clock.c revision 1.27 1 1.27 cube /* $NetBSD: clock.c,v 1.27 2008/03/05 22:47:53 cube Exp $ */
2 1.1 perry
3 1.1 perry /*-
4 1.1 perry * Copyright (c) 1990 The Regents of the University of California.
5 1.1 perry * All rights reserved.
6 1.1 perry *
7 1.1 perry * This code is derived from software contributed to Berkeley by
8 1.1 perry * William Jolitz and Don Ahn.
9 1.1 perry *
10 1.1 perry * Redistribution and use in source and binary forms, with or without
11 1.1 perry * modification, are permitted provided that the following conditions
12 1.1 perry * are met:
13 1.1 perry * 1. Redistributions of source code must retain the above copyright
14 1.1 perry * notice, this list of conditions and the following disclaimer.
15 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 perry * notice, this list of conditions and the following disclaimer in the
17 1.1 perry * documentation and/or other materials provided with the distribution.
18 1.1 perry * 3. Neither the name of the University nor the names of its contributors
19 1.1 perry * may be used to endorse or promote products derived from this software
20 1.1 perry * without specific prior written permission.
21 1.1 perry *
22 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 perry * SUCH DAMAGE.
33 1.1 perry *
34 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
35 1.1 perry */
36 1.1 perry /*-
37 1.1 perry * Copyright (c) 1993, 1994 Charles M. Hannum.
38 1.1 perry *
39 1.1 perry * This code is derived from software contributed to Berkeley by
40 1.1 perry * William Jolitz and Don Ahn.
41 1.1 perry *
42 1.1 perry * Redistribution and use in source and binary forms, with or without
43 1.1 perry * modification, are permitted provided that the following conditions
44 1.1 perry * are met:
45 1.1 perry * 1. Redistributions of source code must retain the above copyright
46 1.1 perry * notice, this list of conditions and the following disclaimer.
47 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 perry * notice, this list of conditions and the following disclaimer in the
49 1.1 perry * documentation and/or other materials provided with the distribution.
50 1.1 perry * 3. All advertising materials mentioning features or use of this software
51 1.1 perry * must display the following acknowledgement:
52 1.1 perry * This product includes software developed by the University of
53 1.1 perry * California, Berkeley and its contributors.
54 1.1 perry * 4. Neither the name of the University nor the names of its contributors
55 1.1 perry * may be used to endorse or promote products derived from this software
56 1.1 perry * without specific prior written permission.
57 1.1 perry *
58 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.1 perry * SUCH DAMAGE.
69 1.1 perry *
70 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
71 1.1 perry */
72 1.1 perry /*
73 1.1 perry * Mach Operating System
74 1.1 perry * Copyright (c) 1991,1990,1989 Carnegie Mellon University
75 1.1 perry * All Rights Reserved.
76 1.1 perry *
77 1.1 perry * Permission to use, copy, modify and distribute this software and its
78 1.1 perry * documentation is hereby granted, provided that both the copyright
79 1.1 perry * notice and this permission notice appear in all copies of the
80 1.1 perry * software, derivative works or modified versions, and any portions
81 1.1 perry * thereof, and that both notices appear in supporting documentation.
82 1.1 perry *
83 1.1 perry * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
84 1.1 perry * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
85 1.1 perry * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
86 1.1 perry *
87 1.1 perry * Carnegie Mellon requests users of this software to return to
88 1.1 perry *
89 1.1 perry * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
90 1.1 perry * School of Computer Science
91 1.1 perry * Carnegie Mellon University
92 1.1 perry * Pittsburgh PA 15213-3890
93 1.1 perry *
94 1.1 perry * any improvements or extensions that they make and grant Carnegie Mellon
95 1.1 perry * the rights to redistribute these changes.
96 1.1 perry */
97 1.1 perry /*
98 1.1 perry Copyright 1988, 1989 by Intel Corporation, Santa Clara, California.
99 1.1 perry
100 1.1 perry All Rights Reserved
101 1.1 perry
102 1.1 perry Permission to use, copy, modify, and distribute this software and
103 1.1 perry its documentation for any purpose and without fee is hereby
104 1.1 perry granted, provided that the above copyright notice appears in all
105 1.1 perry copies and that both the copyright notice and this permission notice
106 1.1 perry appear in supporting documentation, and that the name of Intel
107 1.1 perry not be used in advertising or publicity pertaining to distribution
108 1.1 perry of the software without specific, written prior permission.
109 1.1 perry
110 1.1 perry INTEL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
111 1.1 perry INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
112 1.1 perry IN NO EVENT SHALL INTEL BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
113 1.1 perry CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
114 1.1 perry LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
115 1.1 perry NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
116 1.1 perry WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
117 1.1 perry */
118 1.1 perry
119 1.1 perry /*
120 1.1 perry * Primitive clock interrupt routines.
121 1.1 perry */
122 1.1 perry
123 1.1 perry #include <sys/cdefs.h>
124 1.27 cube __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.27 2008/03/05 22:47:53 cube Exp $");
125 1.1 perry
126 1.1 perry /* #define CLOCKDEBUG */
127 1.1 perry /* #define CLOCK_PARANOIA */
128 1.1 perry
129 1.1 perry #include "opt_multiprocessor.h"
130 1.1 perry #include "opt_ntp.h"
131 1.1 perry
132 1.1 perry #include <sys/param.h>
133 1.1 perry #include <sys/systm.h>
134 1.1 perry #include <sys/time.h>
135 1.1 perry #include <sys/timetc.h>
136 1.1 perry #include <sys/kernel.h>
137 1.1 perry #include <sys/device.h>
138 1.9 ad #include <sys/mutex.h>
139 1.20 ad #include <sys/cpu.h>
140 1.20 ad #include <sys/intr.h>
141 1.1 perry
142 1.1 perry #include <machine/pio.h>
143 1.1 perry #include <machine/cpufunc.h>
144 1.20 ad #include <machine/lock.h>
145 1.1 perry
146 1.1 perry #include <dev/isa/isareg.h>
147 1.1 perry #include <dev/isa/isavar.h>
148 1.1 perry #include <dev/ic/mc146818reg.h>
149 1.1 perry #include <dev/ic/i8253reg.h>
150 1.1 perry #include <i386/isa/nvram.h>
151 1.1 perry #include <x86/x86/tsc.h>
152 1.19 christos #include <x86/lock.h>
153 1.1 perry #include <dev/clock_subr.h>
154 1.1 perry #include <machine/specialreg.h>
155 1.1 perry
156 1.1 perry #ifndef __x86_64__
157 1.1 perry #include "mca.h"
158 1.1 perry #endif
159 1.1 perry #if NMCA > 0
160 1.1 perry #include <machine/mca_machdep.h> /* for MCA_system */
161 1.1 perry #endif
162 1.1 perry
163 1.1 perry #include "pcppi.h"
164 1.1 perry #if (NPCPPI > 0)
165 1.1 perry #include <dev/isa/pcppivar.h>
166 1.1 perry
167 1.27 cube int sysbeepmatch(device_t, cfdata_t, void *);
168 1.27 cube void sysbeepattach(device_t, device_t, void *);
169 1.17 dyoung int sysbeepdetach(device_t, int);
170 1.1 perry
171 1.26 cube CFATTACH_DECL_NEW(sysbeep, 0,
172 1.17 dyoung sysbeepmatch, sysbeepattach, sysbeepdetach, NULL);
173 1.1 perry
174 1.1 perry static int ppi_attached;
175 1.1 perry static pcppi_tag_t ppicookie;
176 1.1 perry #endif /* PCPPI */
177 1.1 perry
178 1.1 perry #ifdef CLOCKDEBUG
179 1.1 perry int clock_debug = 0;
180 1.1 perry #define DPRINTF(arg) if (clock_debug) printf arg
181 1.1 perry #else
182 1.1 perry #define DPRINTF(arg)
183 1.1 perry #endif
184 1.1 perry
185 1.12 joerg /* Used by lapic.c */
186 1.12 joerg unsigned int gettick(void);
187 1.1 perry void sysbeep(int, int);
188 1.1 perry static void tickle_tc(void);
189 1.1 perry
190 1.8 yamt static int clockintr(void *, struct intrframe *);
191 1.1 perry static void rtcinit(void);
192 1.1 perry static int rtcget(mc_todregs *);
193 1.1 perry static void rtcput(mc_todregs *);
194 1.1 perry
195 1.1 perry static int cmoscheck(void);
196 1.1 perry
197 1.1 perry static int clock_expandyear(int);
198 1.18 he int sysbeepdetach(device_t, int);
199 1.1 perry
200 1.12 joerg static unsigned int gettick_broken_latch(void);
201 1.1 perry
202 1.1 perry static volatile uint32_t i8254_lastcount;
203 1.1 perry static volatile uint32_t i8254_offset;
204 1.1 perry static volatile int i8254_ticked;
205 1.1 perry
206 1.9 ad /* to protect TC timer variables */
207 1.9 ad static __cpu_simple_lock_t tmr_lock = __SIMPLELOCK_UNLOCKED;
208 1.1 perry
209 1.1 perry inline u_int mc146818_read(void *, u_int);
210 1.1 perry inline void mc146818_write(void *, u_int, u_int);
211 1.1 perry
212 1.1 perry u_int i8254_get_timecount(struct timecounter *);
213 1.1 perry static void rtc_register(void);
214 1.1 perry
215 1.1 perry static struct timecounter i8254_timecounter = {
216 1.1 perry i8254_get_timecount, /* get_timecount */
217 1.1 perry 0, /* no poll_pps */
218 1.1 perry ~0u, /* counter_mask */
219 1.1 perry TIMER_FREQ, /* frequency */
220 1.1 perry "i8254", /* name */
221 1.1 perry 100, /* quality */
222 1.1 perry NULL, /* prev */
223 1.1 perry NULL, /* next */
224 1.1 perry };
225 1.1 perry
226 1.1 perry /* XXX use sc? */
227 1.1 perry inline u_int
228 1.7 christos mc146818_read(void *sc, u_int reg)
229 1.1 perry {
230 1.1 perry
231 1.1 perry outb(IO_RTC, reg);
232 1.1 perry return (inb(IO_RTC+1));
233 1.1 perry }
234 1.1 perry
235 1.1 perry /* XXX use sc? */
236 1.1 perry inline void
237 1.7 christos mc146818_write(void *sc, u_int reg, u_int datum)
238 1.1 perry {
239 1.1 perry
240 1.1 perry outb(IO_RTC, reg);
241 1.1 perry outb(IO_RTC+1, datum);
242 1.1 perry }
243 1.1 perry
244 1.1 perry u_long rtclock_tval; /* i8254 reload value for countdown */
245 1.1 perry int rtclock_init = 0;
246 1.1 perry
247 1.1 perry int clock_broken_latch = 0;
248 1.1 perry
249 1.1 perry #ifdef CLOCK_PARANOIA
250 1.1 perry static int ticks[6];
251 1.1 perry #endif
252 1.1 perry /*
253 1.1 perry * i8254 latch check routine:
254 1.1 perry * National Geode (formerly Cyrix MediaGX) has a serious bug in
255 1.1 perry * its built-in i8254-compatible clock module.
256 1.1 perry * machdep sets the variable 'clock_broken_latch' to indicate it.
257 1.1 perry */
258 1.1 perry
259 1.12 joerg static unsigned int
260 1.1 perry gettick_broken_latch(void)
261 1.1 perry {
262 1.1 perry int v1, v2, v3;
263 1.1 perry int w1, w2, w3;
264 1.14 ad int s;
265 1.1 perry
266 1.1 perry /* Don't want someone screwing with the counter while we're here. */
267 1.14 ad s = splhigh();
268 1.14 ad __cpu_simple_lock(&tmr_lock);
269 1.1 perry v1 = inb(IO_TIMER1+TIMER_CNTR0);
270 1.1 perry v1 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
271 1.1 perry v2 = inb(IO_TIMER1+TIMER_CNTR0);
272 1.1 perry v2 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
273 1.1 perry v3 = inb(IO_TIMER1+TIMER_CNTR0);
274 1.1 perry v3 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
275 1.14 ad __cpu_simple_unlock(&tmr_lock);
276 1.14 ad splx(s);
277 1.1 perry
278 1.1 perry #ifdef CLOCK_PARANOIA
279 1.1 perry if (clock_debug) {
280 1.1 perry ticks[0] = ticks[3];
281 1.1 perry ticks[1] = ticks[4];
282 1.1 perry ticks[2] = ticks[5];
283 1.1 perry ticks[3] = v1;
284 1.1 perry ticks[4] = v2;
285 1.1 perry ticks[5] = v3;
286 1.1 perry }
287 1.1 perry #endif
288 1.1 perry
289 1.1 perry if (v1 >= v2 && v2 >= v3 && v1 - v3 < 0x200)
290 1.1 perry return (v2);
291 1.1 perry
292 1.1 perry #define _swap_val(a, b) do { \
293 1.1 perry int c = a; \
294 1.1 perry a = b; \
295 1.1 perry b = c; \
296 1.1 perry } while (0)
297 1.1 perry
298 1.1 perry /*
299 1.1 perry * sort v1 v2 v3
300 1.1 perry */
301 1.1 perry if (v1 < v2)
302 1.1 perry _swap_val(v1, v2);
303 1.1 perry if (v2 < v3)
304 1.1 perry _swap_val(v2, v3);
305 1.1 perry if (v1 < v2)
306 1.1 perry _swap_val(v1, v2);
307 1.1 perry
308 1.1 perry /*
309 1.1 perry * compute the middle value
310 1.1 perry */
311 1.1 perry
312 1.1 perry if (v1 - v3 < 0x200)
313 1.1 perry return (v2);
314 1.1 perry
315 1.1 perry w1 = v2 - v3;
316 1.1 perry w2 = v3 - v1 + rtclock_tval;
317 1.1 perry w3 = v1 - v2;
318 1.1 perry if (w1 >= w2) {
319 1.1 perry if (w1 >= w3)
320 1.1 perry return (v1);
321 1.1 perry } else {
322 1.1 perry if (w2 >= w3)
323 1.1 perry return (v2);
324 1.1 perry }
325 1.1 perry return (v3);
326 1.1 perry }
327 1.1 perry
328 1.1 perry /* minimal initialization, enough for delay() */
329 1.1 perry void
330 1.1 perry initrtclock(u_long freq)
331 1.1 perry {
332 1.1 perry u_long tval;
333 1.9 ad
334 1.1 perry /*
335 1.1 perry * Compute timer_count, the count-down count the timer will be
336 1.1 perry * set to. Also, correctly round
337 1.1 perry * this by carrying an extra bit through the division.
338 1.1 perry */
339 1.1 perry tval = (freq * 2) / (u_long) hz;
340 1.1 perry tval = (tval / 2) + (tval & 0x1);
341 1.1 perry
342 1.1 perry /* initialize 8254 clock */
343 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
344 1.1 perry
345 1.1 perry /* Correct rounding will buy us a better precision in timekeeping */
346 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval % 256);
347 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval / 256);
348 1.1 perry
349 1.1 perry rtclock_tval = tval ? tval : 0xFFFF;
350 1.1 perry rtclock_init = 1;
351 1.1 perry }
352 1.1 perry
353 1.1 perry void
354 1.1 perry startrtclock(void)
355 1.1 perry {
356 1.1 perry int s;
357 1.1 perry
358 1.1 perry if (!rtclock_init)
359 1.1 perry initrtclock(TIMER_FREQ);
360 1.1 perry
361 1.1 perry /* Check diagnostic status */
362 1.1 perry if ((s = mc146818_read(NULL, NVRAM_DIAG)) != 0) { /* XXX softc */
363 1.1 perry char bits[128];
364 1.1 perry printf("RTC BIOS diagnostic error %s\n",
365 1.1 perry bitmask_snprintf(s, NVRAM_DIAG_BITS, bits, sizeof(bits)));
366 1.1 perry }
367 1.1 perry
368 1.1 perry tc_init(&i8254_timecounter);
369 1.1 perry
370 1.1 perry init_TSC();
371 1.1 perry rtc_register();
372 1.1 perry }
373 1.1 perry
374 1.9 ad /*
375 1.14 ad * Must be called at splsched().
376 1.9 ad */
377 1.1 perry static void
378 1.1 perry tickle_tc(void)
379 1.1 perry {
380 1.1 perry #if defined(MULTIPROCESSOR)
381 1.1 perry struct cpu_info *ci = curcpu();
382 1.1 perry /*
383 1.1 perry * If we are not the primary CPU, we're not allowed to do
384 1.1 perry * any more work.
385 1.1 perry */
386 1.1 perry if (CPU_IS_PRIMARY(ci) == 0)
387 1.1 perry return;
388 1.1 perry #endif
389 1.1 perry if (rtclock_tval && timecounter->tc_get_timecount == i8254_get_timecount) {
390 1.9 ad __cpu_simple_lock(&tmr_lock);
391 1.1 perry if (i8254_ticked)
392 1.1 perry i8254_ticked = 0;
393 1.1 perry else {
394 1.1 perry i8254_offset += rtclock_tval;
395 1.1 perry i8254_lastcount = 0;
396 1.1 perry }
397 1.9 ad __cpu_simple_unlock(&tmr_lock);
398 1.1 perry }
399 1.1 perry
400 1.1 perry }
401 1.1 perry
402 1.1 perry static int
403 1.8 yamt clockintr(void *arg, struct intrframe *frame)
404 1.1 perry {
405 1.1 perry tickle_tc();
406 1.1 perry
407 1.8 yamt hardclock((struct clockframe *)frame);
408 1.1 perry
409 1.1 perry #if NMCA > 0
410 1.1 perry if (MCA_system) {
411 1.1 perry /* Reset PS/2 clock interrupt by asserting bit 7 of port 0x61 */
412 1.1 perry outb(0x61, inb(0x61) | 0x80);
413 1.1 perry }
414 1.1 perry #endif
415 1.1 perry return -1;
416 1.1 perry }
417 1.1 perry
418 1.1 perry u_int
419 1.7 christos i8254_get_timecount(struct timecounter *tc)
420 1.1 perry {
421 1.1 perry u_int count;
422 1.14 ad uint16_t rdval;
423 1.14 ad int s;
424 1.1 perry
425 1.1 perry /* Don't want someone screwing with the counter while we're here. */
426 1.14 ad s = splhigh();
427 1.9 ad __cpu_simple_lock(&tmr_lock);
428 1.1 perry /* Select timer0 and latch counter value. */
429 1.1 perry outb(IO_TIMER1 + TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
430 1.14 ad /* insb to make the read atomic */
431 1.14 ad insb(IO_TIMER1+TIMER_CNTR0, &rdval, 2);
432 1.14 ad count = rtclock_tval - rdval;
433 1.25 kardel if (rtclock_tval && (count < i8254_lastcount &&
434 1.25 kardel (!i8254_ticked || rtclock_tval == 0xFFFF))) {
435 1.1 perry i8254_ticked = 1;
436 1.1 perry i8254_offset += rtclock_tval;
437 1.1 perry }
438 1.1 perry i8254_lastcount = count;
439 1.1 perry count += i8254_offset;
440 1.9 ad __cpu_simple_unlock(&tmr_lock);
441 1.14 ad splx(s);
442 1.1 perry
443 1.1 perry return (count);
444 1.1 perry }
445 1.1 perry
446 1.12 joerg unsigned int
447 1.1 perry gettick(void)
448 1.1 perry {
449 1.14 ad uint16_t rdval;
450 1.14 ad int s;
451 1.14 ad
452 1.1 perry if (clock_broken_latch)
453 1.1 perry return (gettick_broken_latch());
454 1.1 perry
455 1.1 perry /* Don't want someone screwing with the counter while we're here. */
456 1.14 ad s = splhigh();
457 1.14 ad __cpu_simple_lock(&tmr_lock);
458 1.1 perry /* Select counter 0 and latch it. */
459 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
460 1.14 ad /* insb to make the read atomic */
461 1.14 ad insb(IO_TIMER1+TIMER_CNTR0, &rdval, 2);
462 1.14 ad __cpu_simple_unlock(&tmr_lock);
463 1.14 ad splx(s);
464 1.14 ad
465 1.14 ad return rdval;
466 1.1 perry }
467 1.1 perry
468 1.1 perry /*
469 1.1 perry * Wait approximately `n' microseconds.
470 1.1 perry * Relies on timer 1 counting down from (TIMER_FREQ / hz) at TIMER_FREQ Hz.
471 1.1 perry * Note: timer had better have been programmed before this is first used!
472 1.1 perry * (Note that we use `rate generator' mode, which counts at 1:1; `square
473 1.1 perry * wave' mode counts at 2:1).
474 1.1 perry * Don't rely on this being particularly accurate.
475 1.1 perry */
476 1.1 perry void
477 1.12 joerg i8254_delay(unsigned int n)
478 1.1 perry {
479 1.12 joerg unsigned int cur_tick, initial_tick;
480 1.12 joerg int remaining;
481 1.1 perry
482 1.1 perry /* allow DELAY() to be used before startrtclock() */
483 1.1 perry if (!rtclock_init)
484 1.1 perry initrtclock(TIMER_FREQ);
485 1.1 perry
486 1.1 perry /*
487 1.1 perry * Read the counter first, so that the rest of the setup overhead is
488 1.1 perry * counted.
489 1.1 perry */
490 1.12 joerg initial_tick = gettick();
491 1.1 perry
492 1.16 joerg if (n <= UINT_MAX / TIMER_FREQ) {
493 1.1 perry /*
494 1.12 joerg * For unsigned arithmetic, division can be replaced with
495 1.12 joerg * multiplication with the inverse and a shift.
496 1.1 perry */
497 1.12 joerg remaining = n * TIMER_FREQ / 1000000;
498 1.12 joerg } else {
499 1.12 joerg /* This is a very long delay.
500 1.12 joerg * Being slow here doesn't matter.
501 1.1 perry */
502 1.12 joerg remaining = (unsigned long long) n * TIMER_FREQ / 1000000;
503 1.1 perry }
504 1.1 perry
505 1.12 joerg while (remaining > 0) {
506 1.1 perry #ifdef CLOCK_PARANOIA
507 1.1 perry int delta;
508 1.12 joerg cur_tick = gettick();
509 1.12 joerg if (cur_tick > initial_tick)
510 1.12 joerg delta = rtclock_tval - (cur_tick - initial_tick);
511 1.1 perry else
512 1.12 joerg delta = initial_tick - cur_tick;
513 1.1 perry if (delta < 0 || delta >= rtclock_tval / 2) {
514 1.1 perry DPRINTF(("delay: ignore ticks %.4x-%.4x",
515 1.12 joerg initial_tick, cur_tick));
516 1.1 perry if (clock_broken_latch) {
517 1.1 perry DPRINTF((" (%.4x %.4x %.4x %.4x %.4x %.4x)\n",
518 1.1 perry ticks[0], ticks[1], ticks[2],
519 1.1 perry ticks[3], ticks[4], ticks[5]));
520 1.1 perry } else {
521 1.1 perry DPRINTF(("\n"));
522 1.1 perry }
523 1.1 perry } else
524 1.12 joerg remaining -= delta;
525 1.1 perry #else
526 1.12 joerg cur_tick = gettick();
527 1.12 joerg if (cur_tick > initial_tick)
528 1.12 joerg remaining -= rtclock_tval - (cur_tick - initial_tick);
529 1.1 perry else
530 1.12 joerg remaining -= initial_tick - cur_tick;
531 1.1 perry #endif
532 1.12 joerg initial_tick = cur_tick;
533 1.1 perry }
534 1.1 perry }
535 1.1 perry
536 1.1 perry #if (NPCPPI > 0)
537 1.1 perry int
538 1.27 cube sysbeepmatch(device_t parent, cfdata_t match, void *aux)
539 1.1 perry {
540 1.1 perry return (!ppi_attached);
541 1.1 perry }
542 1.1 perry
543 1.1 perry void
544 1.27 cube sysbeepattach(device_t parent, device_t self, void *aux)
545 1.1 perry {
546 1.1 perry aprint_naive("\n");
547 1.1 perry aprint_normal("\n");
548 1.1 perry
549 1.1 perry ppicookie = ((struct pcppi_attach_args *)aux)->pa_cookie;
550 1.1 perry ppi_attached = 1;
551 1.15 jmcneill
552 1.15 jmcneill if (!pmf_device_register(self, NULL, NULL))
553 1.15 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
554 1.1 perry }
555 1.1 perry
556 1.17 dyoung int
557 1.17 dyoung sysbeepdetach(device_t self, int flags)
558 1.17 dyoung {
559 1.17 dyoung pmf_device_deregister(self);
560 1.17 dyoung ppi_attached = 0;
561 1.17 dyoung return 0;
562 1.17 dyoung }
563 1.21 dyoung #endif
564 1.17 dyoung
565 1.1 perry void
566 1.7 christos sysbeep(int pitch, int period)
567 1.1 perry {
568 1.1 perry #if (NPCPPI > 0)
569 1.1 perry if (ppi_attached)
570 1.1 perry pcppi_bell(ppicookie, pitch, period, 0);
571 1.1 perry #endif
572 1.1 perry }
573 1.1 perry
574 1.1 perry void
575 1.1 perry i8254_initclocks(void)
576 1.1 perry {
577 1.1 perry
578 1.1 perry /*
579 1.1 perry * XXX If you're doing strange things with multiple clocks, you might
580 1.1 perry * want to keep track of clock handlers.
581 1.1 perry */
582 1.1 perry (void)isa_intr_establish(NULL, 0, IST_PULSE, IPL_CLOCK,
583 1.1 perry (int (*)(void *))clockintr, 0);
584 1.1 perry }
585 1.1 perry
586 1.1 perry static void
587 1.1 perry rtcinit(void)
588 1.1 perry {
589 1.1 perry static int first_rtcopen_ever = 1;
590 1.1 perry
591 1.1 perry if (!first_rtcopen_ever)
592 1.1 perry return;
593 1.1 perry first_rtcopen_ever = 0;
594 1.1 perry
595 1.1 perry mc146818_write(NULL, MC_REGA, /* XXX softc */
596 1.1 perry MC_BASE_32_KHz | MC_RATE_1024_Hz);
597 1.1 perry mc146818_write(NULL, MC_REGB, MC_REGB_24HR); /* XXX softc */
598 1.1 perry }
599 1.1 perry
600 1.1 perry static int
601 1.1 perry rtcget(mc_todregs *regs)
602 1.1 perry {
603 1.1 perry
604 1.1 perry rtcinit();
605 1.1 perry if ((mc146818_read(NULL, MC_REGD) & MC_REGD_VRT) == 0) /* XXX softc */
606 1.1 perry return (-1);
607 1.1 perry MC146818_GETTOD(NULL, regs); /* XXX softc */
608 1.1 perry return (0);
609 1.1 perry }
610 1.1 perry
611 1.1 perry static void
612 1.1 perry rtcput(mc_todregs *regs)
613 1.1 perry {
614 1.1 perry
615 1.1 perry rtcinit();
616 1.1 perry MC146818_PUTTOD(NULL, regs); /* XXX softc */
617 1.1 perry }
618 1.1 perry
619 1.1 perry /*
620 1.1 perry * check whether the CMOS layout is "standard"-like (ie, not PS/2-like),
621 1.1 perry * to be called at splclock()
622 1.1 perry */
623 1.1 perry static int
624 1.1 perry cmoscheck(void)
625 1.1 perry {
626 1.1 perry int i;
627 1.1 perry unsigned short cksum = 0;
628 1.1 perry
629 1.1 perry for (i = 0x10; i <= 0x2d; i++)
630 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
631 1.1 perry
632 1.1 perry return (cksum == (mc146818_read(NULL, 0x2e) << 8)
633 1.1 perry + mc146818_read(NULL, 0x2f));
634 1.1 perry }
635 1.1 perry
636 1.1 perry #if NMCA > 0
637 1.1 perry /*
638 1.1 perry * Check whether the CMOS layout is PS/2 like, to be called at splclock().
639 1.1 perry */
640 1.1 perry static int cmoscheckps2(void);
641 1.1 perry static int
642 1.1 perry cmoscheckps2(void)
643 1.1 perry {
644 1.1 perry #if 0
645 1.1 perry /* Disabled until I find out the CRC checksum algorithm IBM uses */
646 1.1 perry int i;
647 1.1 perry unsigned short cksum = 0;
648 1.1 perry
649 1.1 perry for (i = 0x10; i <= 0x31; i++)
650 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
651 1.1 perry
652 1.1 perry return (cksum == (mc146818_read(NULL, 0x32) << 8)
653 1.1 perry + mc146818_read(NULL, 0x33));
654 1.1 perry #else
655 1.1 perry /* Check 'incorrect checksum' bit of IBM PS/2 Diagnostic Status Byte */
656 1.1 perry return ((mc146818_read(NULL, NVRAM_DIAG) & (1<<6)) == 0);
657 1.1 perry #endif
658 1.1 perry }
659 1.1 perry #endif /* NMCA > 0 */
660 1.1 perry
661 1.1 perry /*
662 1.1 perry * patchable to control century byte handling:
663 1.1 perry * 1: always update
664 1.1 perry * -1: never touch
665 1.1 perry * 0: try to figure out itself
666 1.1 perry */
667 1.1 perry int rtc_update_century = 0;
668 1.1 perry
669 1.1 perry /*
670 1.1 perry * Expand a two-digit year as read from the clock chip
671 1.1 perry * into full width.
672 1.1 perry * Being here, deal with the CMOS century byte.
673 1.1 perry */
674 1.1 perry static int centb = NVRAM_CENTURY;
675 1.1 perry static int
676 1.1 perry clock_expandyear(int clockyear)
677 1.1 perry {
678 1.1 perry int s, clockcentury, cmoscentury;
679 1.1 perry
680 1.1 perry clockcentury = (clockyear < 70) ? 20 : 19;
681 1.1 perry clockyear += 100 * clockcentury;
682 1.1 perry
683 1.1 perry if (rtc_update_century < 0)
684 1.1 perry return (clockyear);
685 1.1 perry
686 1.1 perry s = splclock();
687 1.1 perry if (cmoscheck())
688 1.1 perry cmoscentury = mc146818_read(NULL, NVRAM_CENTURY);
689 1.1 perry #if NMCA > 0
690 1.1 perry else if (MCA_system && cmoscheckps2())
691 1.1 perry cmoscentury = mc146818_read(NULL, (centb = 0x37));
692 1.1 perry #endif
693 1.1 perry else
694 1.1 perry cmoscentury = 0;
695 1.1 perry splx(s);
696 1.1 perry if (!cmoscentury) {
697 1.1 perry #ifdef DIAGNOSTIC
698 1.1 perry printf("clock: unknown CMOS layout\n");
699 1.1 perry #endif
700 1.1 perry return (clockyear);
701 1.1 perry }
702 1.1 perry cmoscentury = bcdtobin(cmoscentury);
703 1.1 perry
704 1.1 perry if (cmoscentury != clockcentury) {
705 1.1 perry /* XXX note: saying "century is 20" might confuse the naive. */
706 1.1 perry printf("WARNING: NVRAM century is %d but RTC year is %d\n",
707 1.1 perry cmoscentury, clockyear);
708 1.1 perry
709 1.1 perry /* Kludge to roll over century. */
710 1.1 perry if ((rtc_update_century > 0) ||
711 1.1 perry ((cmoscentury == 19) && (clockcentury == 20) &&
712 1.1 perry (clockyear == 2000))) {
713 1.1 perry printf("WARNING: Setting NVRAM century to %d\n",
714 1.1 perry clockcentury);
715 1.1 perry s = splclock();
716 1.1 perry mc146818_write(NULL, centb, bintobcd(clockcentury));
717 1.1 perry splx(s);
718 1.1 perry }
719 1.1 perry } else if (cmoscentury == 19 && rtc_update_century == 0)
720 1.1 perry rtc_update_century = 1; /* will update later in resettodr() */
721 1.1 perry
722 1.1 perry return (clockyear);
723 1.1 perry }
724 1.1 perry
725 1.1 perry static int
726 1.7 christos rtc_get_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
727 1.1 perry {
728 1.1 perry int s;
729 1.1 perry mc_todregs rtclk;
730 1.1 perry
731 1.1 perry s = splclock();
732 1.1 perry if (rtcget(&rtclk)) {
733 1.1 perry splx(s);
734 1.1 perry return -1;
735 1.1 perry }
736 1.1 perry splx(s);
737 1.1 perry
738 1.4 gdamore dt->dt_sec = bcdtobin(rtclk[MC_SEC]);
739 1.4 gdamore dt->dt_min = bcdtobin(rtclk[MC_MIN]);
740 1.4 gdamore dt->dt_hour = bcdtobin(rtclk[MC_HOUR]);
741 1.4 gdamore dt->dt_day = bcdtobin(rtclk[MC_DOM]);
742 1.4 gdamore dt->dt_mon = bcdtobin(rtclk[MC_MONTH]);
743 1.4 gdamore dt->dt_year = clock_expandyear(bcdtobin(rtclk[MC_YEAR]));
744 1.1 perry
745 1.1 perry return 0;
746 1.1 perry }
747 1.1 perry
748 1.1 perry static int
749 1.7 christos rtc_set_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
750 1.1 perry {
751 1.1 perry mc_todregs rtclk;
752 1.1 perry int century;
753 1.1 perry int s;
754 1.1 perry
755 1.1 perry s = splclock();
756 1.1 perry if (rtcget(&rtclk))
757 1.1 perry memset(&rtclk, 0, sizeof(rtclk));
758 1.1 perry splx(s);
759 1.1 perry
760 1.4 gdamore rtclk[MC_SEC] = bintobcd(dt->dt_sec);
761 1.4 gdamore rtclk[MC_MIN] = bintobcd(dt->dt_min);
762 1.4 gdamore rtclk[MC_HOUR] = bintobcd(dt->dt_hour);
763 1.4 gdamore rtclk[MC_DOW] = dt->dt_wday + 1;
764 1.4 gdamore rtclk[MC_YEAR] = bintobcd(dt->dt_year % 100);
765 1.4 gdamore rtclk[MC_MONTH] = bintobcd(dt->dt_mon);
766 1.4 gdamore rtclk[MC_DOM] = bintobcd(dt->dt_day);
767 1.1 perry
768 1.1 perry #ifdef DEBUG_CLOCK
769 1.1 perry printf("setclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR], rtclk[MC_MONTH],
770 1.1 perry rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN], rtclk[MC_SEC]);
771 1.1 perry #endif
772 1.1 perry s = splclock();
773 1.1 perry rtcput(&rtclk);
774 1.1 perry if (rtc_update_century > 0) {
775 1.4 gdamore century = bintobcd(dt->dt_year / 100);
776 1.1 perry mc146818_write(NULL, centb, century); /* XXX softc */
777 1.1 perry }
778 1.1 perry splx(s);
779 1.1 perry return 0;
780 1.1 perry
781 1.1 perry }
782 1.1 perry
783 1.1 perry static void
784 1.1 perry rtc_register(void)
785 1.1 perry {
786 1.1 perry static struct todr_chip_handle tch;
787 1.4 gdamore tch.todr_gettime_ymdhms = rtc_get_ymdhms;
788 1.4 gdamore tch.todr_settime_ymdhms = rtc_set_ymdhms;
789 1.1 perry tch.todr_setwen = NULL;
790 1.1 perry
791 1.1 perry todr_attach(&tch);
792 1.1 perry }
793 1.1 perry
794 1.1 perry void
795 1.7 christos setstatclockrate(int arg)
796 1.1 perry {
797 1.1 perry }
798