Home | History | Annotate | Line # | Download | only in isa
clock.c revision 1.9
      1  1.9        ad /*	$NetBSD: clock.c,v 1.9 2007/07/09 20:52:37 ad Exp $	*/
      2  1.1     perry 
      3  1.1     perry /*-
      4  1.1     perry  * Copyright (c) 1990 The Regents of the University of California.
      5  1.1     perry  * All rights reserved.
      6  1.1     perry  *
      7  1.1     perry  * This code is derived from software contributed to Berkeley by
      8  1.1     perry  * William Jolitz and Don Ahn.
      9  1.1     perry  *
     10  1.1     perry  * Redistribution and use in source and binary forms, with or without
     11  1.1     perry  * modification, are permitted provided that the following conditions
     12  1.1     perry  * are met:
     13  1.1     perry  * 1. Redistributions of source code must retain the above copyright
     14  1.1     perry  *    notice, this list of conditions and the following disclaimer.
     15  1.1     perry  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1     perry  *    notice, this list of conditions and the following disclaimer in the
     17  1.1     perry  *    documentation and/or other materials provided with the distribution.
     18  1.1     perry  * 3. Neither the name of the University nor the names of its contributors
     19  1.1     perry  *    may be used to endorse or promote products derived from this software
     20  1.1     perry  *    without specific prior written permission.
     21  1.1     perry  *
     22  1.1     perry  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  1.1     perry  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  1.1     perry  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  1.1     perry  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  1.1     perry  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  1.1     perry  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  1.1     perry  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  1.1     perry  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  1.1     perry  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  1.1     perry  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  1.1     perry  * SUCH DAMAGE.
     33  1.1     perry  *
     34  1.1     perry  *	@(#)clock.c	7.2 (Berkeley) 5/12/91
     35  1.1     perry  */
     36  1.1     perry /*-
     37  1.1     perry  * Copyright (c) 1993, 1994 Charles M. Hannum.
     38  1.1     perry  *
     39  1.1     perry  * This code is derived from software contributed to Berkeley by
     40  1.1     perry  * William Jolitz and Don Ahn.
     41  1.1     perry  *
     42  1.1     perry  * Redistribution and use in source and binary forms, with or without
     43  1.1     perry  * modification, are permitted provided that the following conditions
     44  1.1     perry  * are met:
     45  1.1     perry  * 1. Redistributions of source code must retain the above copyright
     46  1.1     perry  *    notice, this list of conditions and the following disclaimer.
     47  1.1     perry  * 2. Redistributions in binary form must reproduce the above copyright
     48  1.1     perry  *    notice, this list of conditions and the following disclaimer in the
     49  1.1     perry  *    documentation and/or other materials provided with the distribution.
     50  1.1     perry  * 3. All advertising materials mentioning features or use of this software
     51  1.1     perry  *    must display the following acknowledgement:
     52  1.1     perry  *	This product includes software developed by the University of
     53  1.1     perry  *	California, Berkeley and its contributors.
     54  1.1     perry  * 4. Neither the name of the University nor the names of its contributors
     55  1.1     perry  *    may be used to endorse or promote products derived from this software
     56  1.1     perry  *    without specific prior written permission.
     57  1.1     perry  *
     58  1.1     perry  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  1.1     perry  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  1.1     perry  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  1.1     perry  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  1.1     perry  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  1.1     perry  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  1.1     perry  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  1.1     perry  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  1.1     perry  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  1.1     perry  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  1.1     perry  * SUCH DAMAGE.
     69  1.1     perry  *
     70  1.1     perry  *	@(#)clock.c	7.2 (Berkeley) 5/12/91
     71  1.1     perry  */
     72  1.1     perry /*
     73  1.1     perry  * Mach Operating System
     74  1.1     perry  * Copyright (c) 1991,1990,1989 Carnegie Mellon University
     75  1.1     perry  * All Rights Reserved.
     76  1.1     perry  *
     77  1.1     perry  * Permission to use, copy, modify and distribute this software and its
     78  1.1     perry  * documentation is hereby granted, provided that both the copyright
     79  1.1     perry  * notice and this permission notice appear in all copies of the
     80  1.1     perry  * software, derivative works or modified versions, and any portions
     81  1.1     perry  * thereof, and that both notices appear in supporting documentation.
     82  1.1     perry  *
     83  1.1     perry  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     84  1.1     perry  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
     85  1.1     perry  * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     86  1.1     perry  *
     87  1.1     perry  * Carnegie Mellon requests users of this software to return to
     88  1.1     perry  *
     89  1.1     perry  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     90  1.1     perry  *  School of Computer Science
     91  1.1     perry  *  Carnegie Mellon University
     92  1.1     perry  *  Pittsburgh PA 15213-3890
     93  1.1     perry  *
     94  1.1     perry  * any improvements or extensions that they make and grant Carnegie Mellon
     95  1.1     perry  * the rights to redistribute these changes.
     96  1.1     perry  */
     97  1.1     perry /*
     98  1.1     perry   Copyright 1988, 1989 by Intel Corporation, Santa Clara, California.
     99  1.1     perry 
    100  1.1     perry 		All Rights Reserved
    101  1.1     perry 
    102  1.1     perry Permission to use, copy, modify, and distribute this software and
    103  1.1     perry its documentation for any purpose and without fee is hereby
    104  1.1     perry granted, provided that the above copyright notice appears in all
    105  1.1     perry copies and that both the copyright notice and this permission notice
    106  1.1     perry appear in supporting documentation, and that the name of Intel
    107  1.1     perry not be used in advertising or publicity pertaining to distribution
    108  1.1     perry of the software without specific, written prior permission.
    109  1.1     perry 
    110  1.1     perry INTEL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
    111  1.1     perry INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
    112  1.1     perry IN NO EVENT SHALL INTEL BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
    113  1.1     perry CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
    114  1.1     perry LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
    115  1.1     perry NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
    116  1.1     perry WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
    117  1.1     perry */
    118  1.1     perry 
    119  1.1     perry /*
    120  1.1     perry  * Primitive clock interrupt routines.
    121  1.1     perry  */
    122  1.1     perry 
    123  1.1     perry #include <sys/cdefs.h>
    124  1.9        ad __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.9 2007/07/09 20:52:37 ad Exp $");
    125  1.1     perry 
    126  1.1     perry /* #define CLOCKDEBUG */
    127  1.1     perry /* #define CLOCK_PARANOIA */
    128  1.1     perry 
    129  1.1     perry #include "opt_multiprocessor.h"
    130  1.1     perry #include "opt_ntp.h"
    131  1.1     perry 
    132  1.1     perry #include <sys/param.h>
    133  1.1     perry #include <sys/systm.h>
    134  1.1     perry #include <sys/time.h>
    135  1.1     perry #include <sys/timetc.h>
    136  1.1     perry #include <sys/kernel.h>
    137  1.1     perry #include <sys/device.h>
    138  1.9        ad #include <sys/mutex.h>
    139  1.1     perry 
    140  1.1     perry #include <machine/cpu.h>
    141  1.1     perry #include <machine/intr.h>
    142  1.1     perry #include <machine/pio.h>
    143  1.1     perry #include <machine/cpufunc.h>
    144  1.1     perry 
    145  1.1     perry #include <dev/isa/isareg.h>
    146  1.1     perry #include <dev/isa/isavar.h>
    147  1.1     perry #include <dev/ic/mc146818reg.h>
    148  1.1     perry #include <dev/ic/i8253reg.h>
    149  1.1     perry #include <i386/isa/nvram.h>
    150  1.1     perry #include <x86/x86/tsc.h>
    151  1.1     perry #include <dev/clock_subr.h>
    152  1.1     perry #include <machine/specialreg.h>
    153  1.1     perry 
    154  1.1     perry #include "config_time.h"		/* for CONFIG_TIME */
    155  1.1     perry 
    156  1.1     perry #ifndef __x86_64__
    157  1.1     perry #include "mca.h"
    158  1.1     perry #endif
    159  1.1     perry #if NMCA > 0
    160  1.1     perry #include <machine/mca_machdep.h>	/* for MCA_system */
    161  1.1     perry #endif
    162  1.1     perry 
    163  1.1     perry #include "pcppi.h"
    164  1.1     perry #if (NPCPPI > 0)
    165  1.1     perry #include <dev/isa/pcppivar.h>
    166  1.1     perry 
    167  1.1     perry int sysbeepmatch(struct device *, struct cfdata *, void *);
    168  1.1     perry void sysbeepattach(struct device *, struct device *, void *);
    169  1.1     perry 
    170  1.1     perry CFATTACH_DECL(sysbeep, sizeof(struct device),
    171  1.1     perry     sysbeepmatch, sysbeepattach, NULL, NULL);
    172  1.1     perry 
    173  1.1     perry static int ppi_attached;
    174  1.1     perry static pcppi_tag_t ppicookie;
    175  1.1     perry #endif /* PCPPI */
    176  1.1     perry 
    177  1.1     perry #ifdef __x86_64__
    178  1.1     perry #define READ_FLAGS()	read_rflags()
    179  1.1     perry #define WRITE_FLAGS(x)	write_rflags(x)
    180  1.1     perry #else /* i386 architecture processor */
    181  1.1     perry #define READ_FLAGS()	read_eflags()
    182  1.1     perry #define WRITE_FLAGS(x)	write_eflags(x)
    183  1.1     perry #endif
    184  1.1     perry 
    185  1.1     perry #ifdef CLOCKDEBUG
    186  1.1     perry int clock_debug = 0;
    187  1.1     perry #define DPRINTF(arg) if (clock_debug) printf arg
    188  1.1     perry #else
    189  1.1     perry #define DPRINTF(arg)
    190  1.1     perry #endif
    191  1.1     perry 
    192  1.2     perry int		gettick(void);
    193  1.1     perry void		sysbeep(int, int);
    194  1.1     perry static void     tickle_tc(void);
    195  1.1     perry 
    196  1.8      yamt static int	clockintr(void *, struct intrframe *);
    197  1.1     perry static void	rtcinit(void);
    198  1.1     perry static int	rtcget(mc_todregs *);
    199  1.1     perry static void	rtcput(mc_todregs *);
    200  1.1     perry 
    201  1.1     perry static int	cmoscheck(void);
    202  1.1     perry 
    203  1.1     perry static int	clock_expandyear(int);
    204  1.1     perry 
    205  1.1     perry static inline int gettick_broken_latch(void);
    206  1.1     perry 
    207  1.1     perry static volatile uint32_t i8254_lastcount;
    208  1.1     perry static volatile uint32_t i8254_offset;
    209  1.1     perry static volatile int i8254_ticked;
    210  1.1     perry 
    211  1.9        ad /* to protect TC timer variables */
    212  1.9        ad static __cpu_simple_lock_t tmr_lock = __SIMPLELOCK_UNLOCKED;
    213  1.1     perry 
    214  1.1     perry inline u_int mc146818_read(void *, u_int);
    215  1.1     perry inline void mc146818_write(void *, u_int, u_int);
    216  1.1     perry 
    217  1.1     perry u_int i8254_get_timecount(struct timecounter *);
    218  1.1     perry static void rtc_register(void);
    219  1.1     perry 
    220  1.1     perry static struct timecounter i8254_timecounter = {
    221  1.1     perry 	i8254_get_timecount,	/* get_timecount */
    222  1.1     perry 	0,			/* no poll_pps */
    223  1.1     perry 	~0u,			/* counter_mask */
    224  1.1     perry 	TIMER_FREQ,		/* frequency */
    225  1.1     perry 	"i8254",		/* name */
    226  1.1     perry 	100,			/* quality */
    227  1.1     perry 	NULL,			/* prev */
    228  1.1     perry 	NULL,			/* next */
    229  1.1     perry };
    230  1.1     perry 
    231  1.1     perry /* XXX use sc? */
    232  1.1     perry inline u_int
    233  1.7  christos mc146818_read(void *sc, u_int reg)
    234  1.1     perry {
    235  1.1     perry 
    236  1.1     perry 	outb(IO_RTC, reg);
    237  1.1     perry 	return (inb(IO_RTC+1));
    238  1.1     perry }
    239  1.1     perry 
    240  1.1     perry /* XXX use sc? */
    241  1.1     perry inline void
    242  1.7  christos mc146818_write(void *sc, u_int reg, u_int datum)
    243  1.1     perry {
    244  1.1     perry 
    245  1.1     perry 	outb(IO_RTC, reg);
    246  1.1     perry 	outb(IO_RTC+1, datum);
    247  1.1     perry }
    248  1.1     perry 
    249  1.1     perry u_long rtclock_tval;		/* i8254 reload value for countdown */
    250  1.1     perry int    rtclock_init = 0;
    251  1.1     perry 
    252  1.1     perry int clock_broken_latch = 0;
    253  1.1     perry 
    254  1.1     perry #ifdef CLOCK_PARANOIA
    255  1.1     perry static int ticks[6];
    256  1.1     perry #endif
    257  1.1     perry /*
    258  1.1     perry  * i8254 latch check routine:
    259  1.1     perry  *     National Geode (formerly Cyrix MediaGX) has a serious bug in
    260  1.1     perry  *     its built-in i8254-compatible clock module.
    261  1.1     perry  *     machdep sets the variable 'clock_broken_latch' to indicate it.
    262  1.1     perry  */
    263  1.1     perry 
    264  1.1     perry int
    265  1.1     perry gettick_broken_latch(void)
    266  1.1     perry {
    267  1.1     perry 	u_long flags;
    268  1.1     perry 	int v1, v2, v3;
    269  1.1     perry 	int w1, w2, w3;
    270  1.1     perry 
    271  1.1     perry 	/* Don't want someone screwing with the counter while we're here. */
    272  1.1     perry 	flags = READ_FLAGS();
    273  1.1     perry 	disable_intr();
    274  1.1     perry 
    275  1.1     perry 	v1 = inb(IO_TIMER1+TIMER_CNTR0);
    276  1.1     perry 	v1 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
    277  1.1     perry 	v2 = inb(IO_TIMER1+TIMER_CNTR0);
    278  1.1     perry 	v2 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
    279  1.1     perry 	v3 = inb(IO_TIMER1+TIMER_CNTR0);
    280  1.1     perry 	v3 |= inb(IO_TIMER1+TIMER_CNTR0) << 8;
    281  1.1     perry 
    282  1.1     perry 	WRITE_FLAGS(flags);
    283  1.1     perry 
    284  1.1     perry #ifdef CLOCK_PARANOIA
    285  1.1     perry 	if (clock_debug) {
    286  1.1     perry 		ticks[0] = ticks[3];
    287  1.1     perry 		ticks[1] = ticks[4];
    288  1.1     perry 		ticks[2] = ticks[5];
    289  1.1     perry 		ticks[3] = v1;
    290  1.1     perry 		ticks[4] = v2;
    291  1.1     perry 		ticks[5] = v3;
    292  1.1     perry 	}
    293  1.1     perry #endif
    294  1.1     perry 
    295  1.1     perry 	if (v1 >= v2 && v2 >= v3 && v1 - v3 < 0x200)
    296  1.1     perry 		return (v2);
    297  1.1     perry 
    298  1.1     perry #define _swap_val(a, b) do { \
    299  1.1     perry 	int c = a; \
    300  1.1     perry 	a = b; \
    301  1.1     perry 	b = c; \
    302  1.1     perry } while (0)
    303  1.1     perry 
    304  1.1     perry 	/*
    305  1.1     perry 	 * sort v1 v2 v3
    306  1.1     perry 	 */
    307  1.1     perry 	if (v1 < v2)
    308  1.1     perry 		_swap_val(v1, v2);
    309  1.1     perry 	if (v2 < v3)
    310  1.1     perry 		_swap_val(v2, v3);
    311  1.1     perry 	if (v1 < v2)
    312  1.1     perry 		_swap_val(v1, v2);
    313  1.1     perry 
    314  1.1     perry 	/*
    315  1.1     perry 	 * compute the middle value
    316  1.1     perry 	 */
    317  1.1     perry 
    318  1.1     perry 	if (v1 - v3 < 0x200)
    319  1.1     perry 		return (v2);
    320  1.1     perry 
    321  1.1     perry 	w1 = v2 - v3;
    322  1.1     perry 	w2 = v3 - v1 + rtclock_tval;
    323  1.1     perry 	w3 = v1 - v2;
    324  1.1     perry 	if (w1 >= w2) {
    325  1.1     perry 		if (w1 >= w3)
    326  1.1     perry 		        return (v1);
    327  1.1     perry 	} else {
    328  1.1     perry 		if (w2 >= w3)
    329  1.1     perry 			return (v2);
    330  1.1     perry 	}
    331  1.1     perry 	return (v3);
    332  1.1     perry }
    333  1.1     perry 
    334  1.1     perry /* minimal initialization, enough for delay() */
    335  1.1     perry void
    336  1.1     perry initrtclock(u_long freq)
    337  1.1     perry {
    338  1.1     perry 	u_long tval;
    339  1.9        ad 
    340  1.1     perry 	/*
    341  1.1     perry 	 * Compute timer_count, the count-down count the timer will be
    342  1.1     perry 	 * set to.  Also, correctly round
    343  1.1     perry 	 * this by carrying an extra bit through the division.
    344  1.1     perry 	 */
    345  1.1     perry 	tval = (freq * 2) / (u_long) hz;
    346  1.1     perry 	tval = (tval / 2) + (tval & 0x1);
    347  1.1     perry 
    348  1.1     perry 	/* initialize 8254 clock */
    349  1.1     perry 	outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
    350  1.1     perry 
    351  1.1     perry 	/* Correct rounding will buy us a better precision in timekeeping */
    352  1.1     perry 	outb(IO_TIMER1+TIMER_CNTR0, tval % 256);
    353  1.1     perry 	outb(IO_TIMER1+TIMER_CNTR0, tval / 256);
    354  1.1     perry 
    355  1.1     perry 	rtclock_tval = tval ? tval : 0xFFFF;
    356  1.1     perry 	rtclock_init = 1;
    357  1.1     perry }
    358  1.1     perry 
    359  1.1     perry void
    360  1.1     perry startrtclock(void)
    361  1.1     perry {
    362  1.1     perry 	int s;
    363  1.1     perry 
    364  1.1     perry 	if (!rtclock_init)
    365  1.1     perry 		initrtclock(TIMER_FREQ);
    366  1.1     perry 
    367  1.1     perry 	/* Check diagnostic status */
    368  1.1     perry 	if ((s = mc146818_read(NULL, NVRAM_DIAG)) != 0) { /* XXX softc */
    369  1.1     perry 		char bits[128];
    370  1.1     perry 		printf("RTC BIOS diagnostic error %s\n",
    371  1.1     perry 		    bitmask_snprintf(s, NVRAM_DIAG_BITS, bits, sizeof(bits)));
    372  1.1     perry 	}
    373  1.1     perry 
    374  1.1     perry 	tc_init(&i8254_timecounter);
    375  1.1     perry 
    376  1.1     perry #if defined(I586_CPU) || defined(I686_CPU) || defined(__x86_64__)
    377  1.1     perry 	init_TSC();
    378  1.1     perry #endif
    379  1.1     perry 
    380  1.1     perry 	rtc_register();
    381  1.1     perry }
    382  1.1     perry 
    383  1.9        ad /*
    384  1.9        ad  * Must be called at splclock().
    385  1.9        ad  */
    386  1.1     perry static void
    387  1.1     perry tickle_tc(void)
    388  1.1     perry {
    389  1.1     perry #if defined(MULTIPROCESSOR)
    390  1.1     perry 	struct cpu_info *ci = curcpu();
    391  1.1     perry 	/*
    392  1.1     perry 	 * If we are not the primary CPU, we're not allowed to do
    393  1.1     perry 	 * any more work.
    394  1.1     perry 	 */
    395  1.1     perry 	if (CPU_IS_PRIMARY(ci) == 0)
    396  1.1     perry 		return;
    397  1.1     perry #endif
    398  1.1     perry 	if (rtclock_tval && timecounter->tc_get_timecount == i8254_get_timecount) {
    399  1.9        ad 		__cpu_simple_lock(&tmr_lock);
    400  1.1     perry 		if (i8254_ticked)
    401  1.1     perry 			i8254_ticked    = 0;
    402  1.1     perry 		else {
    403  1.1     perry 			i8254_offset   += rtclock_tval;
    404  1.1     perry 			i8254_lastcount = 0;
    405  1.1     perry 		}
    406  1.9        ad 		__cpu_simple_unlock(&tmr_lock);
    407  1.1     perry 	}
    408  1.1     perry 
    409  1.1     perry }
    410  1.1     perry 
    411  1.1     perry static int
    412  1.8      yamt clockintr(void *arg, struct intrframe *frame)
    413  1.1     perry {
    414  1.1     perry 	tickle_tc();
    415  1.1     perry 
    416  1.8      yamt 	hardclock((struct clockframe *)frame);
    417  1.1     perry 
    418  1.1     perry #if NMCA > 0
    419  1.1     perry 	if (MCA_system) {
    420  1.1     perry 		/* Reset PS/2 clock interrupt by asserting bit 7 of port 0x61 */
    421  1.1     perry 		outb(0x61, inb(0x61) | 0x80);
    422  1.1     perry 	}
    423  1.1     perry #endif
    424  1.1     perry 	return -1;
    425  1.1     perry }
    426  1.1     perry 
    427  1.1     perry u_int
    428  1.7  christos i8254_get_timecount(struct timecounter *tc)
    429  1.1     perry {
    430  1.1     perry 	u_int count;
    431  1.1     perry 	u_char high, low;
    432  1.1     perry 	u_long flags;
    433  1.1     perry 
    434  1.1     perry 	/* Don't want someone screwing with the counter while we're here. */
    435  1.1     perry 	flags = READ_FLAGS();
    436  1.1     perry 	disable_intr();
    437  1.9        ad 	__cpu_simple_lock(&tmr_lock);
    438  1.1     perry 
    439  1.1     perry 	/* Select timer0 and latch counter value. */
    440  1.1     perry 	outb(IO_TIMER1 + TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
    441  1.1     perry 
    442  1.1     perry 	low = inb(IO_TIMER1 + TIMER_CNTR0);
    443  1.1     perry 	high = inb(IO_TIMER1 + TIMER_CNTR0);
    444  1.1     perry 	count = rtclock_tval - ((high << 8) | low);
    445  1.1     perry 
    446  1.1     perry 	if (rtclock_tval && (count < i8254_lastcount || !i8254_ticked)) {
    447  1.1     perry 		i8254_ticked = 1;
    448  1.1     perry 		i8254_offset += rtclock_tval;
    449  1.1     perry 	}
    450  1.1     perry 
    451  1.1     perry 	i8254_lastcount = count;
    452  1.1     perry 	count += i8254_offset;
    453  1.1     perry 
    454  1.9        ad 	__cpu_simple_unlock(&tmr_lock);
    455  1.9        ad 	WRITE_FLAGS(flags);
    456  1.1     perry 
    457  1.1     perry 	return (count);
    458  1.1     perry }
    459  1.1     perry 
    460  1.2     perry int
    461  1.1     perry gettick(void)
    462  1.1     perry {
    463  1.1     perry 	u_long flags;
    464  1.1     perry 	u_char lo, hi;
    465  1.1     perry 
    466  1.1     perry 	if (clock_broken_latch)
    467  1.1     perry 		return (gettick_broken_latch());
    468  1.1     perry 
    469  1.1     perry 	/* Don't want someone screwing with the counter while we're here. */
    470  1.1     perry 	flags = READ_FLAGS();
    471  1.1     perry 	disable_intr();
    472  1.1     perry 	/* Select counter 0 and latch it. */
    473  1.1     perry 	outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
    474  1.1     perry 	lo = inb(IO_TIMER1+TIMER_CNTR0);
    475  1.1     perry 	hi = inb(IO_TIMER1+TIMER_CNTR0);
    476  1.1     perry 	WRITE_FLAGS(flags);
    477  1.1     perry 	return ((hi << 8) | lo);
    478  1.1     perry }
    479  1.1     perry 
    480  1.1     perry /*
    481  1.1     perry  * Wait approximately `n' microseconds.
    482  1.1     perry  * Relies on timer 1 counting down from (TIMER_FREQ / hz) at TIMER_FREQ Hz.
    483  1.1     perry  * Note: timer had better have been programmed before this is first used!
    484  1.1     perry  * (Note that we use `rate generator' mode, which counts at 1:1; `square
    485  1.1     perry  * wave' mode counts at 2:1).
    486  1.1     perry  * Don't rely on this being particularly accurate.
    487  1.1     perry  */
    488  1.1     perry void
    489  1.1     perry i8254_delay(int n)
    490  1.1     perry {
    491  1.1     perry 	int delay_tick, odelay_tick;
    492  1.1     perry 	static const int delaytab[26] = {
    493  1.1     perry 		 0,  2,  3,  4,  5,  6,  7,  9, 10, 11,
    494  1.1     perry 		12, 13, 15, 16, 17, 18, 19, 21, 22, 23,
    495  1.1     perry 		24, 25, 27, 28, 29, 30,
    496  1.1     perry 	};
    497  1.1     perry 
    498  1.1     perry 	/* allow DELAY() to be used before startrtclock() */
    499  1.1     perry 	if (!rtclock_init)
    500  1.1     perry 		initrtclock(TIMER_FREQ);
    501  1.1     perry 
    502  1.1     perry 	/*
    503  1.1     perry 	 * Read the counter first, so that the rest of the setup overhead is
    504  1.1     perry 	 * counted.
    505  1.1     perry 	 */
    506  1.1     perry 	odelay_tick = gettick();
    507  1.1     perry 
    508  1.1     perry 	if (n <= 25)
    509  1.1     perry 		n = delaytab[n];
    510  1.1     perry 	else {
    511  1.1     perry #ifdef __GNUC__
    512  1.1     perry 		/*
    513  1.1     perry 		 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler
    514  1.1     perry 		 * code so we can take advantage of the intermediate 64-bit
    515  1.1     perry 		 * quantity to prevent loss of significance.
    516  1.1     perry 		 */
    517  1.1     perry 		int m;
    518  1.1     perry 		__asm volatile("mul %3"
    519  1.1     perry 				 : "=a" (n), "=d" (m)
    520  1.1     perry 				 : "0" (n), "r" (TIMER_FREQ));
    521  1.1     perry 		__asm volatile("div %4"
    522  1.1     perry 				 : "=a" (n), "=d" (m)
    523  1.1     perry 				 : "0" (n), "1" (m), "r" (1000000));
    524  1.1     perry #else
    525  1.1     perry 		/*
    526  1.1     perry 		 * Calculate ((n * TIMER_FREQ) / 1e6) without using floating
    527  1.1     perry 		 * point and without any avoidable overflows.
    528  1.1     perry 		 */
    529  1.1     perry 		int sec = n / 1000000,
    530  1.1     perry 		    usec = n % 1000000;
    531  1.1     perry 		n = sec * TIMER_FREQ +
    532  1.1     perry 		    usec * (TIMER_FREQ / 1000000) +
    533  1.1     perry 		    usec * ((TIMER_FREQ % 1000000) / 1000) / 1000 +
    534  1.1     perry 		    usec * (TIMER_FREQ % 1000) / 1000000;
    535  1.1     perry #endif
    536  1.1     perry 	}
    537  1.1     perry 
    538  1.1     perry 	while (n > 0) {
    539  1.1     perry #ifdef CLOCK_PARANOIA
    540  1.1     perry 		int delta;
    541  1.1     perry 		delay_tick = gettick();
    542  1.1     perry 		if (delay_tick > odelay_tick)
    543  1.1     perry 			delta = rtclock_tval - (delay_tick - odelay_tick);
    544  1.1     perry 		else
    545  1.1     perry 			delta = odelay_tick - delay_tick;
    546  1.1     perry 		if (delta < 0 || delta >= rtclock_tval / 2) {
    547  1.1     perry 			DPRINTF(("delay: ignore ticks %.4x-%.4x",
    548  1.1     perry 				 odelay_tick, delay_tick));
    549  1.1     perry 			if (clock_broken_latch) {
    550  1.1     perry 				DPRINTF(("  (%.4x %.4x %.4x %.4x %.4x %.4x)\n",
    551  1.1     perry 				         ticks[0], ticks[1], ticks[2],
    552  1.1     perry 				         ticks[3], ticks[4], ticks[5]));
    553  1.1     perry 			} else {
    554  1.1     perry 				DPRINTF(("\n"));
    555  1.1     perry 			}
    556  1.1     perry 		} else
    557  1.1     perry 			n -= delta;
    558  1.1     perry #else
    559  1.1     perry 		delay_tick = gettick();
    560  1.1     perry 		if (delay_tick > odelay_tick)
    561  1.1     perry 			n -= rtclock_tval - (delay_tick - odelay_tick);
    562  1.1     perry 		else
    563  1.1     perry 			n -= odelay_tick - delay_tick;
    564  1.1     perry #endif
    565  1.1     perry 		odelay_tick = delay_tick;
    566  1.1     perry 	}
    567  1.1     perry }
    568  1.1     perry 
    569  1.1     perry #if (NPCPPI > 0)
    570  1.1     perry int
    571  1.7  christos sysbeepmatch(struct device *parent, struct cfdata *match,
    572  1.7  christos     void *aux)
    573  1.1     perry {
    574  1.1     perry 	return (!ppi_attached);
    575  1.1     perry }
    576  1.1     perry 
    577  1.1     perry void
    578  1.7  christos sysbeepattach(struct device *parent, struct device *self,
    579  1.5  christos     void *aux)
    580  1.1     perry {
    581  1.1     perry 	aprint_naive("\n");
    582  1.1     perry 	aprint_normal("\n");
    583  1.1     perry 
    584  1.1     perry 	ppicookie = ((struct pcppi_attach_args *)aux)->pa_cookie;
    585  1.1     perry 	ppi_attached = 1;
    586  1.1     perry }
    587  1.1     perry #endif
    588  1.1     perry 
    589  1.1     perry void
    590  1.7  christos sysbeep(int pitch, int period)
    591  1.1     perry {
    592  1.1     perry #if (NPCPPI > 0)
    593  1.1     perry 	if (ppi_attached)
    594  1.1     perry 		pcppi_bell(ppicookie, pitch, period, 0);
    595  1.1     perry #endif
    596  1.1     perry }
    597  1.1     perry 
    598  1.1     perry void
    599  1.1     perry i8254_initclocks(void)
    600  1.1     perry {
    601  1.1     perry 
    602  1.1     perry 	/*
    603  1.1     perry 	 * XXX If you're doing strange things with multiple clocks, you might
    604  1.1     perry 	 * want to keep track of clock handlers.
    605  1.1     perry 	 */
    606  1.1     perry 	(void)isa_intr_establish(NULL, 0, IST_PULSE, IPL_CLOCK,
    607  1.1     perry 	    (int (*)(void *))clockintr, 0);
    608  1.1     perry }
    609  1.1     perry 
    610  1.1     perry static void
    611  1.1     perry rtcinit(void)
    612  1.1     perry {
    613  1.1     perry 	static int first_rtcopen_ever = 1;
    614  1.1     perry 
    615  1.1     perry 	if (!first_rtcopen_ever)
    616  1.1     perry 		return;
    617  1.1     perry 	first_rtcopen_ever = 0;
    618  1.1     perry 
    619  1.1     perry 	mc146818_write(NULL, MC_REGA,			/* XXX softc */
    620  1.1     perry 	    MC_BASE_32_KHz | MC_RATE_1024_Hz);
    621  1.1     perry 	mc146818_write(NULL, MC_REGB, MC_REGB_24HR);	/* XXX softc */
    622  1.1     perry }
    623  1.1     perry 
    624  1.1     perry static int
    625  1.1     perry rtcget(mc_todregs *regs)
    626  1.1     perry {
    627  1.1     perry 
    628  1.1     perry 	rtcinit();
    629  1.1     perry 	if ((mc146818_read(NULL, MC_REGD) & MC_REGD_VRT) == 0) /* XXX softc */
    630  1.1     perry 		return (-1);
    631  1.1     perry 	MC146818_GETTOD(NULL, regs);			/* XXX softc */
    632  1.1     perry 	return (0);
    633  1.1     perry }
    634  1.1     perry 
    635  1.1     perry static void
    636  1.1     perry rtcput(mc_todregs *regs)
    637  1.1     perry {
    638  1.1     perry 
    639  1.1     perry 	rtcinit();
    640  1.1     perry 	MC146818_PUTTOD(NULL, regs);			/* XXX softc */
    641  1.1     perry }
    642  1.1     perry 
    643  1.1     perry /*
    644  1.1     perry  * check whether the CMOS layout is "standard"-like (ie, not PS/2-like),
    645  1.1     perry  * to be called at splclock()
    646  1.1     perry  */
    647  1.1     perry static int
    648  1.1     perry cmoscheck(void)
    649  1.1     perry {
    650  1.1     perry 	int i;
    651  1.1     perry 	unsigned short cksum = 0;
    652  1.1     perry 
    653  1.1     perry 	for (i = 0x10; i <= 0x2d; i++)
    654  1.1     perry 		cksum += mc146818_read(NULL, i); /* XXX softc */
    655  1.1     perry 
    656  1.1     perry 	return (cksum == (mc146818_read(NULL, 0x2e) << 8)
    657  1.1     perry 			  + mc146818_read(NULL, 0x2f));
    658  1.1     perry }
    659  1.1     perry 
    660  1.1     perry #if NMCA > 0
    661  1.1     perry /*
    662  1.1     perry  * Check whether the CMOS layout is PS/2 like, to be called at splclock().
    663  1.1     perry  */
    664  1.1     perry static int cmoscheckps2(void);
    665  1.1     perry static int
    666  1.1     perry cmoscheckps2(void)
    667  1.1     perry {
    668  1.1     perry #if 0
    669  1.1     perry 	/* Disabled until I find out the CRC checksum algorithm IBM uses */
    670  1.1     perry 	int i;
    671  1.1     perry 	unsigned short cksum = 0;
    672  1.1     perry 
    673  1.1     perry 	for (i = 0x10; i <= 0x31; i++)
    674  1.1     perry 		cksum += mc146818_read(NULL, i); /* XXX softc */
    675  1.1     perry 
    676  1.1     perry 	return (cksum == (mc146818_read(NULL, 0x32) << 8)
    677  1.1     perry 			  + mc146818_read(NULL, 0x33));
    678  1.1     perry #else
    679  1.1     perry 	/* Check 'incorrect checksum' bit of IBM PS/2 Diagnostic Status Byte */
    680  1.1     perry 	return ((mc146818_read(NULL, NVRAM_DIAG) & (1<<6)) == 0);
    681  1.1     perry #endif
    682  1.1     perry }
    683  1.1     perry #endif /* NMCA > 0 */
    684  1.1     perry 
    685  1.1     perry /*
    686  1.1     perry  * patchable to control century byte handling:
    687  1.1     perry  * 1: always update
    688  1.1     perry  * -1: never touch
    689  1.1     perry  * 0: try to figure out itself
    690  1.1     perry  */
    691  1.1     perry int rtc_update_century = 0;
    692  1.1     perry 
    693  1.1     perry /*
    694  1.1     perry  * Expand a two-digit year as read from the clock chip
    695  1.1     perry  * into full width.
    696  1.1     perry  * Being here, deal with the CMOS century byte.
    697  1.1     perry  */
    698  1.1     perry static int centb = NVRAM_CENTURY;
    699  1.1     perry static int
    700  1.1     perry clock_expandyear(int clockyear)
    701  1.1     perry {
    702  1.1     perry 	int s, clockcentury, cmoscentury;
    703  1.1     perry 
    704  1.1     perry 	clockcentury = (clockyear < 70) ? 20 : 19;
    705  1.1     perry 	clockyear += 100 * clockcentury;
    706  1.1     perry 
    707  1.1     perry 	if (rtc_update_century < 0)
    708  1.1     perry 		return (clockyear);
    709  1.1     perry 
    710  1.1     perry 	s = splclock();
    711  1.1     perry 	if (cmoscheck())
    712  1.1     perry 		cmoscentury = mc146818_read(NULL, NVRAM_CENTURY);
    713  1.1     perry #if NMCA > 0
    714  1.1     perry 	else if (MCA_system && cmoscheckps2())
    715  1.1     perry 		cmoscentury = mc146818_read(NULL, (centb = 0x37));
    716  1.1     perry #endif
    717  1.1     perry 	else
    718  1.1     perry 		cmoscentury = 0;
    719  1.1     perry 	splx(s);
    720  1.1     perry 	if (!cmoscentury) {
    721  1.1     perry #ifdef DIAGNOSTIC
    722  1.1     perry 		printf("clock: unknown CMOS layout\n");
    723  1.1     perry #endif
    724  1.1     perry 		return (clockyear);
    725  1.1     perry 	}
    726  1.1     perry 	cmoscentury = bcdtobin(cmoscentury);
    727  1.1     perry 
    728  1.1     perry 	if (cmoscentury != clockcentury) {
    729  1.1     perry 		/* XXX note: saying "century is 20" might confuse the naive. */
    730  1.1     perry 		printf("WARNING: NVRAM century is %d but RTC year is %d\n",
    731  1.1     perry 		       cmoscentury, clockyear);
    732  1.1     perry 
    733  1.1     perry 		/* Kludge to roll over century. */
    734  1.1     perry 		if ((rtc_update_century > 0) ||
    735  1.1     perry 		    ((cmoscentury == 19) && (clockcentury == 20) &&
    736  1.1     perry 		     (clockyear == 2000))) {
    737  1.1     perry 			printf("WARNING: Setting NVRAM century to %d\n",
    738  1.1     perry 			       clockcentury);
    739  1.1     perry 			s = splclock();
    740  1.1     perry 			mc146818_write(NULL, centb, bintobcd(clockcentury));
    741  1.1     perry 			splx(s);
    742  1.1     perry 		}
    743  1.1     perry 	} else if (cmoscentury == 19 && rtc_update_century == 0)
    744  1.1     perry 		rtc_update_century = 1; /* will update later in resettodr() */
    745  1.1     perry 
    746  1.1     perry 	return (clockyear);
    747  1.1     perry }
    748  1.1     perry 
    749  1.1     perry static int
    750  1.7  christos rtc_get_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
    751  1.1     perry {
    752  1.1     perry 	int s;
    753  1.1     perry 	mc_todregs rtclk;
    754  1.1     perry 
    755  1.1     perry 	s = splclock();
    756  1.1     perry 	if (rtcget(&rtclk)) {
    757  1.1     perry 		splx(s);
    758  1.1     perry 		return -1;
    759  1.1     perry 	}
    760  1.1     perry 	splx(s);
    761  1.1     perry 
    762  1.4   gdamore 	dt->dt_sec = bcdtobin(rtclk[MC_SEC]);
    763  1.4   gdamore 	dt->dt_min = bcdtobin(rtclk[MC_MIN]);
    764  1.4   gdamore 	dt->dt_hour = bcdtobin(rtclk[MC_HOUR]);
    765  1.4   gdamore 	dt->dt_day = bcdtobin(rtclk[MC_DOM]);
    766  1.4   gdamore 	dt->dt_mon = bcdtobin(rtclk[MC_MONTH]);
    767  1.4   gdamore 	dt->dt_year = clock_expandyear(bcdtobin(rtclk[MC_YEAR]));
    768  1.1     perry 
    769  1.1     perry 	return 0;
    770  1.1     perry }
    771  1.1     perry 
    772  1.1     perry static int
    773  1.7  christos rtc_set_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
    774  1.1     perry {
    775  1.1     perry 	mc_todregs rtclk;
    776  1.1     perry 	int century;
    777  1.1     perry 	int s;
    778  1.1     perry 
    779  1.1     perry 	s = splclock();
    780  1.1     perry 	if (rtcget(&rtclk))
    781  1.1     perry 		memset(&rtclk, 0, sizeof(rtclk));
    782  1.1     perry 	splx(s);
    783  1.1     perry 
    784  1.4   gdamore 	rtclk[MC_SEC] = bintobcd(dt->dt_sec);
    785  1.4   gdamore 	rtclk[MC_MIN] = bintobcd(dt->dt_min);
    786  1.4   gdamore 	rtclk[MC_HOUR] = bintobcd(dt->dt_hour);
    787  1.4   gdamore 	rtclk[MC_DOW] = dt->dt_wday + 1;
    788  1.4   gdamore 	rtclk[MC_YEAR] = bintobcd(dt->dt_year % 100);
    789  1.4   gdamore 	rtclk[MC_MONTH] = bintobcd(dt->dt_mon);
    790  1.4   gdamore 	rtclk[MC_DOM] = bintobcd(dt->dt_day);
    791  1.1     perry 
    792  1.1     perry #ifdef DEBUG_CLOCK
    793  1.1     perry 	printf("setclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR], rtclk[MC_MONTH],
    794  1.1     perry 	   rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN], rtclk[MC_SEC]);
    795  1.1     perry #endif
    796  1.1     perry 	s = splclock();
    797  1.1     perry 	rtcput(&rtclk);
    798  1.1     perry 	if (rtc_update_century > 0) {
    799  1.4   gdamore 		century = bintobcd(dt->dt_year / 100);
    800  1.1     perry 		mc146818_write(NULL, centb, century); /* XXX softc */
    801  1.1     perry 	}
    802  1.1     perry 	splx(s);
    803  1.1     perry 	return 0;
    804  1.1     perry 
    805  1.1     perry }
    806  1.1     perry 
    807  1.1     perry static void
    808  1.1     perry rtc_register(void)
    809  1.1     perry {
    810  1.1     perry 	static struct todr_chip_handle	tch;
    811  1.4   gdamore 	tch.todr_gettime_ymdhms = rtc_get_ymdhms;
    812  1.4   gdamore 	tch.todr_settime_ymdhms = rtc_set_ymdhms;
    813  1.1     perry 	tch.todr_setwen = NULL;
    814  1.1     perry 
    815  1.1     perry 	todr_attach(&tch);
    816  1.1     perry }
    817  1.1     perry 
    818  1.1     perry void
    819  1.7  christos setstatclockrate(int arg)
    820  1.1     perry {
    821  1.1     perry }
    822