clock.c revision 1.7.4.1 1 1.7.4.1 skrll /* $NetBSD: clock.c,v 1.7.4.1 2008/06/03 20:47:18 skrll Exp $ */
2 1.1 perry
3 1.1 perry /*-
4 1.1 perry * Copyright (c) 1990 The Regents of the University of California.
5 1.1 perry * All rights reserved.
6 1.1 perry *
7 1.1 perry * This code is derived from software contributed to Berkeley by
8 1.1 perry * William Jolitz and Don Ahn.
9 1.1 perry *
10 1.1 perry * Redistribution and use in source and binary forms, with or without
11 1.1 perry * modification, are permitted provided that the following conditions
12 1.1 perry * are met:
13 1.1 perry * 1. Redistributions of source code must retain the above copyright
14 1.1 perry * notice, this list of conditions and the following disclaimer.
15 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 perry * notice, this list of conditions and the following disclaimer in the
17 1.1 perry * documentation and/or other materials provided with the distribution.
18 1.1 perry * 3. Neither the name of the University nor the names of its contributors
19 1.1 perry * may be used to endorse or promote products derived from this software
20 1.1 perry * without specific prior written permission.
21 1.1 perry *
22 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 perry * SUCH DAMAGE.
33 1.1 perry *
34 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
35 1.1 perry */
36 1.1 perry /*-
37 1.1 perry * Copyright (c) 1993, 1994 Charles M. Hannum.
38 1.1 perry *
39 1.1 perry * This code is derived from software contributed to Berkeley by
40 1.1 perry * William Jolitz and Don Ahn.
41 1.1 perry *
42 1.1 perry * Redistribution and use in source and binary forms, with or without
43 1.1 perry * modification, are permitted provided that the following conditions
44 1.1 perry * are met:
45 1.1 perry * 1. Redistributions of source code must retain the above copyright
46 1.1 perry * notice, this list of conditions and the following disclaimer.
47 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 perry * notice, this list of conditions and the following disclaimer in the
49 1.1 perry * documentation and/or other materials provided with the distribution.
50 1.1 perry * 3. All advertising materials mentioning features or use of this software
51 1.1 perry * must display the following acknowledgement:
52 1.1 perry * This product includes software developed by the University of
53 1.1 perry * California, Berkeley and its contributors.
54 1.1 perry * 4. Neither the name of the University nor the names of its contributors
55 1.1 perry * may be used to endorse or promote products derived from this software
56 1.1 perry * without specific prior written permission.
57 1.1 perry *
58 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.1 perry * SUCH DAMAGE.
69 1.1 perry *
70 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
71 1.1 perry */
72 1.1 perry /*
73 1.1 perry * Mach Operating System
74 1.1 perry * Copyright (c) 1991,1990,1989 Carnegie Mellon University
75 1.1 perry * All Rights Reserved.
76 1.1 perry *
77 1.1 perry * Permission to use, copy, modify and distribute this software and its
78 1.1 perry * documentation is hereby granted, provided that both the copyright
79 1.1 perry * notice and this permission notice appear in all copies of the
80 1.1 perry * software, derivative works or modified versions, and any portions
81 1.1 perry * thereof, and that both notices appear in supporting documentation.
82 1.1 perry *
83 1.1 perry * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
84 1.1 perry * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
85 1.1 perry * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
86 1.1 perry *
87 1.1 perry * Carnegie Mellon requests users of this software to return to
88 1.1 perry *
89 1.1 perry * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
90 1.1 perry * School of Computer Science
91 1.1 perry * Carnegie Mellon University
92 1.1 perry * Pittsburgh PA 15213-3890
93 1.1 perry *
94 1.1 perry * any improvements or extensions that they make and grant Carnegie Mellon
95 1.1 perry * the rights to redistribute these changes.
96 1.1 perry */
97 1.1 perry /*
98 1.1 perry Copyright 1988, 1989 by Intel Corporation, Santa Clara, California.
99 1.1 perry
100 1.1 perry All Rights Reserved
101 1.1 perry
102 1.1 perry Permission to use, copy, modify, and distribute this software and
103 1.1 perry its documentation for any purpose and without fee is hereby
104 1.1 perry granted, provided that the above copyright notice appears in all
105 1.1 perry copies and that both the copyright notice and this permission notice
106 1.1 perry appear in supporting documentation, and that the name of Intel
107 1.1 perry not be used in advertising or publicity pertaining to distribution
108 1.1 perry of the software without specific, written prior permission.
109 1.1 perry
110 1.1 perry INTEL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
111 1.1 perry INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
112 1.1 perry IN NO EVENT SHALL INTEL BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
113 1.1 perry CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
114 1.1 perry LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
115 1.1 perry NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
116 1.1 perry WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
117 1.1 perry */
118 1.1 perry
119 1.1 perry /*
120 1.1 perry * Primitive clock interrupt routines.
121 1.1 perry */
122 1.1 perry
123 1.1 perry #include <sys/cdefs.h>
124 1.7.4.1 skrll __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.7.4.1 2008/06/03 20:47:18 skrll Exp $");
125 1.1 perry
126 1.1 perry /* #define CLOCKDEBUG */
127 1.1 perry /* #define CLOCK_PARANOIA */
128 1.1 perry
129 1.1 perry #include "opt_multiprocessor.h"
130 1.1 perry #include "opt_ntp.h"
131 1.1 perry
132 1.1 perry #include <sys/param.h>
133 1.1 perry #include <sys/systm.h>
134 1.1 perry #include <sys/time.h>
135 1.1 perry #include <sys/timetc.h>
136 1.1 perry #include <sys/kernel.h>
137 1.1 perry #include <sys/device.h>
138 1.1 perry
139 1.1 perry #include <machine/cpu.h>
140 1.1 perry #include <machine/intr.h>
141 1.1 perry #include <machine/pio.h>
142 1.1 perry #include <machine/cpufunc.h>
143 1.1 perry
144 1.1 perry #include <dev/isa/isareg.h>
145 1.1 perry #include <dev/isa/isavar.h>
146 1.1 perry #include <dev/ic/mc146818reg.h>
147 1.1 perry #include <dev/ic/i8253reg.h>
148 1.1 perry #include <i386/isa/nvram.h>
149 1.1 perry #include <x86/x86/tsc.h>
150 1.1 perry #include <dev/clock_subr.h>
151 1.1 perry #include <machine/specialreg.h>
152 1.1 perry
153 1.1 perry #ifndef __x86_64__
154 1.1 perry #include "mca.h"
155 1.1 perry #endif
156 1.1 perry #if NMCA > 0
157 1.1 perry #include <machine/mca_machdep.h> /* for MCA_system */
158 1.1 perry #endif
159 1.1 perry
160 1.1 perry #include "pcppi.h"
161 1.1 perry #if (NPCPPI > 0)
162 1.1 perry #include <dev/isa/pcppivar.h>
163 1.1 perry
164 1.1 perry int sysbeepmatch(struct device *, struct cfdata *, void *);
165 1.1 perry void sysbeepattach(struct device *, struct device *, void *);
166 1.1 perry
167 1.1 perry CFATTACH_DECL(sysbeep, sizeof(struct device),
168 1.1 perry sysbeepmatch, sysbeepattach, NULL, NULL);
169 1.1 perry
170 1.1 perry static int ppi_attached;
171 1.1 perry static pcppi_tag_t ppicookie;
172 1.1 perry #endif /* PCPPI */
173 1.1 perry
174 1.1 perry #ifdef __x86_64__
175 1.1 perry #define READ_FLAGS() read_rflags()
176 1.1 perry #define WRITE_FLAGS(x) write_rflags(x)
177 1.1 perry #else /* i386 architecture processor */
178 1.1 perry #define READ_FLAGS() read_eflags()
179 1.1 perry #define WRITE_FLAGS(x) write_eflags(x)
180 1.1 perry #endif
181 1.1 perry
182 1.1 perry #ifdef CLOCKDEBUG
183 1.1 perry int clock_debug = 0;
184 1.1 perry #define DPRINTF(arg) if (clock_debug) printf arg
185 1.1 perry #else
186 1.1 perry #define DPRINTF(arg)
187 1.1 perry #endif
188 1.1 perry
189 1.2 perry int gettick(void);
190 1.1 perry void sysbeep(int, int);
191 1.1 perry static void tickle_tc(void);
192 1.1 perry
193 1.1 perry static int clockintr(void *, struct intrframe);
194 1.1 perry static void rtcinit(void);
195 1.1 perry static int rtcget(mc_todregs *);
196 1.1 perry static void rtcput(mc_todregs *);
197 1.1 perry
198 1.1 perry static int cmoscheck(void);
199 1.1 perry
200 1.1 perry static int clock_expandyear(int);
201 1.1 perry
202 1.1 perry static inline int gettick_broken_latch(void);
203 1.1 perry
204 1.1 perry static volatile uint32_t i8254_lastcount;
205 1.1 perry static volatile uint32_t i8254_offset;
206 1.1 perry static volatile int i8254_ticked;
207 1.1 perry
208 1.1 perry static struct simplelock tmr_lock = SIMPLELOCK_INITIALIZER; /* protect TC timer variables */
209 1.1 perry
210 1.1 perry inline u_int mc146818_read(void *, u_int);
211 1.1 perry inline void mc146818_write(void *, u_int, u_int);
212 1.1 perry
213 1.1 perry u_int i8254_get_timecount(struct timecounter *);
214 1.1 perry static void rtc_register(void);
215 1.1 perry
216 1.1 perry static struct timecounter i8254_timecounter = {
217 1.1 perry i8254_get_timecount, /* get_timecount */
218 1.1 perry 0, /* no poll_pps */
219 1.1 perry ~0u, /* counter_mask */
220 1.1 perry TIMER_FREQ, /* frequency */
221 1.1 perry "i8254", /* name */
222 1.1 perry 100, /* quality */
223 1.1 perry NULL, /* prev */
224 1.1 perry NULL, /* next */
225 1.1 perry };
226 1.1 perry
227 1.1 perry /* XXX use sc? */
228 1.1 perry inline u_int
229 1.7 christos mc146818_read(void *sc, u_int reg)
230 1.1 perry {
231 1.1 perry
232 1.1 perry outb(IO_RTC, reg);
233 1.1 perry return (inb(IO_RTC+1));
234 1.1 perry }
235 1.1 perry
236 1.1 perry /* XXX use sc? */
237 1.1 perry inline void
238 1.7 christos mc146818_write(void *sc, u_int reg, u_int datum)
239 1.1 perry {
240 1.1 perry
241 1.1 perry outb(IO_RTC, reg);
242 1.1 perry outb(IO_RTC+1, datum);
243 1.1 perry }
244 1.1 perry
245 1.1 perry u_long rtclock_tval; /* i8254 reload value for countdown */
246 1.1 perry int rtclock_init = 0;
247 1.1 perry
248 1.1 perry int clock_broken_latch = 0;
249 1.1 perry
250 1.1 perry #ifdef CLOCK_PARANOIA
251 1.1 perry static int ticks[6];
252 1.1 perry #endif
253 1.1 perry /*
254 1.1 perry * i8254 latch check routine:
255 1.1 perry * National Geode (formerly Cyrix MediaGX) has a serious bug in
256 1.1 perry * its built-in i8254-compatible clock module.
257 1.1 perry * machdep sets the variable 'clock_broken_latch' to indicate it.
258 1.1 perry */
259 1.1 perry
260 1.1 perry int
261 1.1 perry gettick_broken_latch(void)
262 1.1 perry {
263 1.1 perry u_long flags;
264 1.1 perry int v1, v2, v3;
265 1.1 perry int w1, w2, w3;
266 1.1 perry
267 1.1 perry /* Don't want someone screwing with the counter while we're here. */
268 1.1 perry flags = READ_FLAGS();
269 1.1 perry disable_intr();
270 1.1 perry
271 1.1 perry v1 = inb(IO_TIMER1+TIMER_CNTR0);
272 1.1 perry v1 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
273 1.1 perry v2 = inb(IO_TIMER1+TIMER_CNTR0);
274 1.1 perry v2 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
275 1.1 perry v3 = inb(IO_TIMER1+TIMER_CNTR0);
276 1.1 perry v3 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
277 1.1 perry
278 1.1 perry WRITE_FLAGS(flags);
279 1.1 perry
280 1.1 perry #ifdef CLOCK_PARANOIA
281 1.1 perry if (clock_debug) {
282 1.1 perry ticks[0] = ticks[3];
283 1.1 perry ticks[1] = ticks[4];
284 1.1 perry ticks[2] = ticks[5];
285 1.1 perry ticks[3] = v1;
286 1.1 perry ticks[4] = v2;
287 1.1 perry ticks[5] = v3;
288 1.1 perry }
289 1.1 perry #endif
290 1.1 perry
291 1.1 perry if (v1 >= v2 && v2 >= v3 && v1 - v3 < 0x200)
292 1.1 perry return (v2);
293 1.1 perry
294 1.1 perry #define _swap_val(a, b) do { \
295 1.1 perry int c = a; \
296 1.1 perry a = b; \
297 1.1 perry b = c; \
298 1.1 perry } while (0)
299 1.1 perry
300 1.1 perry /*
301 1.1 perry * sort v1 v2 v3
302 1.1 perry */
303 1.1 perry if (v1 < v2)
304 1.1 perry _swap_val(v1, v2);
305 1.1 perry if (v2 < v3)
306 1.1 perry _swap_val(v2, v3);
307 1.1 perry if (v1 < v2)
308 1.1 perry _swap_val(v1, v2);
309 1.1 perry
310 1.1 perry /*
311 1.1 perry * compute the middle value
312 1.1 perry */
313 1.1 perry
314 1.1 perry if (v1 - v3 < 0x200)
315 1.1 perry return (v2);
316 1.1 perry
317 1.1 perry w1 = v2 - v3;
318 1.1 perry w2 = v3 - v1 + rtclock_tval;
319 1.1 perry w3 = v1 - v2;
320 1.1 perry if (w1 >= w2) {
321 1.1 perry if (w1 >= w3)
322 1.1 perry return (v1);
323 1.1 perry } else {
324 1.1 perry if (w2 >= w3)
325 1.1 perry return (v2);
326 1.1 perry }
327 1.1 perry return (v3);
328 1.1 perry }
329 1.1 perry
330 1.1 perry /* minimal initialization, enough for delay() */
331 1.1 perry void
332 1.1 perry initrtclock(u_long freq)
333 1.1 perry {
334 1.1 perry u_long tval;
335 1.1 perry /*
336 1.1 perry * Compute timer_count, the count-down count the timer will be
337 1.1 perry * set to. Also, correctly round
338 1.1 perry * this by carrying an extra bit through the division.
339 1.1 perry */
340 1.1 perry tval = (freq * 2) / (u_long) hz;
341 1.1 perry tval = (tval / 2) + (tval & 0x1);
342 1.1 perry
343 1.1 perry /* initialize 8254 clock */
344 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
345 1.1 perry
346 1.1 perry /* Correct rounding will buy us a better precision in timekeeping */
347 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval % 256);
348 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval / 256);
349 1.1 perry
350 1.1 perry rtclock_tval = tval ? tval : 0xFFFF;
351 1.1 perry rtclock_init = 1;
352 1.1 perry }
353 1.1 perry
354 1.1 perry void
355 1.1 perry startrtclock(void)
356 1.1 perry {
357 1.1 perry int s;
358 1.1 perry
359 1.1 perry if (!rtclock_init)
360 1.1 perry initrtclock(TIMER_FREQ);
361 1.1 perry
362 1.1 perry /* Check diagnostic status */
363 1.1 perry if ((s = mc146818_read(NULL, NVRAM_DIAG)) != 0) { /* XXX softc */
364 1.1 perry char bits[128];
365 1.1 perry printf("RTC BIOS diagnostic error %s\n",
366 1.1 perry bitmask_snprintf(s, NVRAM_DIAG_BITS, bits, sizeof(bits)));
367 1.1 perry }
368 1.1 perry
369 1.1 perry tc_init(&i8254_timecounter);
370 1.1 perry
371 1.1 perry #if defined(I586_CPU) || defined(I686_CPU) || defined(__x86_64__)
372 1.1 perry init_TSC();
373 1.1 perry #endif
374 1.1 perry
375 1.1 perry rtc_register();
376 1.1 perry }
377 1.1 perry
378 1.1 perry
379 1.1 perry static void
380 1.1 perry tickle_tc(void)
381 1.1 perry {
382 1.1 perry #if defined(MULTIPROCESSOR)
383 1.1 perry struct cpu_info *ci = curcpu();
384 1.1 perry /*
385 1.1 perry * If we are not the primary CPU, we're not allowed to do
386 1.1 perry * any more work.
387 1.1 perry */
388 1.1 perry if (CPU_IS_PRIMARY(ci) == 0)
389 1.1 perry return;
390 1.1 perry #endif
391 1.1 perry if (rtclock_tval && timecounter->tc_get_timecount == i8254_get_timecount) {
392 1.1 perry simple_lock(&tmr_lock);
393 1.1 perry if (i8254_ticked)
394 1.1 perry i8254_ticked = 0;
395 1.1 perry else {
396 1.1 perry i8254_offset += rtclock_tval;
397 1.1 perry i8254_lastcount = 0;
398 1.1 perry }
399 1.1 perry simple_unlock(&tmr_lock);
400 1.1 perry }
401 1.1 perry
402 1.1 perry }
403 1.1 perry
404 1.1 perry static int
405 1.7 christos clockintr(void *arg, struct intrframe frame)
406 1.1 perry {
407 1.1 perry tickle_tc();
408 1.1 perry
409 1.1 perry hardclock((struct clockframe *)&frame);
410 1.1 perry
411 1.1 perry #if NMCA > 0
412 1.1 perry if (MCA_system) {
413 1.1 perry /* Reset PS/2 clock interrupt by asserting bit 7 of port 0x61 */
414 1.1 perry outb(0x61, inb(0x61) | 0x80);
415 1.1 perry }
416 1.1 perry #endif
417 1.1 perry return -1;
418 1.1 perry }
419 1.1 perry
420 1.1 perry u_int
421 1.7 christos i8254_get_timecount(struct timecounter *tc)
422 1.1 perry {
423 1.1 perry u_int count;
424 1.1 perry u_char high, low;
425 1.1 perry u_long flags;
426 1.1 perry
427 1.1 perry /* Don't want someone screwing with the counter while we're here. */
428 1.1 perry flags = READ_FLAGS();
429 1.1 perry disable_intr();
430 1.1 perry
431 1.1 perry simple_lock(&tmr_lock);
432 1.1 perry
433 1.1 perry /* Select timer0 and latch counter value. */
434 1.1 perry outb(IO_TIMER1 + TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
435 1.1 perry
436 1.1 perry low = inb(IO_TIMER1 + TIMER_CNTR0);
437 1.1 perry high = inb(IO_TIMER1 + TIMER_CNTR0);
438 1.1 perry count = rtclock_tval - ((high << 8) | low);
439 1.1 perry
440 1.7.4.1 skrll if (rtclock_tval && (count < i8254_lastcount &&
441 1.7.4.1 skrll (!i8254_ticked || rtclock_tval == 0xFFFF))) {
442 1.1 perry i8254_ticked = 1;
443 1.1 perry i8254_offset += rtclock_tval;
444 1.1 perry }
445 1.1 perry
446 1.1 perry i8254_lastcount = count;
447 1.1 perry count += i8254_offset;
448 1.1 perry
449 1.1 perry simple_unlock(&tmr_lock);
450 1.1 perry
451 1.1 perry WRITE_FLAGS(flags);
452 1.1 perry return (count);
453 1.1 perry }
454 1.1 perry
455 1.2 perry int
456 1.1 perry gettick(void)
457 1.1 perry {
458 1.1 perry u_long flags;
459 1.1 perry u_char lo, hi;
460 1.1 perry
461 1.1 perry if (clock_broken_latch)
462 1.1 perry return (gettick_broken_latch());
463 1.1 perry
464 1.1 perry /* Don't want someone screwing with the counter while we're here. */
465 1.1 perry flags = READ_FLAGS();
466 1.1 perry disable_intr();
467 1.1 perry /* Select counter 0 and latch it. */
468 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
469 1.1 perry lo = inb(IO_TIMER1+TIMER_CNTR0);
470 1.1 perry hi = inb(IO_TIMER1+TIMER_CNTR0);
471 1.1 perry WRITE_FLAGS(flags);
472 1.1 perry return ((hi << 8) | lo);
473 1.1 perry }
474 1.1 perry
475 1.1 perry /*
476 1.1 perry * Wait approximately `n' microseconds.
477 1.1 perry * Relies on timer 1 counting down from (TIMER_FREQ / hz) at TIMER_FREQ Hz.
478 1.1 perry * Note: timer had better have been programmed before this is first used!
479 1.1 perry * (Note that we use `rate generator' mode, which counts at 1:1; `square
480 1.1 perry * wave' mode counts at 2:1).
481 1.1 perry * Don't rely on this being particularly accurate.
482 1.1 perry */
483 1.1 perry void
484 1.1 perry i8254_delay(int n)
485 1.1 perry {
486 1.1 perry int delay_tick, odelay_tick;
487 1.1 perry static const int delaytab[26] = {
488 1.1 perry 0, 2, 3, 4, 5, 6, 7, 9, 10, 11,
489 1.1 perry 12, 13, 15, 16, 17, 18, 19, 21, 22, 23,
490 1.1 perry 24, 25, 27, 28, 29, 30,
491 1.1 perry };
492 1.1 perry
493 1.1 perry /* allow DELAY() to be used before startrtclock() */
494 1.1 perry if (!rtclock_init)
495 1.1 perry initrtclock(TIMER_FREQ);
496 1.1 perry
497 1.1 perry /*
498 1.1 perry * Read the counter first, so that the rest of the setup overhead is
499 1.1 perry * counted.
500 1.1 perry */
501 1.1 perry odelay_tick = gettick();
502 1.1 perry
503 1.1 perry if (n <= 25)
504 1.1 perry n = delaytab[n];
505 1.1 perry else {
506 1.1 perry #ifdef __GNUC__
507 1.1 perry /*
508 1.1 perry * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler
509 1.1 perry * code so we can take advantage of the intermediate 64-bit
510 1.1 perry * quantity to prevent loss of significance.
511 1.1 perry */
512 1.1 perry int m;
513 1.1 perry __asm volatile("mul %3"
514 1.1 perry : "=a" (n), "=d" (m)
515 1.1 perry : "0" (n), "r" (TIMER_FREQ));
516 1.1 perry __asm volatile("div %4"
517 1.1 perry : "=a" (n), "=d" (m)
518 1.1 perry : "0" (n), "1" (m), "r" (1000000));
519 1.1 perry #else
520 1.1 perry /*
521 1.1 perry * Calculate ((n * TIMER_FREQ) / 1e6) without using floating
522 1.1 perry * point and without any avoidable overflows.
523 1.1 perry */
524 1.1 perry int sec = n / 1000000,
525 1.1 perry usec = n % 1000000;
526 1.1 perry n = sec * TIMER_FREQ +
527 1.1 perry usec * (TIMER_FREQ / 1000000) +
528 1.1 perry usec * ((TIMER_FREQ % 1000000) / 1000) / 1000 +
529 1.1 perry usec * (TIMER_FREQ % 1000) / 1000000;
530 1.1 perry #endif
531 1.1 perry }
532 1.1 perry
533 1.1 perry while (n > 0) {
534 1.1 perry #ifdef CLOCK_PARANOIA
535 1.1 perry int delta;
536 1.1 perry delay_tick = gettick();
537 1.1 perry if (delay_tick > odelay_tick)
538 1.1 perry delta = rtclock_tval - (delay_tick - odelay_tick);
539 1.1 perry else
540 1.1 perry delta = odelay_tick - delay_tick;
541 1.1 perry if (delta < 0 || delta >= rtclock_tval / 2) {
542 1.1 perry DPRINTF(("delay: ignore ticks %.4x-%.4x",
543 1.1 perry odelay_tick, delay_tick));
544 1.1 perry if (clock_broken_latch) {
545 1.1 perry DPRINTF((" (%.4x %.4x %.4x %.4x %.4x %.4x)\n",
546 1.1 perry ticks[0], ticks[1], ticks[2],
547 1.1 perry ticks[3], ticks[4], ticks[5]));
548 1.1 perry } else {
549 1.1 perry DPRINTF(("\n"));
550 1.1 perry }
551 1.1 perry } else
552 1.1 perry n -= delta;
553 1.1 perry #else
554 1.1 perry delay_tick = gettick();
555 1.1 perry if (delay_tick > odelay_tick)
556 1.1 perry n -= rtclock_tval - (delay_tick - odelay_tick);
557 1.1 perry else
558 1.1 perry n -= odelay_tick - delay_tick;
559 1.1 perry #endif
560 1.1 perry odelay_tick = delay_tick;
561 1.1 perry }
562 1.1 perry }
563 1.1 perry
564 1.1 perry #if (NPCPPI > 0)
565 1.1 perry int
566 1.7 christos sysbeepmatch(struct device *parent, struct cfdata *match,
567 1.7 christos void *aux)
568 1.1 perry {
569 1.1 perry return (!ppi_attached);
570 1.1 perry }
571 1.1 perry
572 1.1 perry void
573 1.7 christos sysbeepattach(struct device *parent, struct device *self,
574 1.5 christos void *aux)
575 1.1 perry {
576 1.1 perry aprint_naive("\n");
577 1.1 perry aprint_normal("\n");
578 1.1 perry
579 1.1 perry ppicookie = ((struct pcppi_attach_args *)aux)->pa_cookie;
580 1.1 perry ppi_attached = 1;
581 1.1 perry }
582 1.1 perry #endif
583 1.1 perry
584 1.1 perry void
585 1.7 christos sysbeep(int pitch, int period)
586 1.1 perry {
587 1.1 perry #if (NPCPPI > 0)
588 1.1 perry if (ppi_attached)
589 1.1 perry pcppi_bell(ppicookie, pitch, period, 0);
590 1.1 perry #endif
591 1.1 perry }
592 1.1 perry
593 1.1 perry void
594 1.1 perry i8254_initclocks(void)
595 1.1 perry {
596 1.1 perry
597 1.1 perry /*
598 1.1 perry * XXX If you're doing strange things with multiple clocks, you might
599 1.1 perry * want to keep track of clock handlers.
600 1.1 perry */
601 1.1 perry (void)isa_intr_establish(NULL, 0, IST_PULSE, IPL_CLOCK,
602 1.1 perry (int (*)(void *))clockintr, 0);
603 1.1 perry }
604 1.1 perry
605 1.1 perry static void
606 1.1 perry rtcinit(void)
607 1.1 perry {
608 1.1 perry static int first_rtcopen_ever = 1;
609 1.1 perry
610 1.1 perry if (!first_rtcopen_ever)
611 1.1 perry return;
612 1.1 perry first_rtcopen_ever = 0;
613 1.1 perry
614 1.1 perry mc146818_write(NULL, MC_REGA, /* XXX softc */
615 1.1 perry MC_BASE_32_KHz | MC_RATE_1024_Hz);
616 1.1 perry mc146818_write(NULL, MC_REGB, MC_REGB_24HR); /* XXX softc */
617 1.1 perry }
618 1.1 perry
619 1.1 perry static int
620 1.1 perry rtcget(mc_todregs *regs)
621 1.1 perry {
622 1.1 perry
623 1.1 perry rtcinit();
624 1.1 perry if ((mc146818_read(NULL, MC_REGD) & MC_REGD_VRT) == 0) /* XXX softc */
625 1.1 perry return (-1);
626 1.1 perry MC146818_GETTOD(NULL, regs); /* XXX softc */
627 1.1 perry return (0);
628 1.1 perry }
629 1.1 perry
630 1.1 perry static void
631 1.1 perry rtcput(mc_todregs *regs)
632 1.1 perry {
633 1.1 perry
634 1.1 perry rtcinit();
635 1.1 perry MC146818_PUTTOD(NULL, regs); /* XXX softc */
636 1.1 perry }
637 1.1 perry
638 1.1 perry /*
639 1.1 perry * check whether the CMOS layout is "standard"-like (ie, not PS/2-like),
640 1.1 perry * to be called at splclock()
641 1.1 perry */
642 1.1 perry static int
643 1.1 perry cmoscheck(void)
644 1.1 perry {
645 1.1 perry int i;
646 1.1 perry unsigned short cksum = 0;
647 1.1 perry
648 1.1 perry for (i = 0x10; i <= 0x2d; i++)
649 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
650 1.1 perry
651 1.1 perry return (cksum == (mc146818_read(NULL, 0x2e) << 8)
652 1.1 perry + mc146818_read(NULL, 0x2f));
653 1.1 perry }
654 1.1 perry
655 1.1 perry #if NMCA > 0
656 1.1 perry /*
657 1.1 perry * Check whether the CMOS layout is PS/2 like, to be called at splclock().
658 1.1 perry */
659 1.1 perry static int cmoscheckps2(void);
660 1.1 perry static int
661 1.1 perry cmoscheckps2(void)
662 1.1 perry {
663 1.1 perry #if 0
664 1.1 perry /* Disabled until I find out the CRC checksum algorithm IBM uses */
665 1.1 perry int i;
666 1.1 perry unsigned short cksum = 0;
667 1.1 perry
668 1.1 perry for (i = 0x10; i <= 0x31; i++)
669 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
670 1.1 perry
671 1.1 perry return (cksum == (mc146818_read(NULL, 0x32) << 8)
672 1.1 perry + mc146818_read(NULL, 0x33));
673 1.1 perry #else
674 1.1 perry /* Check 'incorrect checksum' bit of IBM PS/2 Diagnostic Status Byte */
675 1.1 perry return ((mc146818_read(NULL, NVRAM_DIAG) & (1<<6)) == 0);
676 1.1 perry #endif
677 1.1 perry }
678 1.1 perry #endif /* NMCA > 0 */
679 1.1 perry
680 1.1 perry /*
681 1.1 perry * patchable to control century byte handling:
682 1.1 perry * 1: always update
683 1.1 perry * -1: never touch
684 1.1 perry * 0: try to figure out itself
685 1.1 perry */
686 1.1 perry int rtc_update_century = 0;
687 1.1 perry
688 1.1 perry /*
689 1.1 perry * Expand a two-digit year as read from the clock chip
690 1.1 perry * into full width.
691 1.1 perry * Being here, deal with the CMOS century byte.
692 1.1 perry */
693 1.1 perry static int centb = NVRAM_CENTURY;
694 1.1 perry static int
695 1.1 perry clock_expandyear(int clockyear)
696 1.1 perry {
697 1.1 perry int s, clockcentury, cmoscentury;
698 1.1 perry
699 1.1 perry clockcentury = (clockyear < 70) ? 20 : 19;
700 1.1 perry clockyear += 100 * clockcentury;
701 1.1 perry
702 1.1 perry if (rtc_update_century < 0)
703 1.1 perry return (clockyear);
704 1.1 perry
705 1.1 perry s = splclock();
706 1.1 perry if (cmoscheck())
707 1.1 perry cmoscentury = mc146818_read(NULL, NVRAM_CENTURY);
708 1.1 perry #if NMCA > 0
709 1.1 perry else if (MCA_system && cmoscheckps2())
710 1.1 perry cmoscentury = mc146818_read(NULL, (centb = 0x37));
711 1.1 perry #endif
712 1.1 perry else
713 1.1 perry cmoscentury = 0;
714 1.1 perry splx(s);
715 1.1 perry if (!cmoscentury) {
716 1.1 perry #ifdef DIAGNOSTIC
717 1.1 perry printf("clock: unknown CMOS layout\n");
718 1.1 perry #endif
719 1.1 perry return (clockyear);
720 1.1 perry }
721 1.1 perry cmoscentury = bcdtobin(cmoscentury);
722 1.1 perry
723 1.1 perry if (cmoscentury != clockcentury) {
724 1.1 perry /* XXX note: saying "century is 20" might confuse the naive. */
725 1.1 perry printf("WARNING: NVRAM century is %d but RTC year is %d\n",
726 1.1 perry cmoscentury, clockyear);
727 1.1 perry
728 1.1 perry /* Kludge to roll over century. */
729 1.1 perry if ((rtc_update_century > 0) ||
730 1.1 perry ((cmoscentury == 19) && (clockcentury == 20) &&
731 1.1 perry (clockyear == 2000))) {
732 1.1 perry printf("WARNING: Setting NVRAM century to %d\n",
733 1.1 perry clockcentury);
734 1.1 perry s = splclock();
735 1.1 perry mc146818_write(NULL, centb, bintobcd(clockcentury));
736 1.1 perry splx(s);
737 1.1 perry }
738 1.1 perry } else if (cmoscentury == 19 && rtc_update_century == 0)
739 1.1 perry rtc_update_century = 1; /* will update later in resettodr() */
740 1.1 perry
741 1.1 perry return (clockyear);
742 1.1 perry }
743 1.1 perry
744 1.1 perry static int
745 1.7 christos rtc_get_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
746 1.1 perry {
747 1.1 perry int s;
748 1.1 perry mc_todregs rtclk;
749 1.1 perry
750 1.1 perry s = splclock();
751 1.1 perry if (rtcget(&rtclk)) {
752 1.1 perry splx(s);
753 1.1 perry return -1;
754 1.1 perry }
755 1.1 perry splx(s);
756 1.1 perry
757 1.4 gdamore dt->dt_sec = bcdtobin(rtclk[MC_SEC]);
758 1.4 gdamore dt->dt_min = bcdtobin(rtclk[MC_MIN]);
759 1.4 gdamore dt->dt_hour = bcdtobin(rtclk[MC_HOUR]);
760 1.4 gdamore dt->dt_day = bcdtobin(rtclk[MC_DOM]);
761 1.4 gdamore dt->dt_mon = bcdtobin(rtclk[MC_MONTH]);
762 1.4 gdamore dt->dt_year = clock_expandyear(bcdtobin(rtclk[MC_YEAR]));
763 1.1 perry
764 1.1 perry return 0;
765 1.1 perry }
766 1.1 perry
767 1.1 perry static int
768 1.7 christos rtc_set_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
769 1.1 perry {
770 1.1 perry mc_todregs rtclk;
771 1.1 perry int century;
772 1.1 perry int s;
773 1.1 perry
774 1.1 perry s = splclock();
775 1.1 perry if (rtcget(&rtclk))
776 1.1 perry memset(&rtclk, 0, sizeof(rtclk));
777 1.1 perry splx(s);
778 1.1 perry
779 1.4 gdamore rtclk[MC_SEC] = bintobcd(dt->dt_sec);
780 1.4 gdamore rtclk[MC_MIN] = bintobcd(dt->dt_min);
781 1.4 gdamore rtclk[MC_HOUR] = bintobcd(dt->dt_hour);
782 1.4 gdamore rtclk[MC_DOW] = dt->dt_wday + 1;
783 1.4 gdamore rtclk[MC_YEAR] = bintobcd(dt->dt_year % 100);
784 1.4 gdamore rtclk[MC_MONTH] = bintobcd(dt->dt_mon);
785 1.4 gdamore rtclk[MC_DOM] = bintobcd(dt->dt_day);
786 1.1 perry
787 1.1 perry #ifdef DEBUG_CLOCK
788 1.1 perry printf("setclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR], rtclk[MC_MONTH],
789 1.1 perry rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN], rtclk[MC_SEC]);
790 1.1 perry #endif
791 1.1 perry s = splclock();
792 1.1 perry rtcput(&rtclk);
793 1.1 perry if (rtc_update_century > 0) {
794 1.4 gdamore century = bintobcd(dt->dt_year / 100);
795 1.1 perry mc146818_write(NULL, centb, century); /* XXX softc */
796 1.1 perry }
797 1.1 perry splx(s);
798 1.1 perry return 0;
799 1.1 perry
800 1.1 perry }
801 1.1 perry
802 1.1 perry static void
803 1.1 perry rtc_register(void)
804 1.1 perry {
805 1.1 perry static struct todr_chip_handle tch;
806 1.4 gdamore tch.todr_gettime_ymdhms = rtc_get_ymdhms;
807 1.4 gdamore tch.todr_settime_ymdhms = rtc_set_ymdhms;
808 1.1 perry tch.todr_setwen = NULL;
809 1.1 perry
810 1.1 perry todr_attach(&tch);
811 1.1 perry }
812 1.1 perry
813 1.1 perry void
814 1.7 christos setstatclockrate(int arg)
815 1.1 perry {
816 1.1 perry }
817