 perry *
87 1.1 perry * Carnegie Mellon requests users of this software to return to
88 1.1 perry *
89 1.1 perry * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
90 1.1 perry * School of Computer Science
91 1.1 perry * Carnegie Mellon University
92 1.1 perry * Pittsburgh PA 15213-3890
93 1.1 perry *
94 1.1 perry * any improvements or extensions that they make and grant Carnegie Mellon
95 1.1 perry * the rights to redistribute these changes.
96 1.1 perry */
97 1.1 perry /*
98 1.1 perry Copyright 1988, 1989 by Intel Corporation, Santa Clara, California.
99 1.1 perry
100 1.1 perry All Rights Reserved
101 1.1 perry
102 1.1 perry Permission to use, copy, modify, and distribute this software and
103 1.1 perry its documentation for any purpose and without fee is hereby
104 1.1 perry granted, provided that the above copyright notice appears in all
105 1.1 perry copies and that both the copyright notice and this permission notice
106 1.1 perry appear in supporting documentation, and that the name of Intel
107 1.1 perry not be used in advertising or publicity pertaining to distribution
108 1.1 perry of the software without specific, written prior permission.
109 1.1 perry
110 1.1 perry INTEL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
111 1.1 perry INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
112 1.1 perry IN NO EVENT SHALL INTEL BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
113 1.1 perry CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
114 1.1 perry LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
115 1.1 perry NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
116 1.1 perry WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
117 1.1 perry */
118 1.1 perry
119 1.1 perry /*
120 1.1 perry * Primitive clock interrupt routines.
121 1.1 perry */
122 1.1 perry
123 1.1 perry #include <sys/cdefs.h>
124 1.21 dyoung __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.21 2008/01/04 22:10:34 dyoung Exp $");
125 1.1 perry
126 1.1 perry /* #define CLOCKDEBUG */
127 1.1 perry /* #define CLOCK_PARANOIA */
128 1.1 perry
129 1.1 perry #include "opt_multiprocessor.h"
130 1.1 perry #include "opt_ntp.h"
131 1.1 perry
132 1.1 perry #include <sys/param.h>
133 1.1 perry #include <sys/systm.h>
134 1.1 perry #include <sys/time.h>
135 1.1 perry #include <sys/timetc.h>
136 1.1 perry #include <sys/kernel.h>
137 1.1 perry #include <sys/device.h>
138 1.9 ad #include <sys/mutex.h>
139 1.20 ad #include <sys/cpu.h>
140 1.20 ad #include <sys/intr.h>
141 1.1 perry
142 1.1 perry #include <machine/pio.h>
143 1.1 perry #include <machine/cpufunc.h>
144 1.20 ad #include <machine/lock.h>
145 1.1 perry
146 1.1 perry #include <dev/isa/isareg.h>
147 1.1 perry #include <dev/isa/isavar.h>
148 1.1 perry #include <dev/ic/mc146818reg.h>
149 1.1 perry #include <dev/ic/i8253reg.h>
150 1.1 perry #include <i386/isa/nvram.h>
151 1.1 perry #include <x86/x86/tsc.h>
152 1.19 christos #include <x86/lock.h>
153 1.1 perry #include <dev/clock_subr.h>
154 1.1 perry #include <machine/specialreg.h>
155 1.1 perry
156 1.1 perry #include "config_time.h" /* for CONFIG_TIME */
157 1.1 perry
158 1.1 perry #ifndef __x86_64__
159 1.1 perry #include "mca.h"
160 1.1 perry #endif
161 1.1 perry #if NMCA > 0
162 1.1 perry #include <machine/mca_machdep.h> /* for MCA_system */
163 1.1 perry #endif
164 1.1 perry
165 1.1 perry #include "pcppi.h"
166 1.1 perry #if (NPCPPI > 0)
167 1.1 perry #include <dev/isa/pcppivar.h>
168 1.1 perry
169 1.1 perry int sysbeepmatch(struct device *, struct cfdata *, void *);
170 1.1 perry void sysbeepattach(struct device *, struct device *, void *);
171 1.17 dyoung int sysbeepdetach(device_t, int);
172 1.1 perry
173 1.1 perry CFATTACH_DECL(sysbeep, sizeof(struct device),
174 1.17 dyoung sysbeepmatch, sysbeepattach, sysbeepdetach, NULL);
175 1.1 perry
176 1.1 perry static int ppi_attached;
177 1.1 perry static pcppi_tag_t ppicookie;
178 1.1 perry #endif /* PCPPI */
179 1.1 perry
180 1.1 perry #ifdef CLOCKDEBUG
181 1.1 perry int clock_debug = 0;
182 1.1 perry #define DPRINTF(arg) if (clock_debug) printf arg
183 1.1 perry #else
184 1.1 perry #define DPRINTF(arg)
185 1.1 perry #endif
186 1.1 perry
187 1.12 joerg /* Used by lapic.c */
188 1.12 joerg unsigned int gettick(void);
189 1.1 perry void sysbeep(int, int);
190 1.1 perry static void tickle_tc(void);
191 1.1 perry
192 1.8 yamt static int clockintr(void *, struct intrframe *);
193 1.1 perry static void rtcinit(void);
194 1.1 perry static int rtcget(mc_todregs *);
195 1.1 perry static void rtcput(mc_todregs *);
196 1.1 perry
197 1.1 perry static int cmoscheck(void);
198 1.1 perry
199 1.1 perry static int clock_expandyear(int);
200 1.18 he int sysbeepdetach(device_t, int);
201 1.1 perry
202 1.12 joerg static unsigned int gettick_broken_latch(void);
203 1.1 perry
204 1.1 perry static volatile uint32_t i8254_lastcount;
205 1.1 perry static volatile uint32_t i8254_offset;
206 1.1 perry static volatile int i8254_ticked;
207 1.1 perry
208 1.9 ad /* to protect TC timer variables */
209 1.9 ad static __cpu_simple_lock_t tmr_lock = __SIMPLELOCK_UNLOCKED;
210 1.1 perry
211 1.1 perry inline u_int mc146818_read(void *, u_int);
212 1.1 perry inline void mc146818_write(void *, u_int, u_int);
213 1.1 perry
214 1.1 perry u_int i8254_get_timecount(struct timecounter *);
215 1.1 perry static void rtc_register(void);
216 1.1 perry
217 1.1 perry static struct timecounter i8254_timecounter = {
218 1.1 perry i8254_get_timecount, /* get_timecount */
219 1.1 perry 0, /* no poll_pps */
220 1.1 perry ~0u, /* counter_mask */
221 1.1 perry TIMER_FREQ, /* frequency */
222 1.1 perry "i8254", /* name */
223 1.1 perry 100, /* quality */
224 1.1 perry NULL, /* prev */
225 1.1 perry NULL, /* next */
226 1.1 perry };
227 1.1 perry
228 1.1 perry /* XXX use sc? */
229 1.1 perry inline u_int
230 1.7 christos mc146818_read(void *sc, u_int reg)
231 1.1 perry {
232 1.1 perry
233 1.1 perry outb(IO_RTC, reg);
234 1.1 perry return (inb(IO_RTC+1));
235 1.1 perry }
236 1.1 perry
237 1.1 perry /* XXX use sc? */
238 1.1 perry inline void
239 1.7 christos mc146818_write(void *sc, u_int reg, u_int datum)
240 1.1 perry {
241 1.1 perry
242 1.1 perry outb(IO_RTC, reg);
243 1.1 perry outb(IO_RTC+1, datum);
244 1.1 perry }
245 1.1 perry
246 1.1 perry u_long rtclock_tval; /* i8254 reload value for countdown */
247 1.1 perry int rtclock_init = 0;
248 1.1 perry
249 1.1 perry int clock_broken_latch = 0;
250 1.1 perry
251 1.1 perry #ifdef CLOCK_PARANOIA
252 1.1 perry static int ticks[6];
253 1.1 perry #endif
254 1.1 perry /*
255 1.1 perry * i8254 latch check routine:
256 1.1 perry * National Geode (formerly Cyrix MediaGX) has a serious bug in
257 1.1 perry * its built-in i8254-compatible clock module.
258 1.1 perry * machdep sets the variable 'clock_broken_latch' to indicate it.
259 1.1 perry */
260 1.1 perry
261 1.12 joerg static unsigned int
262 1.1 perry gettick_broken_latch(void)
263 1.1 perry {
264 1.1 perry int v1, v2, v3;
265 1.1 perry int w1, w2, w3;
266 1.14 ad int s;
267 1.1 perry
268 1.1 perry /* Don't want someone screwing with the counter while we're here. */
269 1.14 ad s = splhigh();
270 1.14 ad __cpu_simple_lock(&tmr_lock);
271 1.1 perry v1 = inb(IO_TIMER1+TIMER_CNTR0);
272 1.1 perry v1 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
273 1.1 perry v2 = inb(IO_TIMER1+TIMER_CNTR0);
274 1.1 perry v2 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
275 1.1 perry v3 = inb(IO_TIMER1+TIMER_CNTR0);
276 1.1 perry v3 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
277 1.14 ad __cpu_simple_unlock(&tmr_lock);
278 1.14 ad splx(s);
279 1.1 perry
280 1.1 perry #ifdef CLOCK_PARANOIA
281 1.1 perry if (clock_debug) {
282 1.1 perry ticks[0] = ticks[3];
283 1.1 perry ticks[1] = ticks[4];
284 1.1 perry ticks[2] = ticks[5];
285 1.1 perry ticks[3] = v1;
286 1.1 perry ticks[4] = v2;
287 1.1 perry ticks[5] = v3;
288 1.1 perry }
289 1.1 perry #endif
290 1.1 perry
291 1.1 perry if (v1 >= v2 && v2 >= v3 && v1 - v3 < 0x200)
292 1.1 perry return (v2);
293 1.1 perry
294 1.1 perry #define _swap_val(a, b) do { \
295 1.1 perry int c = a; \
296 1.1 perry a = b; \
297 1.1 perry b = c; \
298 1.1 perry } while (0)
299 1.1 perry
300 1.1 perry /*
301 1.1 perry * sort v1 v2 v3
302 1.1 perry */
303 1.1 perry if (v1 < v2)
304 1.1 perry _swap_val(v1, v2);
305 1.1 perry if (v2 < v3)
306 1.1 perry _swap_val(v2, v3);
307 1.1 perry if (v1 < v2)
308 1.1 perry _swap_val(v1, v2);
309 1.1 perry
310 1.1 perry /*
311 1.1 perry * compute the middle value
312 1.1 perry */
313 1.1 perry
314 1.1 perry if (v1 - v3 < 0x200)
315 1.1 perry return (v2);
316 1.1 perry
317 1.1 perry w1 = v2 - v3;
318 1.1 perry w2 = v3 - v1 + rtclock_tval;
319 1.1 perry w3 = v1 - v2;
320 1.1 perry if (w1 >= w2) {
321 1.1 perry if (w1 >= w3)
322 1.1 perry return (v1);
323 1.1 perry } else {
324 1.1 perry if (w2 >= w3)
325 1.1 perry return (v2);
326 1.1 perry }
327 1.1 perry return (v3);
328 1.1 perry }
329 1.1 perry
330 1.1 perry /* minimal initialization, enough for delay() */
331 1.1 perry void
332 1.1 perry initrtclock(u_long freq)
333 1.1 perry {
334 1.1 perry u_long tval;
335 1.9 ad
336 1.1 perry /*
337 1.1 perry * Compute timer_count, the count-down count the timer will be
338 1.1 perry * set to. Also, correctly round
339 1.1 perry * this by carrying an extra bit through the division.
340 1.1 perry */
341 1.1 perry tval = (freq * 2) / (u_long) hz;
342 1.1 perry tval = (tval / 2) + (tval & 0x1);
343 1.1 perry
344 1.1 perry /* initialize 8254 clock */
345 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
346 1.1 perry
347 1.1 perry /* Correct rounding will buy us a better precision in timekeeping */
348 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval % 256);
349 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval / 256);
350 1.1 perry
351 1.1 perry rtclock_tval = tval ? tval : 0xFFFF;
352 1.1 perry rtclock_init = 1;
353 1.1 perry }
354 1.1 perry
355 1.1 perry void
356 1.1 perry startrtclock(void)
357 1.1 perry {
358 1.1 perry int s;
359 1.1 perry
360 1.1 perry if (!rtclock_init)
361 1.1 perry initrtclock(TIMER_FREQ);
362 1.1 perry
363 1.1 perry /* Check diagnostic status */
364 1.1 perry if ((s = mc146818_read(NULL, NVRAM_DIAG)) != 0) { /* XXX softc */
365 1.1 perry char bits[128];
366 1.1 perry printf("RTC BIOS diagnostic error %s\n",
367 1.1 perry bitmask_snprintf(s, NVRAM_DIAG_BITS, bits, sizeof(bits)));
368 1.1 perry }
369 1.1 perry
370 1.1 perry tc_init(&i8254_timecounter);
371 1.1 perry
372 1.1 perry init_TSC();
373 1.1 perry rtc_register();
374 1.1 perry }
375 1.1 perry
376 1.9 ad /*
377 1.14 ad * Must be called at splsched().
378 1.9 ad */
379 1.1 perry static void
380 1.1 perry tickle_tc(void)
381 1.1 perry {
382 1.1 perry #if defined(MULTIPROCESSOR)
383 1.1 perry struct cpu_info *ci = curcpu();
384 1.1 perry /*
385 1.1 perry * If we are not the primary CPU, we're not allowed to do
386 1.1 perry * any more work.
387 1.1 perry */
388 1.1 perry if (CPU_IS_PRIMARY(ci) == 0)
389 1.1 perry return;
390 1.1 perry #endif
391 1.1 perry if (rtclock_tval && timecounter->tc_get_timecount == i8254_get_timecount) {
392 1.9 ad __cpu_simple_lock(&tmr_lock);
393 1.1 perry if (i8254_ticked)
394 1.1 perry i8254_ticked = 0;
395 1.1 perry else {
396 1.1 perry i8254_offset += rtclock_tval;
397 1.1 perry i8254_lastcount = 0;
398 1.1 perry }
399 1.9 ad __cpu_simple_unlock(&tmr_lock);
400 1.1 perry }
401 1.1 perry
402 1.1 perry }
403 1.1 perry
404 1.1 perry static int
405 1.8 yamt clockintr(void *arg, struct intrframe *frame)
406 1.1 perry {
407 1.1 perry tickle_tc();
408 1.1 perry
409 1.8 yamt hardclock((struct clockframe *)frame);
410 1.1 perry
411 1.1 perry #if NMCA > 0
412 1.1 perry if (MCA_system) {
413 1.1 perry /* Reset PS/2 clock interrupt by asserting bit 7 of port 0x61 */
414 1.1 perry outb(0x61, inb(0x61) | 0x80);
415 1.1 perry }
416 1.1 perry #endif
417 1.1 perry return -1;
418 1.1 perry }
419 1.1 perry
420 1.1 perry u_int
421 1.7 christos i8254_get_timecount(struct timecounter *tc)
422 1.1 perry {
423 1.1 perry u_int count;
424 1.14 ad uint16_t rdval;
425 1.14 ad int s;
426 1.1 perry
427 1.1 perry /* Don't want someone screwing with the counter while we're here. */
428 1.14 ad s = splhigh();
429 1.9 ad __cpu_simple_lock(&tmr_lock);
430 1.1 perry /* Select timer0 and latch counter value. */
431 1.1 perry outb(IO_TIMER1 + TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
432 1.14 ad /* insb to make the read atomic */
433 1.14 ad insb(IO_TIMER1+TIMER_CNTR0, &rdval, 2);
434 1.14 ad count = rtclock_tval - rdval;
435 1.1 perry if (rtclock_tval && (count < i8254_lastcount || !i8254_ticked)) {
436 1.1 perry i8254_ticked = 1;
437 1.1 perry i8254_offset += rtclock_tval;
438 1.1 perry }
439 1.1 perry i8254_lastcount = count;
440 1.1 perry count += i8254_offset;
441 1.9 ad __cpu_simple_unlock(&tmr_lock);
442 1.14 ad splx(s);
443 1.1 perry
444 1.1 perry return (count);
445 1.1 perry }
446 1.1 perry
447 1.12 joerg unsigned int
448 1.1 perry gettick(void)
449 1.1 perry {
450 1.14 ad uint16_t rdval;
451 1.14 ad int s;
452 1.14 ad
453 1.1 perry if (clock_broken_latch)
454 1.1 perry return (gettick_broken_latch());
455 1.1 perry
456 1.1 perry /* Don't want someone screwing with the counter while we're here. */
457 1.14 ad s = splhigh();
458 1.14 ad __cpu_simple_lock(&tmr_lock);
459 1.1 perry /* Select counter 0 and latch it. */
460 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
461 1.14 ad /* insb to make the read atomic */
462 1.14 ad insb(IO_TIMER1+TIMER_CNTR0, &rdval, 2);
463 1.14 ad __cpu_simple_unlock(&tmr_lock);
464 1.14 ad splx(s);
465 1.14 ad
466 1.14 ad return rdval;
467 1.1 perry }
468 1.1 perry
469 1.1 perry /*
470 1.1 perry * Wait approximately `n' microseconds.
471 1.1 perry * Relies on timer 1 counting down from (TIMER_FREQ / hz) at TIMER_FREQ Hz.
472 1.1 perry * Note: timer had better have been programmed before this is first used!
473 1.1 perry * (Note that we use `rate generator' mode, which counts at 1:1; `square
474 1.1 perry * wave' mode counts at 2:1).
475 1.1 perry * Don't rely on this being particularly accurate.
476 1.1 perry */
477 1.1 perry void
478 1.12 joerg i8254_delay(unsigned int n)
479 1.1 perry {
480 1.12 joerg unsigned int cur_tick, initial_tick;
481 1.12 joerg int remaining;
482 1.1 perry
483 1.1 perry /* allow DELAY() to be used before startrtclock() */
484 1.1 perry if (!rtclock_init)
485 1.1 perry initrtclock(TIMER_FREQ);
486 1.1 perry
487 1.1 perry /*
488 1.1 perry * Read the counter first, so that the rest of the setup overhead is
489 1.1 perry * counted.
490 1.1 perry */
491 1.12 joerg initial_tick = gettick();
492 1.1 perry
493 1.16 joerg if (n <= UINT_MAX / TIMER_FREQ) {
494 1.1 perry /*
495 1.12 joerg * For unsigned arithmetic, division can be replaced with
496 1.12 joerg * multiplication with the inverse and a shift.
497 1.1 perry */
498 1.12 joerg remaining = n * TIMER_FREQ / 1000000;
499 1.12 joerg } else {
500 1.12 joerg /* This is a very long delay.
501 1.12 joerg * Being slow here doesn't matter.
502 1.1 perry */
503 1.12 joerg remaining = (unsigned long long) n * TIMER_FREQ / 1000000;
504 1.1 perry }
505 1.1 perry
506 1.12 joerg while (remaining > 0) {
507 1.1 perry #ifdef CLOCK_PARANOIA
508 1.1 perry int delta;
509 1.12 joerg cur_tick = gettick();
510 1.12 joerg if (cur_tick > initial_tick)
511 1.12 joerg delta = rtclock_tval - (cur_tick - initial_tick);
512 1.1 perry else
513 1.12 joerg delta = initial_tick - cur_tick;
514 1.1 perry if (delta < 0 || delta >= rtclock_tval / 2) {
515 1.1 perry DPRINTF(("delay: ignore ticks %.4x-%.4x",
516 1.12 joerg initial_tick, cur_tick));
517 1.1 perry if (clock_broken_latch) {
518 1.1 perry DPRINTF((" (%.4x %.4x %.4x %.4x %.4x %.4x)\n",
519 1.1 perry ticks[0], ticks[1], ticks[2],
520 1.1 perry ticks[3], ticks[4], ticks[5]));
521 1.1 perry } else {
522 1.1 perry DPRINTF(("\n"));
523 1.1 perry }
524 1.1 perry } else
525 1.12 joerg remaining -= delta;
526 1.1 perry #else
527 1.12 joerg cur_tick = gettick();
528 1.12 joerg if (cur_tick > initial_tick)
529 1.12 joerg remaining -= rtclock_tval - (cur_tick - initial_tick);
530 1.1 perry else
531 1.12 joerg remaining -= initial_tick - cur_tick;
532 1.1 perry #endif
533 1.12 joerg initial_tick = cur_tick;
534 1.1 perry }
535 1.1 perry }
536 1.1 perry
537 1.1 perry #if (NPCPPI > 0)
538 1.1 perry int
539 1.7 christos sysbeepmatch(struct device *parent, struct cfdata *match,
540 1.7 christos void *aux)
541 1.1 perry {
542 1.1 perry return (!ppi_attached);
543 1.1 perry }
544 1.1 perry
545 1.1 perry void
546 1.7 christos sysbeepattach(struct device *parent, struct device *self,
547 1.5 christos void *aux)
548 1.1 perry {
549 1.1 perry aprint_naive("\n");
550 1.1 perry aprint_normal("\n");
551 1.1 perry
552 1.1 perry ppicookie = ((struct pcppi_attach_args *)aux)->pa_cookie;
553 1.1 perry ppi_attached = 1;
554 1.15 jmcneill
555 1.15 jmcneill if (!pmf_device_register(self, NULL, NULL))
556 1.15 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
557 1.1 perry }
558 1.1 perry
559 1.17 dyoung int
560 1.17 dyoung sysbeepdetach(device_t self, int flags)
561 1.17 dyoung {
562 1.17 dyoung pmf_device_deregister(self);
563 1.18 he #if (NPCPPI > 0)
564 1.17 dyoung ppi_attached = 0;
565 1.18 he #endif
566 1.17 dyoung return 0;
567 1.17 dyoung }
568 1.21 dyoung #endif
569 1.17 dyoung
570 1.1 perry void
571 1.7 christos sysbeep(int pitch, int period)
572 1.1 perry {
573 1.1 perry #if (NPCPPI > 0)
574 1.1 perry if (ppi_attached)
575 1.1 perry pcppi_bell(ppicookie, pitch, period, 0);
576 1.1 perry #endif
577 1.1 perry }
578 1.1 perry
579 1.1 perry void
580 1.1 perry i8254_initclocks(void)
581 1.1 perry {
582 1.1 perry
583 1.1 perry /*
584 1.1 perry * XXX If you're doing strange things with multiple clocks, you might
585 1.1 perry * want to keep track of clock handlers.
586 1.1 perry */
587 1.1 perry (void)isa_intr_establish(NULL, 0, IST_PULSE, IPL_CLOCK,
588 1.1 perry (int (*)(void *))clockintr, 0);
589 1.1 perry }
590 1.1 perry
591 1.1 perry static void
592 1.1 perry rtcinit(void)
593 1.1 perry {
594 1.1 perry static int first_rtcopen_ever = 1;
595 1.1 perry
596 1.1 perry if (!first_rtcopen_ever)
597 1.1 perry return;
598 1.1 perry first_rtcopen_ever = 0;
599 1.1 perry
600 1.1 perry mc146818_write(NULL, MC_REGA, /* XXX softc */
601 1.1 perry MC_BASE_32_KHz | MC_RATE_1024_Hz);
602 1.1 perry mc146818_write(NULL, MC_REGB, MC_REGB_24HR); /* XXX softc */
603 1.1 perry }
604 1.1 perry
605 1.1 perry static int
606 1.1 perry rtcget(mc_todregs *regs)
607 1.1 perry {
608 1.1 perry
609 1.1 perry rtcinit();
610 1.1 perry if ((mc146818_read(NULL, MC_REGD) & MC_REGD_VRT) == 0) /* XXX softc */
611 1.1 perry return (-1);
612 1.1 perry MC146818_GETTOD(NULL, regs); /* XXX softc */
613 1.1 perry return (0);
614 1.1 perry }
615 1.1 perry
616 1.1 perry static void
617 1.1 perry rtcput(mc_todregs *regs)
618 1.1 perry {
619 1.1 perry
620 1.1 perry rtcinit();
621 1.1 perry MC146818_PUTTOD(NULL, regs); /* XXX softc */
622 1.1 perry }
623 1.1 perry
624 1.1 perry /*
625 1.1 perry * check whether the CMOS layout is "standard"-like (ie, not PS/2-like),
626 1.1 perry * to be called at splclock()
627 1.1 perry */
628 1.1 perry static int
629 1.1 perry cmoscheck(void)
630 1.1 perry {
631 1.1 perry int i;
632 1.1 perry unsigned short cksum = 0;
633 1.1 perry
634 1.1 perry for (i = 0x10; i <= 0x2d; i++)
635 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
636 1.1 perry
637 1.1 perry return (cksum == (mc146818_read(NULL, 0x2e) << 8)
638 1.1 perry + mc146818_read(NULL, 0x2f));
639 1.1 perry }
640 1.1 perry
641 1.1 perry #if NMCA > 0
642 1.1 perry /*
643 1.1 perry * Check whether the CMOS layout is PS/2 like, to be called at splclock().
644 1.1 perry */
645 1.1 perry static int cmoscheckps2(void);
646 1.1 perry static int
647 1.1 perry cmoscheckps2(void)
648 1.1 perry {
649 1.1 perry #if 0
650 1.1 perry /* Disabled until I find out the CRC checksum algorithm IBM uses */
651 1.1 perry int i;
652 1.1 perry unsigned short cksum = 0;
653 1.1 perry
654 1.1 perry for (i = 0x10; i <= 0x31; i++)
655 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
656 1.1 perry
657 1.1 perry return (cksum == (mc146818_read(NULL, 0x32) << 8)
658 1.1 perry + mc146818_read(NULL, 0x33));
659 1.1 perry #else
660 1.1 perry /* Check 'incorrect checksum' bit of IBM PS/2 Diagnostic Status Byte */
661 1.1 perry return ((mc146818_read(NULL, NVRAM_DIAG) & (1<<6)) == 0);
662 1.1 perry #endif
663 1.1 perry }
664 1.1 perry #endif /* NMCA > 0 */
665 1.1 perry
666 1.1 perry /*
667 1.1 perry * patchable to control century byte handling:
668 1.1 perry * 1: always update
669 1.1 perry * -1: never touch
670 1.1 perry * 0: try to figure out itself
671 1.1 perry */
672 1.1 perry int rtc_update_century = 0;
673 1.1 perry
674 1.1 perry /*
675 1.1 perry * Expand a two-digit year as read from the clock chip
676 1.1 perry * into full width.
677 1.1 perry * Being here, deal with the CMOS century byte.
678 1.1 perry */
679 1.1 perry static int centb = NVRAM_CENTURY;
680 1.1 perry static int
681 1.1 perry clock_expandyear(int clockyear)
682 1.1 perry {
683 1.1 perry int s, clockcentury, cmoscentury;
684 1.1 perry
685 1.1 perry clockcentury = (clockyear < 70) ? 20 : 19;
686 1.1 perry clockyear += 100 * clockcentury;
687 1.1 perry
688 1.1 perry if (rtc_update_century < 0)
689 1.1 perry return (clockyear);
690 1.1 perry
691 1.1 perry s = splclock();
692 1.1 perry if (cmoscheck())
693 1.1 perry cmoscentury = mc146818_read(NULL, NVRAM_CENTURY);
694 1.1 perry #if NMCA > 0
695 1.1 perry else if (MCA_system && cmoscheckps2())
696 1.1 perry cmoscentury = mc146818_read(NULL, (centb = 0x37));
697 1.1 perry #endif
698 1.1 perry else
699 1.1 perry cmoscentury = 0;
700 1.1 perry splx(s);
701 1.1 perry if (!cmoscentury) {
702 1.1 perry #ifdef DIAGNOSTIC
703 1.1 perry printf("clock: unknown CMOS layout\n");
704 1.1 perry #endif
705 1.1 perry return (clockyear);
706 1.1 perry }
707 1.1 perry cmoscentury = bcdtobin(cmoscentury);
708 1.1 perry
709 1.1 perry if (cmoscentury != clockcentury) {
710 1.1 perry /* XXX note: saying "century is 20" might confuse the naive. */
711 1.1 perry printf("WARNING: NVRAM century is %d but RTC year is %d\n",
712 1.1 perry cmoscentury, clockyear);
713 1.1 perry
714 1.1 perry /* Kludge to roll over century. */
715 1.1 perry if ((rtc_update_century > 0) ||
716 1.1 perry ((cmoscentury == 19) && (clockcentury == 20) &&
717 1.1 perry (clockyear == 2000))) {
718 1.1 perry printf("WARNING: Setting NVRAM century to %d\n",
719 1.1 perry clockcentury);
720 1.1 perry s = splclock();
721 1.1 perry mc146818_write(NULL, centb, bintobcd(clockcentury));
722 1.1 perry splx(s);
723 1.1 perry }
724 1.1 perry } else if (cmoscentury == 19 && rtc_update_century == 0)
725 1.1 perry rtc_update_century = 1; /* will update later in resettodr() */
726 1.1 perry
727 1.1 perry return (clockyear);
728 1.1 perry }
729 1.1 perry
730 1.1 perry static int
731 1.7 christos rtc_get_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
732 1.1 perry {
733 1.1 perry int s;
734 1.1 perry mc_todregs rtclk;
735 1.1 perry
736 1.1 perry s = splclock();
737 1.1 perry if (rtcget(&rtclk)) {
738 1.1 perry splx(s);
739 1.1 perry return -1;
740 1.1 perry }
741 1.1 perry splx(s);
742 1.1 perry
743 1.4 gdamore dt->dt_sec = bcdtobin(rtclk[MC_SEC]);
744 1.4 gdamore dt->dt_min = bcdtobin(rtclk[MC_MIN]);
745 1.4 gdamore dt->dt_hour = bcdtobin(rtclk[MC_HOUR]);
746 1.4 gdamore dt->dt_day = bcdtobin(rtclk[MC_DOM]);
747 1.4 gdamore dt->dt_mon = bcdtobin(rtclk[MC_MONTH]);
748 1.4 gdamore dt->dt_year = clock_expandyear(bcdtobin(rtclk[MC_YEAR]));
749 1.1 perry
750 1.1 perry return 0;
751 1.1 perry }
752 1.1 perry
753 1.1 perry static int
754 1.7 christos rtc_set_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
755 1.1 perry {
756 1.1 perry mc_todregs rtclk;
757 1.1 perry int century;
758 1.1 perry int s;
759 1.1 perry
760 1.1 perry s = splclock();
761 1.1 perry if (rtcget(&rtclk))
762 1.1 perry memset(&rtclk, 0, sizeof(rtclk));
763 1.1 perry splx(s);
764 1.1 perry
765 1.4 gdamore rtclk[MC_SEC] = bintobcd(dt->dt_sec);
766 1.4 gdamore rtclk[MC_MIN] = bintobcd(dt->dt_min);
767 1.4 gdamore rtclk[MC_HOUR] = bintobcd(dt->dt_hour);
768 1.4 gdamore rtclk[MC_DOW] = dt->dt_wday + 1;
769 1.4 gdamore rtclk[MC_YEAR] = bintobcd(dt->dt_year % 100);
770 1.4 gdamore rtclk[MC_MONTH] = bintobcd(dt->dt_mon);
771 1.4 gdamore rtclk[MC_DOM] = bintobcd(dt->dt_day);
772 1.1 perry
773 1.1 perry #ifdef DEBUG_CLOCK
774 1.1 perry printf("setclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR], rtclk[MC_MONTH],
775 1.1 perry rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN], rtclk[MC_SEC]);
776 1.1 perry #endif
777 1.1 perry s = splclock();
778 1.1 perry rtcput(&rtclk);
779 1.1 perry if (rtc_update_century > 0) {
780 1.4 gdamore century = bintobcd(dt->dt_year / 100);
781 1.1 perry mc146818_write(NULL, centb, century); /* XXX softc */
782 1.1 perry }
783 1.1 perry splx(s);
784 1.1 perry return 0;
785 1.1 perry
786 1.1 perry }
787 1.1 perry
788 1.1 perry static void
789 1.1 perry rtc_register(void)
790 1.1 perry {
791 1.1 perry static struct todr_chip_handle tch;
792 1.4 gdamore tch.todr_gettime_ymdhms = rtc_get_ymdhms;
793 1.4 gdamore tch.todr_settime_ymdhms = rtc_set_ymdhms;
794 1.1 perry tch.todr_setwen = NULL;
795 1.1 perry
796 1.1 perry todr_attach(&tch);
797 1.1 perry }
798 1.1 perry
799 1.1 perry void
800 1.7 christos setstatclockrate(int arg)
801 1.1 perry {
802 1.1 perry }
803