clock.c revision 1.9 1 1.9 ad /* $NetBSD: clock.c,v 1.9 2007/07/09 20:52:37 ad Exp $ */
2 1.1 perry
3 1.1 perry /*-
4 1.1 perry * Copyright (c) 1990 The Regents of the University of California.
5 1.1 perry * All rights reserved.
6 1.1 perry *
7 1.1 perry * This code is derived from software contributed to Berkeley by
8 1.1 perry * William Jolitz and Don Ahn.
9 1.1 perry *
10 1.1 perry * Redistribution and use in source and binary forms, with or without
11 1.1 perry * modification, are permitted provided that the following conditions
12 1.1 perry * are met:
13 1.1 perry * 1. Redistributions of source code must retain the above copyright
14 1.1 perry * notice, this list of conditions and the following disclaimer.
15 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 perry * notice, this list of conditions and the following disclaimer in the
17 1.1 perry * documentation and/or other materials provided with the distribution.
18 1.1 perry * 3. Neither the name of the University nor the names of its contributors
19 1.1 perry * may be used to endorse or promote products derived from this software
20 1.1 perry * without specific prior written permission.
21 1.1 perry *
22 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 perry * SUCH DAMAGE.
33 1.1 perry *
34 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
35 1.1 perry */
36 1.1 perry /*-
37 1.1 perry * Copyright (c) 1993, 1994 Charles M. Hannum.
38 1.1 perry *
39 1.1 perry * This code is derived from software contributed to Berkeley by
40 1.1 perry * William Jolitz and Don Ahn.
41 1.1 perry *
42 1.1 perry * Redistribution and use in source and binary forms, with or without
43 1.1 perry * modification, are permitted provided that the following conditions
44 1.1 perry * are met:
45 1.1 perry * 1. Redistributions of source code must retain the above copyright
46 1.1 perry * notice, this list of conditions and the following disclaimer.
47 1.1 perry * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 perry * notice, this list of conditions and the following disclaimer in the
49 1.1 perry * documentation and/or other materials provided with the distribution.
50 1.1 perry * 3. All advertising materials mentioning features or use of this software
51 1.1 perry * must display the following acknowledgement:
52 1.1 perry * This product includes software developed by the University of
53 1.1 perry * California, Berkeley and its contributors.
54 1.1 perry * 4. Neither the name of the University nor the names of its contributors
55 1.1 perry * may be used to endorse or promote products derived from this software
56 1.1 perry * without specific prior written permission.
57 1.1 perry *
58 1.1 perry * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 1.1 perry * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.1 perry * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.1 perry * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 1.1 perry * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.1 perry * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.1 perry * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.1 perry * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.1 perry * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.1 perry * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.1 perry * SUCH DAMAGE.
69 1.1 perry *
70 1.1 perry * @(#)clock.c 7.2 (Berkeley) 5/12/91
71 1.1 perry */
72 1.1 perry /*
73 1.1 perry * Mach Operating System
74 1.1 perry * Copyright (c) 1991,1990,1989 Carnegie Mellon University
75 1.1 perry * All Rights Reserved.
76 1.1 perry *
77 1.1 perry * Permission to use, copy, modify and distribute this software and its
78 1.1 perry * documentation is hereby granted, provided that both the copyright
79 1.1 perry * notice and this permission notice appear in all copies of the
80 1.1 perry * software, derivative works or modified versions, and any portions
81 1.1 perry * thereof, and that both notices appear in supporting documentation.
82 1.1 perry *
83 1.1 perry * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
84 1.1 perry * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
85 1.1 perry * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
86 1.1 perry *
87 1.1 perry * Carnegie Mellon requests users of this software to return to
88 1.1 perry *
89 1.1 perry * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
90 1.1 perry * School of Computer Science
91 1.1 perry * Carnegie Mellon University
92 1.1 perry * Pittsburgh PA 15213-3890
93 1.1 perry *
94 1.1 perry * any improvements or extensions that they make and grant Carnegie Mellon
95 1.1 perry * the rights to redistribute these changes.
96 1.1 perry */
97 1.1 perry /*
98 1.1 perry Copyright 1988, 1989 by Intel Corporation, Santa Clara, California.
99 1.1 perry
100 1.1 perry All Rights Reserved
101 1.1 perry
102 1.1 perry Permission to use, copy, modify, and distribute this software and
103 1.1 perry its documentation for any purpose and without fee is hereby
104 1.1 perry granted, provided that the above copyright notice appears in all
105 1.1 perry copies and that both the copyright notice and this permission notice
106 1.1 perry appear in supporting documentation, and that the name of Intel
107 1.1 perry not be used in advertising or publicity pertaining to distribution
108 1.1 perry of the software without specific, written prior permission.
109 1.1 perry
110 1.1 perry INTEL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
111 1.1 perry INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
112 1.1 perry IN NO EVENT SHALL INTEL BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
113 1.1 perry CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
114 1.1 perry LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
115 1.1 perry NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
116 1.1 perry WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
117 1.1 perry */
118 1.1 perry
119 1.1 perry /*
120 1.1 perry * Primitive clock interrupt routines.
121 1.1 perry */
122 1.1 perry
123 1.1 perry #include <sys/cdefs.h>
124 1.9 ad __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.9 2007/07/09 20:52:37 ad Exp $");
125 1.1 perry
126 1.1 perry /* #define CLOCKDEBUG */
127 1.1 perry /* #define CLOCK_PARANOIA */
128 1.1 perry
129 1.1 perry #include "opt_multiprocessor.h"
130 1.1 perry #include "opt_ntp.h"
131 1.1 perry
132 1.1 perry #include <sys/param.h>
133 1.1 perry #include <sys/systm.h>
134 1.1 perry #include <sys/time.h>
135 1.1 perry #include <sys/timetc.h>
136 1.1 perry #include <sys/kernel.h>
137 1.1 perry #include <sys/device.h>
138 1.9 ad #include <sys/mutex.h>
139 1.1 perry
140 1.1 perry #include <machine/cpu.h>
141 1.1 perry #include <machine/intr.h>
142 1.1 perry #include <machine/pio.h>
143 1.1 perry #include <machine/cpufunc.h>
144 1.1 perry
145 1.1 perry #include <dev/isa/isareg.h>
146 1.1 perry #include <dev/isa/isavar.h>
147 1.1 perry #include <dev/ic/mc146818reg.h>
148 1.1 perry #include <dev/ic/i8253reg.h>
149 1.1 perry #include <i386/isa/nvram.h>
150 1.1 perry #include <x86/x86/tsc.h>
151 1.1 perry #include <dev/clock_subr.h>
152 1.1 perry #include <machine/specialreg.h>
153 1.1 perry
154 1.1 perry #include "config_time.h" /* for CONFIG_TIME */
155 1.1 perry
156 1.1 perry #ifndef __x86_64__
157 1.1 perry #include "mca.h"
158 1.1 perry #endif
159 1.1 perry #if NMCA > 0
160 1.1 perry #include <machine/mca_machdep.h> /* for MCA_system */
161 1.1 perry #endif
162 1.1 perry
163 1.1 perry #include "pcppi.h"
164 1.1 perry #if (NPCPPI > 0)
165 1.1 perry #include <dev/isa/pcppivar.h>
166 1.1 perry
167 1.1 perry int sysbeepmatch(struct device *, struct cfdata *, void *);
168 1.1 perry void sysbeepattach(struct device *, struct device *, void *);
169 1.1 perry
170 1.1 perry CFATTACH_DECL(sysbeep, sizeof(struct device),
171 1.1 perry sysbeepmatch, sysbeepattach, NULL, NULL);
172 1.1 perry
173 1.1 perry static int ppi_attached;
174 1.1 perry static pcppi_tag_t ppicookie;
175 1.1 perry #endif /* PCPPI */
176 1.1 perry
177 1.1 perry #ifdef __x86_64__
178 1.1 perry #define READ_FLAGS() read_rflags()
179 1.1 perry #define WRITE_FLAGS(x) write_rflags(x)
180 1.1 perry #else /* i386 architecture processor */
181 1.1 perry #define READ_FLAGS() read_eflags()
182 1.1 perry #define WRITE_FLAGS(x) write_eflags(x)
183 1.1 perry #endif
184 1.1 perry
185 1.1 perry #ifdef CLOCKDEBUG
186 1.1 perry int clock_debug = 0;
187 1.1 perry #define DPRINTF(arg) if (clock_debug) printf arg
188 1.1 perry #else
189 1.1 perry #define DPRINTF(arg)
190 1.1 perry #endif
191 1.1 perry
192 1.2 perry int gettick(void);
193 1.1 perry void sysbeep(int, int);
194 1.1 perry static void tickle_tc(void);
195 1.1 perry
196 1.8 yamt static int clockintr(void *, struct intrframe *);
197 1.1 perry static void rtcinit(void);
198 1.1 perry static int rtcget(mc_todregs *);
199 1.1 perry static void rtcput(mc_todregs *);
200 1.1 perry
201 1.1 perry static int cmoscheck(void);
202 1.1 perry
203 1.1 perry static int clock_expandyear(int);
204 1.1 perry
205 1.1 perry static inline int gettick_broken_latch(void);
206 1.1 perry
207 1.1 perry static volatile uint32_t i8254_lastcount;
208 1.1 perry static volatile uint32_t i8254_offset;
209 1.1 perry static volatile int i8254_ticked;
210 1.1 perry
211 1.9 ad /* to protect TC timer variables */
212 1.9 ad static __cpu_simple_lock_t tmr_lock = __SIMPLELOCK_UNLOCKED;
213 1.1 perry
214 1.1 perry inline u_int mc146818_read(void *, u_int);
215 1.1 perry inline void mc146818_write(void *, u_int, u_int);
216 1.1 perry
217 1.1 perry u_int i8254_get_timecount(struct timecounter *);
218 1.1 perry static void rtc_register(void);
219 1.1 perry
220 1.1 perry static struct timecounter i8254_timecounter = {
221 1.1 perry i8254_get_timecount, /* get_timecount */
222 1.1 perry 0, /* no poll_pps */
223 1.1 perry ~0u, /* counter_mask */
224 1.1 perry TIMER_FREQ, /* frequency */
225 1.1 perry "i8254", /* name */
226 1.1 perry 100, /* quality */
227 1.1 perry NULL, /* prev */
228 1.1 perry NULL, /* next */
229 1.1 perry };
230 1.1 perry
231 1.1 perry /* XXX use sc? */
232 1.1 perry inline u_int
233 1.7 christos mc146818_read(void *sc, u_int reg)
234 1.1 perry {
235 1.1 perry
236 1.1 perry outb(IO_RTC, reg);
237 1.1 perry return (inb(IO_RTC+1));
238 1.1 perry }
239 1.1 perry
240 1.1 perry /* XXX use sc? */
241 1.1 perry inline void
242 1.7 christos mc146818_write(void *sc, u_int reg, u_int datum)
243 1.1 perry {
244 1.1 perry
245 1.1 perry outb(IO_RTC, reg);
246 1.1 perry outb(IO_RTC+1, datum);
247 1.1 perry }
248 1.1 perry
249 1.1 perry u_long rtclock_tval; /* i8254 reload value for countdown */
250 1.1 perry int rtclock_init = 0;
251 1.1 perry
252 1.1 perry int clock_broken_latch = 0;
253 1.1 perry
254 1.1 perry #ifdef CLOCK_PARANOIA
255 1.1 perry static int ticks[6];
256 1.1 perry #endif
257 1.1 perry /*
258 1.1 perry * i8254 latch check routine:
259 1.1 perry * National Geode (formerly Cyrix MediaGX) has a serious bug in
260 1.1 perry * its built-in i8254-compatible clock module.
261 1.1 perry * machdep sets the variable 'clock_broken_latch' to indicate it.
262 1.1 perry */
263 1.1 perry
264 1.1 perry int
265 1.1 perry gettick_broken_latch(void)
266 1.1 perry {
267 1.1 perry u_long flags;
268 1.1 perry int v1, v2, v3;
269 1.1 perry int w1, w2, w3;
270 1.1 perry
271 1.1 perry /* Don't want someone screwing with the counter while we're here. */
272 1.1 perry flags = READ_FLAGS();
273 1.1 perry disable_intr();
274 1.1 perry
275 1.1 perry v1 = inb(IO_TIMER1+TIMER_CNTR0);
276 1.1 perry v1 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
277 1.1 perry v2 = inb(IO_TIMER1+TIMER_CNTR0);
278 1.1 perry v2 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
279 1.1 perry v3 = inb(IO_TIMER1+TIMER_CNTR0);
280 1.1 perry v3 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
281 1.1 perry
282 1.1 perry WRITE_FLAGS(flags);
283 1.1 perry
284 1.1 perry #ifdef CLOCK_PARANOIA
285 1.1 perry if (clock_debug) {
286 1.1 perry ticks[0] = ticks[3];
287 1.1 perry ticks[1] = ticks[4];
288 1.1 perry ticks[2] = ticks[5];
289 1.1 perry ticks[3] = v1;
290 1.1 perry ticks[4] = v2;
291 1.1 perry ticks[5] = v3;
292 1.1 perry }
293 1.1 perry #endif
294 1.1 perry
295 1.1 perry if (v1 >= v2 && v2 >= v3 && v1 - v3 < 0x200)
296 1.1 perry return (v2);
297 1.1 perry
298 1.1 perry #define _swap_val(a, b) do { \
299 1.1 perry int c = a; \
300 1.1 perry a = b; \
301 1.1 perry b = c; \
302 1.1 perry } while (0)
303 1.1 perry
304 1.1 perry /*
305 1.1 perry * sort v1 v2 v3
306 1.1 perry */
307 1.1 perry if (v1 < v2)
308 1.1 perry _swap_val(v1, v2);
309 1.1 perry if (v2 < v3)
310 1.1 perry _swap_val(v2, v3);
311 1.1 perry if (v1 < v2)
312 1.1 perry _swap_val(v1, v2);
313 1.1 perry
314 1.1 perry /*
315 1.1 perry * compute the middle value
316 1.1 perry */
317 1.1 perry
318 1.1 perry if (v1 - v3 < 0x200)
319 1.1 perry return (v2);
320 1.1 perry
321 1.1 perry w1 = v2 - v3;
322 1.1 perry w2 = v3 - v1 + rtclock_tval;
323 1.1 perry w3 = v1 - v2;
324 1.1 perry if (w1 >= w2) {
325 1.1 perry if (w1 >= w3)
326 1.1 perry return (v1);
327 1.1 perry } else {
328 1.1 perry if (w2 >= w3)
329 1.1 perry return (v2);
330 1.1 perry }
331 1.1 perry return (v3);
332 1.1 perry }
333 1.1 perry
334 1.1 perry /* minimal initialization, enough for delay() */
335 1.1 perry void
336 1.1 perry initrtclock(u_long freq)
337 1.1 perry {
338 1.1 perry u_long tval;
339 1.9 ad
340 1.1 perry /*
341 1.1 perry * Compute timer_count, the count-down count the timer will be
342 1.1 perry * set to. Also, correctly round
343 1.1 perry * this by carrying an extra bit through the division.
344 1.1 perry */
345 1.1 perry tval = (freq * 2) / (u_long) hz;
346 1.1 perry tval = (tval / 2) + (tval & 0x1);
347 1.1 perry
348 1.1 perry /* initialize 8254 clock */
349 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
350 1.1 perry
351 1.1 perry /* Correct rounding will buy us a better precision in timekeeping */
352 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval % 256);
353 1.1 perry outb(IO_TIMER1+TIMER_CNTR0, tval / 256);
354 1.1 perry
355 1.1 perry rtclock_tval = tval ? tval : 0xFFFF;
356 1.1 perry rtclock_init = 1;
357 1.1 perry }
358 1.1 perry
359 1.1 perry void
360 1.1 perry startrtclock(void)
361 1.1 perry {
362 1.1 perry int s;
363 1.1 perry
364 1.1 perry if (!rtclock_init)
365 1.1 perry initrtclock(TIMER_FREQ);
366 1.1 perry
367 1.1 perry /* Check diagnostic status */
368 1.1 perry if ((s = mc146818_read(NULL, NVRAM_DIAG)) != 0) { /* XXX softc */
369 1.1 perry char bits[128];
370 1.1 perry printf("RTC BIOS diagnostic error %s\n",
371 1.1 perry bitmask_snprintf(s, NVRAM_DIAG_BITS, bits, sizeof(bits)));
372 1.1 perry }
373 1.1 perry
374 1.1 perry tc_init(&i8254_timecounter);
375 1.1 perry
376 1.1 perry #if defined(I586_CPU) || defined(I686_CPU) || defined(__x86_64__)
377 1.1 perry init_TSC();
378 1.1 perry #endif
379 1.1 perry
380 1.1 perry rtc_register();
381 1.1 perry }
382 1.1 perry
383 1.9 ad /*
384 1.9 ad * Must be called at splclock().
385 1.9 ad */
386 1.1 perry static void
387 1.1 perry tickle_tc(void)
388 1.1 perry {
389 1.1 perry #if defined(MULTIPROCESSOR)
390 1.1 perry struct cpu_info *ci = curcpu();
391 1.1 perry /*
392 1.1 perry * If we are not the primary CPU, we're not allowed to do
393 1.1 perry * any more work.
394 1.1 perry */
395 1.1 perry if (CPU_IS_PRIMARY(ci) == 0)
396 1.1 perry return;
397 1.1 perry #endif
398 1.1 perry if (rtclock_tval && timecounter->tc_get_timecount == i8254_get_timecount) {
399 1.9 ad __cpu_simple_lock(&tmr_lock);
400 1.1 perry if (i8254_ticked)
401 1.1 perry i8254_ticked = 0;
402 1.1 perry else {
403 1.1 perry i8254_offset += rtclock_tval;
404 1.1 perry i8254_lastcount = 0;
405 1.1 perry }
406 1.9 ad __cpu_simple_unlock(&tmr_lock);
407 1.1 perry }
408 1.1 perry
409 1.1 perry }
410 1.1 perry
411 1.1 perry static int
412 1.8 yamt clockintr(void *arg, struct intrframe *frame)
413 1.1 perry {
414 1.1 perry tickle_tc();
415 1.1 perry
416 1.8 yamt hardclock((struct clockframe *)frame);
417 1.1 perry
418 1.1 perry #if NMCA > 0
419 1.1 perry if (MCA_system) {
420 1.1 perry /* Reset PS/2 clock interrupt by asserting bit 7 of port 0x61 */
421 1.1 perry outb(0x61, inb(0x61) | 0x80);
422 1.1 perry }
423 1.1 perry #endif
424 1.1 perry return -1;
425 1.1 perry }
426 1.1 perry
427 1.1 perry u_int
428 1.7 christos i8254_get_timecount(struct timecounter *tc)
429 1.1 perry {
430 1.1 perry u_int count;
431 1.1 perry u_char high, low;
432 1.1 perry u_long flags;
433 1.1 perry
434 1.1 perry /* Don't want someone screwing with the counter while we're here. */
435 1.1 perry flags = READ_FLAGS();
436 1.1 perry disable_intr();
437 1.9 ad __cpu_simple_lock(&tmr_lock);
438 1.1 perry
439 1.1 perry /* Select timer0 and latch counter value. */
440 1.1 perry outb(IO_TIMER1 + TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
441 1.1 perry
442 1.1 perry low = inb(IO_TIMER1 + TIMER_CNTR0);
443 1.1 perry high = inb(IO_TIMER1 + TIMER_CNTR0);
444 1.1 perry count = rtclock_tval - ((high << 8) | low);
445 1.1 perry
446 1.1 perry if (rtclock_tval && (count < i8254_lastcount || !i8254_ticked)) {
447 1.1 perry i8254_ticked = 1;
448 1.1 perry i8254_offset += rtclock_tval;
449 1.1 perry }
450 1.1 perry
451 1.1 perry i8254_lastcount = count;
452 1.1 perry count += i8254_offset;
453 1.1 perry
454 1.9 ad __cpu_simple_unlock(&tmr_lock);
455 1.9 ad WRITE_FLAGS(flags);
456 1.1 perry
457 1.1 perry return (count);
458 1.1 perry }
459 1.1 perry
460 1.2 perry int
461 1.1 perry gettick(void)
462 1.1 perry {
463 1.1 perry u_long flags;
464 1.1 perry u_char lo, hi;
465 1.1 perry
466 1.1 perry if (clock_broken_latch)
467 1.1 perry return (gettick_broken_latch());
468 1.1 perry
469 1.1 perry /* Don't want someone screwing with the counter while we're here. */
470 1.1 perry flags = READ_FLAGS();
471 1.1 perry disable_intr();
472 1.1 perry /* Select counter 0 and latch it. */
473 1.1 perry outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
474 1.1 perry lo = inb(IO_TIMER1+TIMER_CNTR0);
475 1.1 perry hi = inb(IO_TIMER1+TIMER_CNTR0);
476 1.1 perry WRITE_FLAGS(flags);
477 1.1 perry return ((hi << 8) | lo);
478 1.1 perry }
479 1.1 perry
480 1.1 perry /*
481 1.1 perry * Wait approximately `n' microseconds.
482 1.1 perry * Relies on timer 1 counting down from (TIMER_FREQ / hz) at TIMER_FREQ Hz.
483 1.1 perry * Note: timer had better have been programmed before this is first used!
484 1.1 perry * (Note that we use `rate generator' mode, which counts at 1:1; `square
485 1.1 perry * wave' mode counts at 2:1).
486 1.1 perry * Don't rely on this being particularly accurate.
487 1.1 perry */
488 1.1 perry void
489 1.1 perry i8254_delay(int n)
490 1.1 perry {
491 1.1 perry int delay_tick, odelay_tick;
492 1.1 perry static const int delaytab[26] = {
493 1.1 perry 0, 2, 3, 4, 5, 6, 7, 9, 10, 11,
494 1.1 perry 12, 13, 15, 16, 17, 18, 19, 21, 22, 23,
495 1.1 perry 24, 25, 27, 28, 29, 30,
496 1.1 perry };
497 1.1 perry
498 1.1 perry /* allow DELAY() to be used before startrtclock() */
499 1.1 perry if (!rtclock_init)
500 1.1 perry initrtclock(TIMER_FREQ);
501 1.1 perry
502 1.1 perry /*
503 1.1 perry * Read the counter first, so that the rest of the setup overhead is
504 1.1 perry * counted.
505 1.1 perry */
506 1.1 perry odelay_tick = gettick();
507 1.1 perry
508 1.1 perry if (n <= 25)
509 1.1 perry n = delaytab[n];
510 1.1 perry else {
511 1.1 perry #ifdef __GNUC__
512 1.1 perry /*
513 1.1 perry * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler
514 1.1 perry * code so we can take advantage of the intermediate 64-bit
515 1.1 perry * quantity to prevent loss of significance.
516 1.1 perry */
517 1.1 perry int m;
518 1.1 perry __asm volatile("mul %3"
519 1.1 perry : "=a" (n), "=d" (m)
520 1.1 perry : "0" (n), "r" (TIMER_FREQ));
521 1.1 perry __asm volatile("div %4"
522 1.1 perry : "=a" (n), "=d" (m)
523 1.1 perry : "0" (n), "1" (m), "r" (1000000));
524 1.1 perry #else
525 1.1 perry /*
526 1.1 perry * Calculate ((n * TIMER_FREQ) / 1e6) without using floating
527 1.1 perry * point and without any avoidable overflows.
528 1.1 perry */
529 1.1 perry int sec = n / 1000000,
530 1.1 perry usec = n % 1000000;
531 1.1 perry n = sec * TIMER_FREQ +
532 1.1 perry usec * (TIMER_FREQ / 1000000) +
533 1.1 perry usec * ((TIMER_FREQ % 1000000) / 1000) / 1000 +
534 1.1 perry usec * (TIMER_FREQ % 1000) / 1000000;
535 1.1 perry #endif
536 1.1 perry }
537 1.1 perry
538 1.1 perry while (n > 0) {
539 1.1 perry #ifdef CLOCK_PARANOIA
540 1.1 perry int delta;
541 1.1 perry delay_tick = gettick();
542 1.1 perry if (delay_tick > odelay_tick)
543 1.1 perry delta = rtclock_tval - (delay_tick - odelay_tick);
544 1.1 perry else
545 1.1 perry delta = odelay_tick - delay_tick;
546 1.1 perry if (delta < 0 || delta >= rtclock_tval / 2) {
547 1.1 perry DPRINTF(("delay: ignore ticks %.4x-%.4x",
548 1.1 perry odelay_tick, delay_tick));
549 1.1 perry if (clock_broken_latch) {
550 1.1 perry DPRINTF((" (%.4x %.4x %.4x %.4x %.4x %.4x)\n",
551 1.1 perry ticks[0], ticks[1], ticks[2],
552 1.1 perry ticks[3], ticks[4], ticks[5]));
553 1.1 perry } else {
554 1.1 perry DPRINTF(("\n"));
555 1.1 perry }
556 1.1 perry } else
557 1.1 perry n -= delta;
558 1.1 perry #else
559 1.1 perry delay_tick = gettick();
560 1.1 perry if (delay_tick > odelay_tick)
561 1.1 perry n -= rtclock_tval - (delay_tick - odelay_tick);
562 1.1 perry else
563 1.1 perry n -= odelay_tick - delay_tick;
564 1.1 perry #endif
565 1.1 perry odelay_tick = delay_tick;
566 1.1 perry }
567 1.1 perry }
568 1.1 perry
569 1.1 perry #if (NPCPPI > 0)
570 1.1 perry int
571 1.7 christos sysbeepmatch(struct device *parent, struct cfdata *match,
572 1.7 christos void *aux)
573 1.1 perry {
574 1.1 perry return (!ppi_attached);
575 1.1 perry }
576 1.1 perry
577 1.1 perry void
578 1.7 christos sysbeepattach(struct device *parent, struct device *self,
579 1.5 christos void *aux)
580 1.1 perry {
581 1.1 perry aprint_naive("\n");
582 1.1 perry aprint_normal("\n");
583 1.1 perry
584 1.1 perry ppicookie = ((struct pcppi_attach_args *)aux)->pa_cookie;
585 1.1 perry ppi_attached = 1;
586 1.1 perry }
587 1.1 perry #endif
588 1.1 perry
589 1.1 perry void
590 1.7 christos sysbeep(int pitch, int period)
591 1.1 perry {
592 1.1 perry #if (NPCPPI > 0)
593 1.1 perry if (ppi_attached)
594 1.1 perry pcppi_bell(ppicookie, pitch, period, 0);
595 1.1 perry #endif
596 1.1 perry }
597 1.1 perry
598 1.1 perry void
599 1.1 perry i8254_initclocks(void)
600 1.1 perry {
601 1.1 perry
602 1.1 perry /*
603 1.1 perry * XXX If you're doing strange things with multiple clocks, you might
604 1.1 perry * want to keep track of clock handlers.
605 1.1 perry */
606 1.1 perry (void)isa_intr_establish(NULL, 0, IST_PULSE, IPL_CLOCK,
607 1.1 perry (int (*)(void *))clockintr, 0);
608 1.1 perry }
609 1.1 perry
610 1.1 perry static void
611 1.1 perry rtcinit(void)
612 1.1 perry {
613 1.1 perry static int first_rtcopen_ever = 1;
614 1.1 perry
615 1.1 perry if (!first_rtcopen_ever)
616 1.1 perry return;
617 1.1 perry first_rtcopen_ever = 0;
618 1.1 perry
619 1.1 perry mc146818_write(NULL, MC_REGA, /* XXX softc */
620 1.1 perry MC_BASE_32_KHz | MC_RATE_1024_Hz);
621 1.1 perry mc146818_write(NULL, MC_REGB, MC_REGB_24HR); /* XXX softc */
622 1.1 perry }
623 1.1 perry
624 1.1 perry static int
625 1.1 perry rtcget(mc_todregs *regs)
626 1.1 perry {
627 1.1 perry
628 1.1 perry rtcinit();
629 1.1 perry if ((mc146818_read(NULL, MC_REGD) & MC_REGD_VRT) == 0) /* XXX softc */
630 1.1 perry return (-1);
631 1.1 perry MC146818_GETTOD(NULL, regs); /* XXX softc */
632 1.1 perry return (0);
633 1.1 perry }
634 1.1 perry
635 1.1 perry static void
636 1.1 perry rtcput(mc_todregs *regs)
637 1.1 perry {
638 1.1 perry
639 1.1 perry rtcinit();
640 1.1 perry MC146818_PUTTOD(NULL, regs); /* XXX softc */
641 1.1 perry }
642 1.1 perry
643 1.1 perry /*
644 1.1 perry * check whether the CMOS layout is "standard"-like (ie, not PS/2-like),
645 1.1 perry * to be called at splclock()
646 1.1 perry */
647 1.1 perry static int
648 1.1 perry cmoscheck(void)
649 1.1 perry {
650 1.1 perry int i;
651 1.1 perry unsigned short cksum = 0;
652 1.1 perry
653 1.1 perry for (i = 0x10; i <= 0x2d; i++)
654 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
655 1.1 perry
656 1.1 perry return (cksum == (mc146818_read(NULL, 0x2e) << 8)
657 1.1 perry + mc146818_read(NULL, 0x2f));
658 1.1 perry }
659 1.1 perry
660 1.1 perry #if NMCA > 0
661 1.1 perry /*
662 1.1 perry * Check whether the CMOS layout is PS/2 like, to be called at splclock().
663 1.1 perry */
664 1.1 perry static int cmoscheckps2(void);
665 1.1 perry static int
666 1.1 perry cmoscheckps2(void)
667 1.1 perry {
668 1.1 perry #if 0
669 1.1 perry /* Disabled until I find out the CRC checksum algorithm IBM uses */
670 1.1 perry int i;
671 1.1 perry unsigned short cksum = 0;
672 1.1 perry
673 1.1 perry for (i = 0x10; i <= 0x31; i++)
674 1.1 perry cksum += mc146818_read(NULL, i); /* XXX softc */
675 1.1 perry
676 1.1 perry return (cksum == (mc146818_read(NULL, 0x32) << 8)
677 1.1 perry + mc146818_read(NULL, 0x33));
678 1.1 perry #else
679 1.1 perry /* Check 'incorrect checksum' bit of IBM PS/2 Diagnostic Status Byte */
680 1.1 perry return ((mc146818_read(NULL, NVRAM_DIAG) & (1<<6)) == 0);
681 1.1 perry #endif
682 1.1 perry }
683 1.1 perry #endif /* NMCA > 0 */
684 1.1 perry
685 1.1 perry /*
686 1.1 perry * patchable to control century byte handling:
687 1.1 perry * 1: always update
688 1.1 perry * -1: never touch
689 1.1 perry * 0: try to figure out itself
690 1.1 perry */
691 1.1 perry int rtc_update_century = 0;
692 1.1 perry
693 1.1 perry /*
694 1.1 perry * Expand a two-digit year as read from the clock chip
695 1.1 perry * into full width.
696 1.1 perry * Being here, deal with the CMOS century byte.
697 1.1 perry */
698 1.1 perry static int centb = NVRAM_CENTURY;
699 1.1 perry static int
700 1.1 perry clock_expandyear(int clockyear)
701 1.1 perry {
702 1.1 perry int s, clockcentury, cmoscentury;
703 1.1 perry
704 1.1 perry clockcentury = (clockyear < 70) ? 20 : 19;
705 1.1 perry clockyear += 100 * clockcentury;
706 1.1 perry
707 1.1 perry if (rtc_update_century < 0)
708 1.1 perry return (clockyear);
709 1.1 perry
710 1.1 perry s = splclock();
711 1.1 perry if (cmoscheck())
712 1.1 perry cmoscentury = mc146818_read(NULL, NVRAM_CENTURY);
713 1.1 perry #if NMCA > 0
714 1.1 perry else if (MCA_system && cmoscheckps2())
715 1.1 perry cmoscentury = mc146818_read(NULL, (centb = 0x37));
716 1.1 perry #endif
717 1.1 perry else
718 1.1 perry cmoscentury = 0;
719 1.1 perry splx(s);
720 1.1 perry if (!cmoscentury) {
721 1.1 perry #ifdef DIAGNOSTIC
722 1.1 perry printf("clock: unknown CMOS layout\n");
723 1.1 perry #endif
724 1.1 perry return (clockyear);
725 1.1 perry }
726 1.1 perry cmoscentury = bcdtobin(cmoscentury);
727 1.1 perry
728 1.1 perry if (cmoscentury != clockcentury) {
729 1.1 perry /* XXX note: saying "century is 20" might confuse the naive. */
730 1.1 perry printf("WARNING: NVRAM century is %d but RTC year is %d\n",
731 1.1 perry cmoscentury, clockyear);
732 1.1 perry
733 1.1 perry /* Kludge to roll over century. */
734 1.1 perry if ((rtc_update_century > 0) ||
735 1.1 perry ((cmoscentury == 19) && (clockcentury == 20) &&
736 1.1 perry (clockyear == 2000))) {
737 1.1 perry printf("WARNING: Setting NVRAM century to %d\n",
738 1.1 perry clockcentury);
739 1.1 perry s = splclock();
740 1.1 perry mc146818_write(NULL, centb, bintobcd(clockcentury));
741 1.1 perry splx(s);
742 1.1 perry }
743 1.1 perry } else if (cmoscentury == 19 && rtc_update_century == 0)
744 1.1 perry rtc_update_century = 1; /* will update later in resettodr() */
745 1.1 perry
746 1.1 perry return (clockyear);
747 1.1 perry }
748 1.1 perry
749 1.1 perry static int
750 1.7 christos rtc_get_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
751 1.1 perry {
752 1.1 perry int s;
753 1.1 perry mc_todregs rtclk;
754 1.1 perry
755 1.1 perry s = splclock();
756 1.1 perry if (rtcget(&rtclk)) {
757 1.1 perry splx(s);
758 1.1 perry return -1;
759 1.1 perry }
760 1.1 perry splx(s);
761 1.1 perry
762 1.4 gdamore dt->dt_sec = bcdtobin(rtclk[MC_SEC]);
763 1.4 gdamore dt->dt_min = bcdtobin(rtclk[MC_MIN]);
764 1.4 gdamore dt->dt_hour = bcdtobin(rtclk[MC_HOUR]);
765 1.4 gdamore dt->dt_day = bcdtobin(rtclk[MC_DOM]);
766 1.4 gdamore dt->dt_mon = bcdtobin(rtclk[MC_MONTH]);
767 1.4 gdamore dt->dt_year = clock_expandyear(bcdtobin(rtclk[MC_YEAR]));
768 1.1 perry
769 1.1 perry return 0;
770 1.1 perry }
771 1.1 perry
772 1.1 perry static int
773 1.7 christos rtc_set_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
774 1.1 perry {
775 1.1 perry mc_todregs rtclk;
776 1.1 perry int century;
777 1.1 perry int s;
778 1.1 perry
779 1.1 perry s = splclock();
780 1.1 perry if (rtcget(&rtclk))
781 1.1 perry memset(&rtclk, 0, sizeof(rtclk));
782 1.1 perry splx(s);
783 1.1 perry
784 1.4 gdamore rtclk[MC_SEC] = bintobcd(dt->dt_sec);
785 1.4 gdamore rtclk[MC_MIN] = bintobcd(dt->dt_min);
786 1.4 gdamore rtclk[MC_HOUR] = bintobcd(dt->dt_hour);
787 1.4 gdamore rtclk[MC_DOW] = dt->dt_wday + 1;
788 1.4 gdamore rtclk[MC_YEAR] = bintobcd(dt->dt_year % 100);
789 1.4 gdamore rtclk[MC_MONTH] = bintobcd(dt->dt_mon);
790 1.4 gdamore rtclk[MC_DOM] = bintobcd(dt->dt_day);
791 1.1 perry
792 1.1 perry #ifdef DEBUG_CLOCK
793 1.1 perry printf("setclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR], rtclk[MC_MONTH],
794 1.1 perry rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN], rtclk[MC_SEC]);
795 1.1 perry #endif
796 1.1 perry s = splclock();
797 1.1 perry rtcput(&rtclk);
798 1.1 perry if (rtc_update_century > 0) {
799 1.4 gdamore century = bintobcd(dt->dt_year / 100);
800 1.1 perry mc146818_write(NULL, centb, century); /* XXX softc */
801 1.1 perry }
802 1.1 perry splx(s);
803 1.1 perry return 0;
804 1.1 perry
805 1.1 perry }
806 1.1 perry
807 1.1 perry static void
808 1.1 perry rtc_register(void)
809 1.1 perry {
810 1.1 perry static struct todr_chip_handle tch;
811 1.4 gdamore tch.todr_gettime_ymdhms = rtc_get_ymdhms;
812 1.4 gdamore tch.todr_settime_ymdhms = rtc_set_ymdhms;
813 1.1 perry tch.todr_setwen = NULL;
814 1.1 perry
815 1.1 perry todr_attach(&tch);
816 1.1 perry }
817 1.1 perry
818 1.1 perry void
819 1.7 christos setstatclockrate(int arg)
820 1.1 perry {
821 1.1 perry }
822