Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.100
      1  1.100       chs /*	$NetBSD: cpu.c,v 1.100 2012/07/02 01:05:48 chs Exp $	*/
      2    1.2        ad 
      3    1.2        ad /*-
      4   1.98     rmind  * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
      5    1.2        ad  * All rights reserved.
      6    1.2        ad  *
      7    1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.11        ad  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9    1.2        ad  *
     10    1.2        ad  * Redistribution and use in source and binary forms, with or without
     11    1.2        ad  * modification, are permitted provided that the following conditions
     12    1.2        ad  * are met:
     13    1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14    1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15    1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17    1.2        ad  *    documentation and/or other materials provided with the distribution.
     18    1.2        ad  *
     19    1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30    1.2        ad  */
     31    1.2        ad 
     32    1.2        ad /*
     33    1.2        ad  * Copyright (c) 1999 Stefan Grefen
     34    1.2        ad  *
     35    1.2        ad  * Redistribution and use in source and binary forms, with or without
     36    1.2        ad  * modification, are permitted provided that the following conditions
     37    1.2        ad  * are met:
     38    1.2        ad  * 1. Redistributions of source code must retain the above copyright
     39    1.2        ad  *    notice, this list of conditions and the following disclaimer.
     40    1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     41    1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     42    1.2        ad  *    documentation and/or other materials provided with the distribution.
     43    1.2        ad  * 3. All advertising materials mentioning features or use of this software
     44    1.2        ad  *    must display the following acknowledgement:
     45    1.2        ad  *      This product includes software developed by the NetBSD
     46    1.2        ad  *      Foundation, Inc. and its contributors.
     47    1.2        ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48    1.2        ad  *    contributors may be used to endorse or promote products derived
     49    1.2        ad  *    from this software without specific prior written permission.
     50    1.2        ad  *
     51    1.2        ad  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52    1.2        ad  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53    1.2        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54    1.2        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55    1.2        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56    1.2        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57    1.2        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58    1.2        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59    1.2        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60    1.2        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61    1.2        ad  * SUCH DAMAGE.
     62    1.2        ad  */
     63    1.2        ad 
     64    1.2        ad #include <sys/cdefs.h>
     65  1.100       chs __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.100 2012/07/02 01:05:48 chs Exp $");
     66    1.2        ad 
     67    1.2        ad #include "opt_ddb.h"
     68    1.2        ad #include "opt_mpbios.h"		/* for MPDEBUG */
     69    1.2        ad #include "opt_mtrr.h"
     70    1.2        ad 
     71    1.2        ad #include "lapic.h"
     72    1.2        ad #include "ioapic.h"
     73    1.2        ad 
     74   1.62    bouyer #ifdef i386
     75   1.62    bouyer #include "npx.h"
     76   1.62    bouyer #endif
     77   1.62    bouyer 
     78    1.2        ad #include <sys/param.h>
     79    1.2        ad #include <sys/proc.h>
     80    1.2        ad #include <sys/systm.h>
     81    1.2        ad #include <sys/device.h>
     82   1.61    cegger #include <sys/kmem.h>
     83    1.9        ad #include <sys/cpu.h>
     84   1.93    jruoho #include <sys/cpufreq.h>
     85   1.98     rmind #include <sys/idle.h>
     86    1.9        ad #include <sys/atomic.h>
     87   1.35        ad #include <sys/reboot.h>
     88    1.2        ad 
     89   1.78  uebayasi #include <uvm/uvm.h>
     90    1.2        ad 
     91    1.2        ad #include <machine/cpufunc.h>
     92    1.2        ad #include <machine/cpuvar.h>
     93    1.2        ad #include <machine/pmap.h>
     94    1.2        ad #include <machine/vmparam.h>
     95    1.2        ad #include <machine/mpbiosvar.h>
     96    1.2        ad #include <machine/pcb.h>
     97    1.2        ad #include <machine/specialreg.h>
     98    1.2        ad #include <machine/segments.h>
     99    1.2        ad #include <machine/gdt.h>
    100    1.2        ad #include <machine/mtrr.h>
    101    1.2        ad #include <machine/pio.h>
    102   1.38        ad #include <machine/cpu_counter.h>
    103    1.2        ad 
    104    1.2        ad #ifdef i386
    105    1.2        ad #include <machine/tlog.h>
    106    1.2        ad #endif
    107    1.2        ad 
    108    1.2        ad #include <machine/apicvar.h>
    109    1.2        ad #include <machine/i82489reg.h>
    110    1.2        ad #include <machine/i82489var.h>
    111    1.2        ad 
    112    1.2        ad #include <dev/ic/mc146818reg.h>
    113    1.2        ad #include <i386/isa/nvram.h>
    114    1.2        ad #include <dev/isa/isareg.h>
    115    1.2        ad 
    116   1.38        ad #include "tsc.h"
    117   1.38        ad 
    118   1.87    jruoho static int	cpu_match(device_t, cfdata_t, void *);
    119   1.87    jruoho static void	cpu_attach(device_t, device_t, void *);
    120   1.87    jruoho static void	cpu_defer(device_t);
    121   1.87    jruoho static int	cpu_rescan(device_t, const char *, const int *);
    122   1.87    jruoho static void	cpu_childdetached(device_t, device_t);
    123   1.96    jruoho static bool	cpu_stop(device_t);
    124   1.69    dyoung static bool	cpu_suspend(device_t, const pmf_qual_t *);
    125   1.69    dyoung static bool	cpu_resume(device_t, const pmf_qual_t *);
    126   1.79    jruoho static bool	cpu_shutdown(device_t, int);
    127   1.12  jmcneill 
    128    1.2        ad struct cpu_softc {
    129   1.23      cube 	device_t sc_dev;		/* device tree glue */
    130    1.2        ad 	struct cpu_info *sc_info;	/* pointer to CPU info */
    131   1.20  jmcneill 	bool sc_wasonline;
    132    1.2        ad };
    133    1.2        ad 
    134   1.14     joerg int mp_cpu_start(struct cpu_info *, paddr_t);
    135    1.2        ad void mp_cpu_start_cleanup(struct cpu_info *);
    136    1.2        ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    137    1.2        ad 					    mp_cpu_start_cleanup };
    138    1.2        ad 
    139    1.2        ad 
    140   1.81  jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    141   1.81  jmcneill     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    142    1.2        ad 
    143    1.2        ad /*
    144    1.2        ad  * Statically-allocated CPU info for the primary CPU (or the only
    145    1.2        ad  * CPU, on uniprocessors).  The CPU info list is initialized to
    146    1.2        ad  * point at it.
    147    1.2        ad  */
    148    1.2        ad #ifdef TRAPLOG
    149    1.2        ad struct tlog tlog_primary;
    150    1.2        ad #endif
    151   1.21        ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    152    1.2        ad 	.ci_dev = 0,
    153    1.2        ad 	.ci_self = &cpu_info_primary,
    154    1.2        ad 	.ci_idepth = -1,
    155    1.2        ad 	.ci_curlwp = &lwp0,
    156   1.43        ad 	.ci_curldt = -1,
    157    1.2        ad #ifdef TRAPLOG
    158    1.2        ad 	.ci_tlog_base = &tlog_primary,
    159    1.2        ad #endif /* !TRAPLOG */
    160    1.2        ad };
    161    1.2        ad 
    162    1.2        ad struct cpu_info *cpu_info_list = &cpu_info_primary;
    163    1.2        ad 
    164   1.12  jmcneill static void	cpu_set_tss_gates(struct cpu_info *);
    165    1.2        ad 
    166    1.2        ad #ifdef i386
    167   1.15      yamt static void	tss_init(struct i386tss *, void *, void *);
    168    1.2        ad #endif
    169    1.2        ad 
    170   1.12  jmcneill static void	cpu_init_idle_lwp(struct cpu_info *);
    171   1.12  jmcneill 
    172   1.70       jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    173   1.70       jym 			  *	[0] basic features %edx
    174   1.70       jym 			  *	[1] basic features %ecx
    175   1.70       jym 			  *	[2] extended features %edx
    176   1.70       jym 			  *	[3] extended features %ecx
    177   1.70       jym 			  *	[4] VIA padlock features
    178   1.70       jym 			  */
    179   1.70       jym 
    180    1.2        ad extern char x86_64_doubleflt_stack[];
    181    1.2        ad 
    182   1.12  jmcneill bool x86_mp_online;
    183   1.12  jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    184   1.14     joerg static vaddr_t cmos_data_mapping;
    185   1.45        ad struct cpu_info *cpu_starting;
    186    1.2        ad 
    187    1.2        ad void    	cpu_hatch(void *);
    188    1.2        ad static void    	cpu_boot_secondary(struct cpu_info *ci);
    189    1.2        ad static void    	cpu_start_secondary(struct cpu_info *ci);
    190    1.2        ad static void	cpu_copy_trampoline(void);
    191    1.2        ad 
    192    1.2        ad /*
    193    1.2        ad  * Runs once per boot once multiprocessor goo has been detected and
    194    1.2        ad  * the local APIC on the boot processor has been mapped.
    195    1.2        ad  *
    196    1.2        ad  * Called from lapic_boot_init() (from mpbios_scan()).
    197    1.2        ad  */
    198    1.2        ad void
    199    1.9        ad cpu_init_first(void)
    200    1.2        ad {
    201    1.2        ad 
    202   1.45        ad 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    203    1.2        ad 	cpu_copy_trampoline();
    204   1.14     joerg 
    205   1.14     joerg 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    206   1.14     joerg 	if (cmos_data_mapping == 0)
    207   1.14     joerg 		panic("No KVA for page 0");
    208   1.64    cegger 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    209   1.14     joerg 	pmap_update(pmap_kernel());
    210    1.2        ad }
    211    1.2        ad 
    212   1.87    jruoho static int
    213   1.23      cube cpu_match(device_t parent, cfdata_t match, void *aux)
    214    1.2        ad {
    215    1.2        ad 
    216    1.2        ad 	return 1;
    217    1.2        ad }
    218    1.2        ad 
    219    1.2        ad static void
    220    1.2        ad cpu_vm_init(struct cpu_info *ci)
    221    1.2        ad {
    222    1.2        ad 	int ncolors = 2, i;
    223    1.2        ad 
    224    1.2        ad 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    225    1.2        ad 		struct x86_cache_info *cai;
    226    1.2        ad 		int tcolors;
    227    1.2        ad 
    228    1.2        ad 		cai = &ci->ci_cinfo[i];
    229    1.2        ad 
    230    1.2        ad 		tcolors = atop(cai->cai_totalsize);
    231    1.2        ad 		switch(cai->cai_associativity) {
    232    1.2        ad 		case 0xff:
    233    1.2        ad 			tcolors = 1; /* fully associative */
    234    1.2        ad 			break;
    235    1.2        ad 		case 0:
    236    1.2        ad 		case 1:
    237    1.2        ad 			break;
    238    1.2        ad 		default:
    239    1.2        ad 			tcolors /= cai->cai_associativity;
    240    1.2        ad 		}
    241    1.2        ad 		ncolors = max(ncolors, tcolors);
    242   1.32       tls 		/*
    243   1.32       tls 		 * If the desired number of colors is not a power of
    244   1.32       tls 		 * two, it won't be good.  Find the greatest power of
    245   1.32       tls 		 * two which is an even divisor of the number of colors,
    246   1.32       tls 		 * to preserve even coloring of pages.
    247   1.32       tls 		 */
    248   1.32       tls 		if (ncolors & (ncolors - 1) ) {
    249   1.32       tls 			int try, picked = 1;
    250   1.32       tls 			for (try = 1; try < ncolors; try *= 2) {
    251   1.32       tls 				if (ncolors % try == 0) picked = try;
    252   1.32       tls 			}
    253   1.32       tls 			if (picked == 1) {
    254   1.32       tls 				panic("desired number of cache colors %d is "
    255   1.32       tls 			      	" > 1, but not even!", ncolors);
    256   1.32       tls 			}
    257   1.32       tls 			ncolors = picked;
    258   1.32       tls 		}
    259    1.2        ad 	}
    260    1.2        ad 
    261    1.2        ad 	/*
    262   1.94       mrg 	 * Knowing the size of the largest cache on this CPU, potentially
    263   1.94       mrg 	 * re-color our pages.
    264    1.2        ad 	 */
    265   1.52        ad 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    266    1.2        ad 	uvm_page_recolor(ncolors);
    267   1.98     rmind 
    268   1.98     rmind 	pmap_tlb_cpu_init(ci);
    269    1.2        ad }
    270    1.2        ad 
    271   1.87    jruoho static void
    272   1.23      cube cpu_attach(device_t parent, device_t self, void *aux)
    273    1.2        ad {
    274   1.23      cube 	struct cpu_softc *sc = device_private(self);
    275    1.2        ad 	struct cpu_attach_args *caa = aux;
    276    1.2        ad 	struct cpu_info *ci;
    277   1.21        ad 	uintptr_t ptr;
    278    1.2        ad 	int cpunum = caa->cpu_number;
    279   1.51        ad 	static bool again;
    280    1.2        ad 
    281   1.23      cube 	sc->sc_dev = self;
    282   1.23      cube 
    283   1.98     rmind 	if (ncpu == maxcpus) {
    284   1.98     rmind #ifndef _LP64
    285   1.98     rmind 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    286   1.98     rmind #else
    287   1.98     rmind 		aprint_error(": too many CPUs\n");
    288   1.98     rmind #endif
    289   1.48        ad 		return;
    290   1.48        ad 	}
    291   1.48        ad 
    292    1.2        ad 	/*
    293    1.2        ad 	 * If we're an Application Processor, allocate a cpu_info
    294    1.2        ad 	 * structure, otherwise use the primary's.
    295    1.2        ad 	 */
    296    1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    297   1.36        ad 		if ((boothowto & RB_MD1) != 0) {
    298   1.35        ad 			aprint_error(": multiprocessor boot disabled\n");
    299   1.56  jmcneill 			if (!pmf_device_register(self, NULL, NULL))
    300   1.56  jmcneill 				aprint_error_dev(self,
    301   1.56  jmcneill 				    "couldn't establish power handler\n");
    302   1.35        ad 			return;
    303   1.35        ad 		}
    304    1.2        ad 		aprint_naive(": Application Processor\n");
    305   1.72     rmind 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    306   1.61    cegger 		    KM_SLEEP);
    307   1.67       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    308   1.43        ad 		ci->ci_curldt = -1;
    309    1.2        ad #ifdef TRAPLOG
    310   1.61    cegger 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    311    1.2        ad #endif
    312    1.2        ad 	} else {
    313    1.2        ad 		aprint_naive(": %s Processor\n",
    314    1.2        ad 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    315    1.2        ad 		ci = &cpu_info_primary;
    316    1.2        ad 		if (cpunum != lapic_cpu_number()) {
    317   1.51        ad 			/* XXX should be done earlier. */
    318   1.39        ad 			uint32_t reg;
    319   1.39        ad 			aprint_verbose("\n");
    320   1.47        ad 			aprint_verbose_dev(self, "running CPU at apic %d"
    321   1.47        ad 			    " instead of at expected %d", lapic_cpu_number(),
    322   1.23      cube 			    cpunum);
    323   1.39        ad 			reg = i82489_readreg(LAPIC_ID);
    324   1.39        ad 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    325   1.39        ad 			    (cpunum << LAPIC_ID_SHIFT));
    326    1.2        ad 		}
    327   1.47        ad 		if (cpunum != lapic_cpu_number()) {
    328   1.47        ad 			aprint_error_dev(self, "unable to reset apic id\n");
    329   1.47        ad 		}
    330    1.2        ad 	}
    331    1.2        ad 
    332    1.2        ad 	ci->ci_self = ci;
    333    1.2        ad 	sc->sc_info = ci;
    334    1.2        ad 	ci->ci_dev = self;
    335   1.74    jruoho 	ci->ci_acpiid = caa->cpu_id;
    336   1.42        ad 	ci->ci_cpuid = caa->cpu_number;
    337    1.2        ad 	ci->ci_func = caa->cpu_func;
    338    1.2        ad 
    339   1.55        ad 	/* Must be before mi_cpu_attach(). */
    340   1.55        ad 	cpu_vm_init(ci);
    341   1.55        ad 
    342    1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    343    1.2        ad 		int error;
    344    1.2        ad 
    345    1.2        ad 		error = mi_cpu_attach(ci);
    346    1.2        ad 		if (error != 0) {
    347    1.2        ad 			aprint_normal("\n");
    348   1.47        ad 			aprint_error_dev(self,
    349   1.30    cegger 			    "mi_cpu_attach failed with %d\n", error);
    350    1.2        ad 			return;
    351    1.2        ad 		}
    352   1.15      yamt 		cpu_init_tss(ci);
    353    1.2        ad 	} else {
    354    1.2        ad 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    355    1.2        ad 	}
    356    1.2        ad 
    357    1.2        ad 	pmap_reference(pmap_kernel());
    358    1.2        ad 	ci->ci_pmap = pmap_kernel();
    359    1.2        ad 	ci->ci_tlbstate = TLBSTATE_STALE;
    360    1.2        ad 
    361   1.51        ad 	/*
    362   1.51        ad 	 * Boot processor may not be attached first, but the below
    363   1.51        ad 	 * must be done to allow booting other processors.
    364   1.51        ad 	 */
    365   1.51        ad 	if (!again) {
    366   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    367   1.51        ad 		/* Basic init. */
    368    1.2        ad 		cpu_intr_init(ci);
    369   1.40        ad 		cpu_get_tsc_freq(ci);
    370    1.2        ad 		cpu_init(ci);
    371    1.2        ad 		cpu_set_tss_gates(ci);
    372    1.2        ad 		pmap_cpu_init_late(ci);
    373   1.51        ad 		if (caa->cpu_role != CPU_ROLE_SP) {
    374   1.51        ad 			/* Enable lapic. */
    375   1.51        ad 			lapic_enable();
    376   1.51        ad 			lapic_set_lvt();
    377   1.51        ad 			lapic_calibrate_timer(ci);
    378   1.51        ad 		}
    379   1.51        ad 		/* Make sure DELAY() is initialized. */
    380   1.51        ad 		DELAY(1);
    381   1.51        ad 		again = true;
    382   1.51        ad 	}
    383   1.51        ad 
    384   1.51        ad 	/* further PCB init done later. */
    385   1.51        ad 
    386   1.51        ad 	switch (caa->cpu_role) {
    387   1.51        ad 	case CPU_ROLE_SP:
    388   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    389   1.51        ad 		cpu_identify(ci);
    390   1.53        ad 		x86_errata();
    391   1.37     joerg 		x86_cpu_idle_init();
    392    1.2        ad 		break;
    393    1.2        ad 
    394    1.2        ad 	case CPU_ROLE_BP:
    395   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    396   1.40        ad 		cpu_identify(ci);
    397   1.53        ad 		x86_errata();
    398   1.37     joerg 		x86_cpu_idle_init();
    399    1.2        ad 		break;
    400    1.2        ad 
    401    1.2        ad 	case CPU_ROLE_AP:
    402    1.2        ad 		/*
    403    1.2        ad 		 * report on an AP
    404    1.2        ad 		 */
    405    1.2        ad 		cpu_intr_init(ci);
    406    1.2        ad 		gdt_alloc_cpu(ci);
    407    1.2        ad 		cpu_set_tss_gates(ci);
    408    1.2        ad 		pmap_cpu_init_late(ci);
    409    1.2        ad 		cpu_start_secondary(ci);
    410    1.2        ad 		if (ci->ci_flags & CPUF_PRESENT) {
    411   1.59    cegger 			struct cpu_info *tmp;
    412   1.59    cegger 
    413   1.40        ad 			cpu_identify(ci);
    414   1.59    cegger 			tmp = cpu_info_list;
    415   1.59    cegger 			while (tmp->ci_next)
    416   1.59    cegger 				tmp = tmp->ci_next;
    417   1.59    cegger 
    418   1.59    cegger 			tmp->ci_next = ci;
    419    1.2        ad 		}
    420    1.2        ad 		break;
    421    1.2        ad 
    422    1.2        ad 	default:
    423   1.28    cegger 		aprint_normal("\n");
    424    1.2        ad 		panic("unknown processor type??\n");
    425    1.2        ad 	}
    426   1.51        ad 
    427   1.71    cegger 	pat_init(ci);
    428    1.2        ad 
    429   1.79    jruoho 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    430   1.12  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    431   1.12  jmcneill 
    432    1.2        ad 	if (mp_verbose) {
    433    1.2        ad 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    434   1.65     rmind 		struct pcb *pcb = lwp_getpcb(l);
    435    1.2        ad 
    436   1.47        ad 		aprint_verbose_dev(self,
    437   1.28    cegger 		    "idle lwp at %p, idle sp at %p\n",
    438   1.28    cegger 		    l,
    439    1.2        ad #ifdef i386
    440   1.65     rmind 		    (void *)pcb->pcb_esp
    441    1.2        ad #else
    442   1.65     rmind 		    (void *)pcb->pcb_rsp
    443    1.2        ad #endif
    444    1.2        ad 		);
    445    1.2        ad 	}
    446   1.81  jmcneill 
    447   1.89    jruoho 	/*
    448   1.89    jruoho 	 * Postpone the "cpufeaturebus" scan.
    449   1.89    jruoho 	 * It is safe to scan the pseudo-bus
    450   1.89    jruoho 	 * only after all CPUs have attached.
    451   1.89    jruoho 	 */
    452   1.87    jruoho 	(void)config_defer(self, cpu_defer);
    453   1.87    jruoho }
    454   1.87    jruoho 
    455   1.87    jruoho static void
    456   1.87    jruoho cpu_defer(device_t self)
    457   1.87    jruoho {
    458   1.81  jmcneill 	cpu_rescan(self, NULL, NULL);
    459   1.81  jmcneill }
    460   1.81  jmcneill 
    461   1.87    jruoho static int
    462   1.81  jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
    463   1.81  jmcneill {
    464   1.83    jruoho 	struct cpu_softc *sc = device_private(self);
    465   1.81  jmcneill 	struct cpufeature_attach_args cfaa;
    466   1.81  jmcneill 	struct cpu_info *ci = sc->sc_info;
    467   1.81  jmcneill 
    468   1.81  jmcneill 	memset(&cfaa, 0, sizeof(cfaa));
    469   1.81  jmcneill 	cfaa.ci = ci;
    470   1.81  jmcneill 
    471   1.81  jmcneill 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    472   1.82    jruoho 
    473   1.83    jruoho 		if (ci->ci_frequency == NULL) {
    474   1.86    jruoho 			cfaa.name = "frequency";
    475   1.84    jruoho 			ci->ci_frequency = config_found_ia(self,
    476   1.84    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    477   1.84    jruoho 		}
    478   1.84    jruoho 
    479   1.81  jmcneill 		if (ci->ci_padlock == NULL) {
    480   1.81  jmcneill 			cfaa.name = "padlock";
    481   1.81  jmcneill 			ci->ci_padlock = config_found_ia(self,
    482   1.81  jmcneill 			    "cpufeaturebus", &cfaa, NULL);
    483   1.81  jmcneill 		}
    484   1.82    jruoho 
    485   1.86    jruoho 		if (ci->ci_temperature == NULL) {
    486   1.86    jruoho 			cfaa.name = "temperature";
    487   1.86    jruoho 			ci->ci_temperature = config_found_ia(self,
    488   1.85    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    489   1.85    jruoho 		}
    490   1.95  jmcneill 
    491   1.95  jmcneill 		if (ci->ci_vm == NULL) {
    492   1.95  jmcneill 			cfaa.name = "vm";
    493   1.95  jmcneill 			ci->ci_vm = config_found_ia(self,
    494   1.95  jmcneill 			    "cpufeaturebus", &cfaa, NULL);
    495   1.95  jmcneill 		}
    496   1.81  jmcneill 	}
    497   1.81  jmcneill 
    498   1.81  jmcneill 	return 0;
    499   1.81  jmcneill }
    500   1.81  jmcneill 
    501   1.87    jruoho static void
    502   1.81  jmcneill cpu_childdetached(device_t self, device_t child)
    503   1.81  jmcneill {
    504   1.81  jmcneill 	struct cpu_softc *sc = device_private(self);
    505   1.81  jmcneill 	struct cpu_info *ci = sc->sc_info;
    506   1.81  jmcneill 
    507   1.83    jruoho 	if (ci->ci_frequency == child)
    508   1.83    jruoho 		ci->ci_frequency = NULL;
    509   1.82    jruoho 
    510   1.81  jmcneill 	if (ci->ci_padlock == child)
    511   1.81  jmcneill 		ci->ci_padlock = NULL;
    512   1.83    jruoho 
    513   1.86    jruoho 	if (ci->ci_temperature == child)
    514   1.86    jruoho 		ci->ci_temperature = NULL;
    515   1.95  jmcneill 
    516   1.95  jmcneill 	if (ci->ci_vm == child)
    517   1.95  jmcneill 		ci->ci_vm = NULL;
    518    1.2        ad }
    519    1.2        ad 
    520    1.2        ad /*
    521    1.2        ad  * Initialize the processor appropriately.
    522    1.2        ad  */
    523    1.2        ad 
    524    1.2        ad void
    525    1.9        ad cpu_init(struct cpu_info *ci)
    526    1.2        ad {
    527    1.2        ad 
    528    1.2        ad 	lcr0(rcr0() | CR0_WP);
    529    1.2        ad 
    530    1.2        ad 	/*
    531    1.2        ad 	 * On a P6 or above, enable global TLB caching if the
    532    1.2        ad 	 * hardware supports it.
    533    1.2        ad 	 */
    534   1.70       jym 	if (cpu_feature[0] & CPUID_PGE)
    535    1.2        ad 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    536    1.2        ad 
    537    1.2        ad 	/*
    538    1.2        ad 	 * If we have FXSAVE/FXRESTOR, use them.
    539    1.2        ad 	 */
    540   1.70       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    541    1.2        ad 		lcr4(rcr4() | CR4_OSFXSR);
    542    1.2        ad 
    543    1.2        ad 		/*
    544    1.2        ad 		 * If we have SSE/SSE2, enable XMM exceptions.
    545    1.2        ad 		 */
    546   1.70       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    547    1.2        ad 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    548    1.2        ad 	}
    549    1.2        ad 
    550    1.2        ad #ifdef MTRR
    551    1.2        ad 	/*
    552    1.2        ad 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    553    1.2        ad 	 */
    554   1.70       jym 	if (cpu_feature[0] & CPUID_MTRR) {
    555    1.2        ad 		if ((ci->ci_flags & CPUF_AP) == 0)
    556    1.2        ad 			i686_mtrr_init_first();
    557    1.2        ad 		mtrr_init_cpu(ci);
    558    1.2        ad 	}
    559    1.2        ad 
    560    1.2        ad #ifdef i386
    561    1.2        ad 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    562    1.2        ad 		/*
    563    1.2        ad 		 * Must be a K6-2 Step >= 7 or a K6-III.
    564    1.2        ad 		 */
    565    1.2        ad 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    566    1.2        ad 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    567    1.2        ad 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    568    1.2        ad 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    569    1.2        ad 				mtrr_funcs = &k6_mtrr_funcs;
    570    1.2        ad 				k6_mtrr_init_first();
    571    1.2        ad 				mtrr_init_cpu(ci);
    572    1.2        ad 			}
    573    1.2        ad 		}
    574    1.2        ad 	}
    575    1.2        ad #endif	/* i386 */
    576    1.2        ad #endif /* MTRR */
    577    1.2        ad 
    578   1.38        ad 	if (ci != &cpu_info_primary) {
    579   1.38        ad 		/* Synchronize TSC again, and check for drift. */
    580   1.38        ad 		wbinvd();
    581   1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    582   1.38        ad 		tsc_sync_ap(ci);
    583   1.38        ad 	} else {
    584   1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    585   1.38        ad 	}
    586    1.2        ad }
    587    1.2        ad 
    588    1.2        ad void
    589   1.12  jmcneill cpu_boot_secondary_processors(void)
    590    1.2        ad {
    591    1.2        ad 	struct cpu_info *ci;
    592  1.100       chs 	kcpuset_t *cpus;
    593    1.2        ad 	u_long i;
    594    1.2        ad 
    595    1.5        ad 	/* Now that we know the number of CPUs, patch the text segment. */
    596   1.60        ad 	x86_patch(false);
    597    1.5        ad 
    598  1.100       chs 	kcpuset_create(&cpus, true);
    599  1.100       chs 	kcpuset_set(cpus, cpu_index(curcpu()));
    600  1.100       chs 	for (i = 0; i < maxcpus; i++) {
    601   1.57        ad 		ci = cpu_lookup(i);
    602    1.2        ad 		if (ci == NULL)
    603    1.2        ad 			continue;
    604    1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    605    1.2        ad 			continue;
    606    1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    607    1.2        ad 			continue;
    608    1.2        ad 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    609    1.2        ad 			continue;
    610    1.2        ad 		cpu_boot_secondary(ci);
    611  1.100       chs 		kcpuset_set(cpus, cpu_index(ci));
    612    1.2        ad 	}
    613  1.100       chs 	while (!kcpuset_match(cpus, kcpuset_running))
    614  1.100       chs 		;
    615  1.100       chs 	kcpuset_destroy(cpus);
    616    1.2        ad 
    617    1.2        ad 	x86_mp_online = true;
    618   1.38        ad 
    619   1.38        ad 	/* Now that we know about the TSC, attach the timecounter. */
    620   1.38        ad 	tsc_tc_init();
    621   1.55        ad 
    622   1.55        ad 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    623   1.70       jym 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
    624    1.2        ad }
    625    1.2        ad 
    626    1.2        ad static void
    627    1.2        ad cpu_init_idle_lwp(struct cpu_info *ci)
    628    1.2        ad {
    629    1.2        ad 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    630   1.65     rmind 	struct pcb *pcb = lwp_getpcb(l);
    631    1.2        ad 
    632    1.2        ad 	pcb->pcb_cr0 = rcr0();
    633    1.2        ad }
    634    1.2        ad 
    635    1.2        ad void
    636   1.12  jmcneill cpu_init_idle_lwps(void)
    637    1.2        ad {
    638    1.2        ad 	struct cpu_info *ci;
    639    1.2        ad 	u_long i;
    640    1.2        ad 
    641   1.54        ad 	for (i = 0; i < maxcpus; i++) {
    642   1.57        ad 		ci = cpu_lookup(i);
    643    1.2        ad 		if (ci == NULL)
    644    1.2        ad 			continue;
    645    1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    646    1.2        ad 			continue;
    647    1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    648    1.2        ad 			continue;
    649    1.2        ad 		cpu_init_idle_lwp(ci);
    650    1.2        ad 	}
    651    1.2        ad }
    652    1.2        ad 
    653    1.2        ad void
    654   1.12  jmcneill cpu_start_secondary(struct cpu_info *ci)
    655    1.2        ad {
    656   1.38        ad 	extern paddr_t mp_pdirpa;
    657   1.38        ad 	u_long psl;
    658    1.2        ad 	int i;
    659    1.2        ad 
    660   1.12  jmcneill 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    661    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    662    1.2        ad 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    663   1.45        ad 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    664   1.25        ad 		return;
    665   1.45        ad 	}
    666    1.2        ad 
    667    1.2        ad 	/*
    668   1.50        ad 	 * Wait for it to become ready.   Setting cpu_starting opens the
    669   1.50        ad 	 * initial gate and allows the AP to start soft initialization.
    670    1.2        ad 	 */
    671   1.50        ad 	KASSERT(cpu_starting == NULL);
    672   1.50        ad 	cpu_starting = ci;
    673   1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    674   1.24        ad #ifdef MPDEBUG
    675   1.24        ad 		extern int cpu_trace[3];
    676   1.24        ad 		static int otrace[3];
    677   1.24        ad 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    678   1.26    cegger 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    679   1.26    cegger 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    680   1.24        ad 			memcpy(otrace, cpu_trace, sizeof(otrace));
    681   1.24        ad 		}
    682   1.24        ad #endif
    683   1.11        ad 		i8254_delay(10);
    684    1.2        ad 	}
    685   1.38        ad 
    686    1.9        ad 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    687   1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    688    1.2        ad #if defined(MPDEBUG) && defined(DDB)
    689    1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    690    1.2        ad 		Debugger();
    691    1.2        ad #endif
    692   1.38        ad 	} else {
    693   1.38        ad 		/*
    694   1.68       jym 		 * Synchronize time stamp counters. Invalidate cache and do
    695   1.68       jym 		 * twice to try and minimize possible cache effects. Disable
    696   1.68       jym 		 * interrupts to try and rule out any external interference.
    697   1.38        ad 		 */
    698   1.38        ad 		psl = x86_read_psl();
    699   1.38        ad 		x86_disable_intr();
    700   1.38        ad 		wbinvd();
    701   1.38        ad 		tsc_sync_bp(ci);
    702   1.38        ad 		x86_write_psl(psl);
    703    1.2        ad 	}
    704    1.2        ad 
    705    1.2        ad 	CPU_START_CLEANUP(ci);
    706   1.45        ad 	cpu_starting = NULL;
    707    1.2        ad }
    708    1.2        ad 
    709    1.2        ad void
    710   1.12  jmcneill cpu_boot_secondary(struct cpu_info *ci)
    711    1.2        ad {
    712   1.38        ad 	int64_t drift;
    713   1.38        ad 	u_long psl;
    714    1.2        ad 	int i;
    715    1.2        ad 
    716    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    717   1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    718   1.11        ad 		i8254_delay(10);
    719    1.2        ad 	}
    720    1.9        ad 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    721   1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    722    1.2        ad #if defined(MPDEBUG) && defined(DDB)
    723    1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    724    1.2        ad 		Debugger();
    725    1.2        ad #endif
    726   1.38        ad 	} else {
    727   1.38        ad 		/* Synchronize TSC again, check for drift. */
    728   1.38        ad 		drift = ci->ci_data.cpu_cc_skew;
    729   1.38        ad 		psl = x86_read_psl();
    730   1.38        ad 		x86_disable_intr();
    731   1.38        ad 		wbinvd();
    732   1.38        ad 		tsc_sync_bp(ci);
    733   1.38        ad 		x86_write_psl(psl);
    734   1.38        ad 		drift -= ci->ci_data.cpu_cc_skew;
    735   1.38        ad 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    736   1.38        ad 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    737   1.38        ad 		tsc_sync_drift(drift);
    738    1.2        ad 	}
    739    1.2        ad }
    740    1.2        ad 
    741    1.2        ad /*
    742    1.2        ad  * The CPU ends up here when its ready to run
    743    1.2        ad  * This is called from code in mptramp.s; at this point, we are running
    744    1.2        ad  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    745    1.2        ad  * this processor will enter the idle loop and start looking for work.
    746    1.2        ad  */
    747    1.2        ad void
    748    1.2        ad cpu_hatch(void *v)
    749    1.2        ad {
    750    1.2        ad 	struct cpu_info *ci = (struct cpu_info *)v;
    751   1.65     rmind 	struct pcb *pcb;
    752    1.6        ad 	int s, i;
    753    1.2        ad 
    754   1.12  jmcneill 	cpu_init_msrs(ci, true);
    755   1.40        ad 	cpu_probe(ci);
    756   1.46        ad 
    757   1.46        ad 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    758   1.46        ad 	/* cpu_get_tsc_freq(ci); */
    759   1.38        ad 
    760    1.8        ad 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    761   1.38        ad 
    762   1.38        ad 	/*
    763   1.38        ad 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    764   1.38        ad 	 * to try and minimize possible cache effects.  Note that interrupts
    765   1.38        ad 	 * are off at this point.
    766   1.38        ad 	 */
    767   1.38        ad 	wbinvd();
    768    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    769   1.38        ad 	tsc_sync_ap(ci);
    770   1.38        ad 
    771   1.38        ad 	/*
    772   1.38        ad 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    773   1.38        ad 	 * in order to make the TSC drift as much as possible. so that
    774   1.38        ad 	 * we can detect it later.  If not available, try 'pause'.
    775   1.38        ad 	 * We'd like to use 'hlt', but we have interrupts off.
    776   1.38        ad 	 */
    777    1.6        ad 	while ((ci->ci_flags & CPUF_GO) == 0) {
    778   1.70       jym 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    779   1.38        ad 			x86_monitor(&ci->ci_flags, 0, 0);
    780   1.38        ad 			if ((ci->ci_flags & CPUF_GO) != 0) {
    781   1.38        ad 				continue;
    782   1.38        ad 			}
    783   1.38        ad 			x86_mwait(0, 0);
    784   1.38        ad 		} else {
    785   1.38        ad 			for (i = 10000; i != 0; i--) {
    786   1.38        ad 				x86_pause();
    787   1.38        ad 			}
    788   1.38        ad 		}
    789    1.6        ad 	}
    790    1.5        ad 
    791   1.26    cegger 	/* Because the text may have been patched in x86_patch(). */
    792    1.5        ad 	wbinvd();
    793    1.5        ad 	x86_flush();
    794   1.88     rmind 	tlbflushg();
    795    1.5        ad 
    796    1.8        ad 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    797    1.2        ad 
    798   1.73       jym #ifdef PAE
    799   1.73       jym 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    800   1.73       jym 	for (i = 0 ; i < PDP_SIZE; i++) {
    801   1.73       jym 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
    802   1.73       jym 	}
    803   1.73       jym 	lcr3(ci->ci_pae_l3_pdirpa);
    804   1.73       jym #else
    805   1.73       jym 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    806   1.73       jym #endif
    807   1.73       jym 
    808   1.65     rmind 	pcb = lwp_getpcb(curlwp);
    809   1.73       jym 	pcb->pcb_cr3 = rcr3();
    810   1.65     rmind 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    811   1.65     rmind 	lcr0(pcb->pcb_cr0);
    812   1.65     rmind 
    813    1.2        ad 	cpu_init_idt();
    814    1.8        ad 	gdt_init_cpu(ci);
    815    1.8        ad 	lapic_enable();
    816    1.2        ad 	lapic_set_lvt();
    817    1.8        ad 	lapic_initclocks();
    818    1.2        ad 
    819    1.2        ad #ifdef i386
    820   1.62    bouyer #if NNPX > 0
    821    1.2        ad 	npxinit(ci);
    822   1.62    bouyer #endif
    823    1.2        ad #else
    824    1.2        ad 	fpuinit(ci);
    825    1.4      yamt #endif
    826    1.2        ad 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    827   1.15      yamt 	ltr(ci->ci_tss_sel);
    828    1.2        ad 
    829    1.2        ad 	cpu_init(ci);
    830    1.7        ad 	cpu_get_tsc_freq(ci);
    831    1.2        ad 
    832    1.2        ad 	s = splhigh();
    833    1.2        ad #ifdef i386
    834    1.2        ad 	lapic_tpr = 0;
    835    1.2        ad #else
    836    1.2        ad 	lcr8(0);
    837    1.2        ad #endif
    838    1.3        ad 	x86_enable_intr();
    839    1.2        ad 	splx(s);
    840    1.6        ad 	x86_errata();
    841    1.2        ad 
    842   1.42        ad 	aprint_debug_dev(ci->ci_dev, "running\n");
    843   1.98     rmind 
    844   1.98     rmind 	idle_loop(NULL);
    845   1.98     rmind 	KASSERT(false);
    846    1.2        ad }
    847    1.2        ad 
    848    1.2        ad #if defined(DDB)
    849    1.2        ad 
    850    1.2        ad #include <ddb/db_output.h>
    851    1.2        ad #include <machine/db_machdep.h>
    852    1.2        ad 
    853    1.2        ad /*
    854    1.2        ad  * Dump CPU information from ddb.
    855    1.2        ad  */
    856    1.2        ad void
    857    1.2        ad cpu_debug_dump(void)
    858    1.2        ad {
    859    1.2        ad 	struct cpu_info *ci;
    860    1.2        ad 	CPU_INFO_ITERATOR cii;
    861    1.2        ad 
    862   1.29      yamt 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    863    1.2        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    864    1.2        ad 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    865    1.2        ad 		    ci,
    866   1.27    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    867    1.2        ad 		    (long)ci->ci_cpuid,
    868    1.2        ad 		    ci->ci_flags, ci->ci_ipis,
    869    1.2        ad 		    ci->ci_curlwp,
    870    1.2        ad 		    ci->ci_fpcurlwp);
    871    1.2        ad 	}
    872    1.2        ad }
    873    1.2        ad #endif
    874    1.2        ad 
    875    1.2        ad static void
    876   1.12  jmcneill cpu_copy_trampoline(void)
    877    1.2        ad {
    878    1.2        ad 	/*
    879    1.2        ad 	 * Copy boot code.
    880    1.2        ad 	 */
    881    1.2        ad 	extern u_char cpu_spinup_trampoline[];
    882    1.2        ad 	extern u_char cpu_spinup_trampoline_end[];
    883   1.12  jmcneill 
    884   1.12  jmcneill 	vaddr_t mp_trampoline_vaddr;
    885   1.12  jmcneill 
    886   1.12  jmcneill 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    887   1.12  jmcneill 	    UVM_KMF_VAONLY);
    888   1.12  jmcneill 
    889   1.12  jmcneill 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    890   1.64    cegger 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    891    1.2        ad 	pmap_update(pmap_kernel());
    892   1.12  jmcneill 	memcpy((void *)mp_trampoline_vaddr,
    893    1.2        ad 	    cpu_spinup_trampoline,
    894   1.26    cegger 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    895   1.12  jmcneill 
    896   1.12  jmcneill 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    897   1.12  jmcneill 	pmap_update(pmap_kernel());
    898   1.12  jmcneill 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    899    1.2        ad }
    900    1.2        ad 
    901    1.2        ad #ifdef i386
    902    1.2        ad static void
    903   1.15      yamt tss_init(struct i386tss *tss, void *stack, void *func)
    904    1.2        ad {
    905   1.73       jym 	KASSERT(curcpu()->ci_pmap == pmap_kernel());
    906   1.73       jym 
    907    1.2        ad 	memset(tss, 0, sizeof *tss);
    908    1.2        ad 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    909    1.2        ad 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    910    1.2        ad 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    911    1.2        ad 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    912    1.2        ad 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    913    1.2        ad 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    914   1.73       jym 	/* %cr3 contains the value associated to pmap_kernel */
    915   1.73       jym 	tss->tss_cr3 = rcr3();
    916    1.2        ad 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    917    1.2        ad 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    918    1.2        ad 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    919    1.2        ad 	tss->__tss_eip = (int)func;
    920    1.2        ad }
    921    1.2        ad 
    922    1.2        ad /* XXX */
    923    1.2        ad #define IDTVEC(name)	__CONCAT(X, name)
    924    1.2        ad typedef void (vector)(void);
    925    1.2        ad extern vector IDTVEC(tss_trap08);
    926    1.2        ad #ifdef DDB
    927    1.2        ad extern vector Xintrddbipi;
    928    1.2        ad extern int ddb_vec;
    929    1.2        ad #endif
    930    1.2        ad 
    931    1.2        ad static void
    932    1.2        ad cpu_set_tss_gates(struct cpu_info *ci)
    933    1.2        ad {
    934    1.2        ad 	struct segment_descriptor sd;
    935    1.2        ad 
    936    1.2        ad 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    937    1.2        ad 	    UVM_KMF_WIRED);
    938   1.15      yamt 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    939    1.2        ad 	    IDTVEC(tss_trap08));
    940    1.2        ad 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    941    1.2        ad 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    942    1.2        ad 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    943    1.2        ad 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    944    1.2        ad 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    945    1.2        ad 
    946   1.44        ad #if defined(DDB)
    947    1.2        ad 	/*
    948    1.2        ad 	 * Set up separate handler for the DDB IPI, so that it doesn't
    949    1.2        ad 	 * stomp on a possibly corrupted stack.
    950    1.2        ad 	 *
    951    1.2        ad 	 * XXX overwriting the gate set in db_machine_init.
    952    1.2        ad 	 * Should rearrange the code so that it's set only once.
    953    1.2        ad 	 */
    954    1.2        ad 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    955    1.2        ad 	    UVM_KMF_WIRED);
    956   1.15      yamt 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    957    1.2        ad 
    958    1.2        ad 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    959    1.2        ad 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    960    1.2        ad 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    961    1.2        ad 
    962    1.2        ad 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    963    1.2        ad 	    GSEL(GIPITSS_SEL, SEL_KPL));
    964    1.2        ad #endif
    965    1.2        ad }
    966    1.2        ad #else
    967    1.2        ad static void
    968    1.2        ad cpu_set_tss_gates(struct cpu_info *ci)
    969    1.2        ad {
    970    1.2        ad 
    971    1.2        ad }
    972    1.2        ad #endif	/* i386 */
    973    1.2        ad 
    974    1.2        ad int
    975   1.14     joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
    976    1.2        ad {
    977   1.44        ad 	unsigned short dwordptr[2];
    978    1.2        ad 	int error;
    979   1.14     joerg 
    980   1.14     joerg 	/*
    981   1.14     joerg 	 * Bootstrap code must be addressable in real mode
    982   1.14     joerg 	 * and it must be page aligned.
    983   1.14     joerg 	 */
    984   1.14     joerg 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    985    1.2        ad 
    986    1.2        ad 	/*
    987    1.2        ad 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    988    1.2        ad 	 */
    989    1.2        ad 
    990    1.2        ad 	outb(IO_RTC, NVRAM_RESET);
    991    1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    992    1.2        ad 
    993    1.2        ad 	/*
    994    1.2        ad 	 * "and the warm reset vector (DWORD based at 40:67) to point
    995    1.2        ad 	 * to the AP startup code ..."
    996    1.2        ad 	 */
    997    1.2        ad 
    998    1.2        ad 	dwordptr[0] = 0;
    999   1.14     joerg 	dwordptr[1] = target >> 4;
   1000    1.2        ad 
   1001   1.25        ad 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
   1002    1.2        ad 
   1003   1.70       jym 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
   1004   1.25        ad 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1005   1.25        ad 		return ENODEV;
   1006   1.25        ad 	}
   1007   1.25        ad 
   1008    1.2        ad 	/*
   1009   1.51        ad 	 * ... prior to executing the following sequence:".  We'll also add in
   1010   1.51        ad 	 * local cache flush, in case the BIOS has left the AP with its cache
   1011   1.51        ad 	 * disabled.  It may not be able to cope with MP coherency.
   1012    1.2        ad 	 */
   1013   1.51        ad 	wbinvd();
   1014    1.2        ad 
   1015    1.2        ad 	if (ci->ci_flags & CPUF_AP) {
   1016   1.42        ad 		error = x86_ipi_init(ci->ci_cpuid);
   1017   1.26    cegger 		if (error != 0) {
   1018   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1019   1.50        ad 			    __func__);
   1020    1.2        ad 			return error;
   1021   1.25        ad 		}
   1022   1.11        ad 		i8254_delay(10000);
   1023    1.2        ad 
   1024   1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1025   1.26    cegger 		if (error != 0) {
   1026   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1027   1.50        ad 			    __func__);
   1028   1.25        ad 			return error;
   1029   1.25        ad 		}
   1030   1.25        ad 		i8254_delay(200);
   1031    1.2        ad 
   1032   1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1033   1.26    cegger 		if (error != 0) {
   1034   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1035   1.50        ad 			    __func__);
   1036   1.25        ad 			return error;
   1037    1.2        ad 		}
   1038   1.25        ad 		i8254_delay(200);
   1039    1.2        ad 	}
   1040   1.44        ad 
   1041    1.2        ad 	return 0;
   1042    1.2        ad }
   1043    1.2        ad 
   1044    1.2        ad void
   1045    1.2        ad mp_cpu_start_cleanup(struct cpu_info *ci)
   1046    1.2        ad {
   1047    1.2        ad 	/*
   1048    1.2        ad 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1049    1.2        ad 	 */
   1050    1.2        ad 
   1051    1.2        ad 	outb(IO_RTC, NVRAM_RESET);
   1052    1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1053    1.2        ad }
   1054    1.2        ad 
   1055    1.2        ad #ifdef __x86_64__
   1056    1.2        ad typedef void (vector)(void);
   1057    1.2        ad extern vector Xsyscall, Xsyscall32;
   1058   1.70       jym #endif
   1059    1.2        ad 
   1060    1.2        ad void
   1061   1.12  jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
   1062    1.2        ad {
   1063   1.70       jym #ifdef __x86_64__
   1064    1.2        ad 	wrmsr(MSR_STAR,
   1065    1.2        ad 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1066    1.2        ad 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1067    1.2        ad 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1068    1.2        ad 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1069    1.2        ad 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
   1070    1.2        ad 
   1071   1.12  jmcneill 	if (full) {
   1072   1.12  jmcneill 		wrmsr(MSR_FSBASE, 0);
   1073   1.27    cegger 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1074   1.12  jmcneill 		wrmsr(MSR_KERNELGSBASE, 0);
   1075   1.12  jmcneill 	}
   1076   1.70       jym #endif	/* __x86_64__ */
   1077    1.2        ad 
   1078   1.70       jym 	if (cpu_feature[2] & CPUID_NOX)
   1079    1.2        ad 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1080    1.2        ad }
   1081    1.7        ad 
   1082   1.18     joerg void
   1083   1.18     joerg cpu_offline_md(void)
   1084   1.18     joerg {
   1085   1.18     joerg 	int s;
   1086   1.18     joerg 
   1087   1.18     joerg 	s = splhigh();
   1088   1.62    bouyer #ifdef i386
   1089   1.62    bouyer #if NNPX > 0
   1090   1.18     joerg 	npxsave_cpu(true);
   1091   1.62    bouyer #endif
   1092   1.18     joerg #else
   1093   1.18     joerg 	fpusave_cpu(true);
   1094   1.18     joerg #endif
   1095   1.18     joerg 	splx(s);
   1096   1.18     joerg }
   1097   1.18     joerg 
   1098   1.12  jmcneill /* XXX joerg restructure and restart CPUs individually */
   1099   1.12  jmcneill static bool
   1100   1.96    jruoho cpu_stop(device_t dv)
   1101   1.12  jmcneill {
   1102   1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1103   1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1104   1.18     joerg 	int err;
   1105   1.12  jmcneill 
   1106   1.96    jruoho 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1107   1.93    jruoho 
   1108   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1109   1.93    jruoho 		return true;
   1110   1.93    jruoho 
   1111   1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1112   1.12  jmcneill 		return true;
   1113   1.12  jmcneill 
   1114   1.20  jmcneill 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1115   1.17     joerg 
   1116   1.20  jmcneill 	if (sc->sc_wasonline) {
   1117   1.20  jmcneill 		mutex_enter(&cpu_lock);
   1118   1.58     rmind 		err = cpu_setstate(ci, false);
   1119   1.20  jmcneill 		mutex_exit(&cpu_lock);
   1120   1.79    jruoho 
   1121   1.93    jruoho 		if (err != 0)
   1122   1.20  jmcneill 			return false;
   1123   1.20  jmcneill 	}
   1124   1.17     joerg 
   1125   1.17     joerg 	return true;
   1126   1.12  jmcneill }
   1127   1.12  jmcneill 
   1128   1.12  jmcneill static bool
   1129   1.96    jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1130   1.96    jruoho {
   1131   1.96    jruoho 	struct cpu_softc *sc = device_private(dv);
   1132   1.96    jruoho 	struct cpu_info *ci = sc->sc_info;
   1133   1.96    jruoho 
   1134   1.96    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1135   1.96    jruoho 		return true;
   1136   1.96    jruoho 	else {
   1137   1.96    jruoho 		cpufreq_suspend(ci);
   1138   1.96    jruoho 	}
   1139   1.96    jruoho 
   1140   1.96    jruoho 	return cpu_stop(dv);
   1141   1.96    jruoho }
   1142   1.96    jruoho 
   1143   1.96    jruoho static bool
   1144   1.69    dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
   1145   1.12  jmcneill {
   1146   1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1147   1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1148   1.20  jmcneill 	int err = 0;
   1149   1.12  jmcneill 
   1150   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1151   1.12  jmcneill 		return true;
   1152   1.93    jruoho 
   1153   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1154   1.93    jruoho 		goto out;
   1155   1.93    jruoho 
   1156   1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1157   1.93    jruoho 		goto out;
   1158   1.12  jmcneill 
   1159   1.20  jmcneill 	if (sc->sc_wasonline) {
   1160   1.20  jmcneill 		mutex_enter(&cpu_lock);
   1161   1.58     rmind 		err = cpu_setstate(ci, true);
   1162   1.20  jmcneill 		mutex_exit(&cpu_lock);
   1163   1.20  jmcneill 	}
   1164   1.13     joerg 
   1165   1.93    jruoho out:
   1166   1.93    jruoho 	if (err != 0)
   1167   1.93    jruoho 		return false;
   1168   1.93    jruoho 
   1169   1.93    jruoho 	cpufreq_resume(ci);
   1170   1.93    jruoho 
   1171   1.93    jruoho 	return true;
   1172   1.12  jmcneill }
   1173   1.12  jmcneill 
   1174   1.79    jruoho static bool
   1175   1.79    jruoho cpu_shutdown(device_t dv, int how)
   1176   1.79    jruoho {
   1177   1.90    dyoung 	struct cpu_softc *sc = device_private(dv);
   1178   1.90    dyoung 	struct cpu_info *ci = sc->sc_info;
   1179   1.90    dyoung 
   1180   1.96    jruoho 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1181   1.90    dyoung 		return false;
   1182   1.90    dyoung 
   1183   1.96    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1184   1.96    jruoho 		return true;
   1185   1.96    jruoho 
   1186   1.96    jruoho 	return cpu_stop(dv);
   1187   1.79    jruoho }
   1188   1.79    jruoho 
   1189    1.7        ad void
   1190    1.7        ad cpu_get_tsc_freq(struct cpu_info *ci)
   1191    1.7        ad {
   1192    1.7        ad 	uint64_t last_tsc;
   1193    1.7        ad 
   1194   1.70       jym 	if (cpu_hascounter()) {
   1195   1.80    bouyer 		last_tsc = cpu_counter_serializing();
   1196    1.7        ad 		i8254_delay(100000);
   1197   1.80    bouyer 		ci->ci_data.cpu_cc_freq =
   1198   1.80    bouyer 		    (cpu_counter_serializing() - last_tsc) * 10;
   1199    1.7        ad 	}
   1200    1.7        ad }
   1201   1.37     joerg 
   1202   1.37     joerg void
   1203   1.37     joerg x86_cpu_idle_mwait(void)
   1204   1.37     joerg {
   1205   1.37     joerg 	struct cpu_info *ci = curcpu();
   1206   1.37     joerg 
   1207   1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1208   1.37     joerg 
   1209   1.37     joerg 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1210   1.37     joerg 	if (__predict_false(ci->ci_want_resched)) {
   1211   1.37     joerg 		return;
   1212   1.37     joerg 	}
   1213   1.37     joerg 	x86_mwait(0, 0);
   1214   1.37     joerg }
   1215   1.37     joerg 
   1216   1.37     joerg void
   1217   1.37     joerg x86_cpu_idle_halt(void)
   1218   1.37     joerg {
   1219   1.37     joerg 	struct cpu_info *ci = curcpu();
   1220   1.37     joerg 
   1221   1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1222   1.37     joerg 
   1223   1.37     joerg 	x86_disable_intr();
   1224   1.37     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1225   1.37     joerg 		x86_stihlt();
   1226   1.37     joerg 	} else {
   1227   1.37     joerg 		x86_enable_intr();
   1228   1.37     joerg 	}
   1229   1.37     joerg }
   1230   1.73       jym 
   1231   1.73       jym /*
   1232   1.73       jym  * Loads pmap for the current CPU.
   1233   1.73       jym  */
   1234   1.73       jym void
   1235   1.97    bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1236   1.73       jym {
   1237   1.73       jym #ifdef PAE
   1238   1.99      yamt 	struct cpu_info *ci = curcpu();
   1239   1.99      yamt 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1240   1.99      yamt 	int i;
   1241   1.73       jym 
   1242   1.99      yamt 	/*
   1243   1.99      yamt 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1244   1.99      yamt 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1245   1.99      yamt 	 * reload cr3.
   1246   1.99      yamt 	 */
   1247   1.99      yamt 	x86_disable_intr();
   1248   1.73       jym 	for (i = 0 ; i < PDP_SIZE; i++) {
   1249   1.73       jym 		l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
   1250   1.73       jym 	}
   1251   1.99      yamt 	x86_enable_intr();
   1252   1.73       jym 	tlbflush();
   1253   1.73       jym #else /* PAE */
   1254   1.73       jym 	lcr3(pmap_pdirpa(pmap, 0));
   1255   1.73       jym #endif /* PAE */
   1256   1.73       jym }
   1257   1.91    cherry 
   1258   1.91    cherry /*
   1259   1.91    cherry  * Notify all other cpus to halt.
   1260   1.91    cherry  */
   1261   1.91    cherry 
   1262   1.91    cherry void
   1263   1.92    cherry cpu_broadcast_halt(void)
   1264   1.91    cherry {
   1265   1.91    cherry 	x86_broadcast_ipi(X86_IPI_HALT);
   1266   1.91    cherry }
   1267   1.91    cherry 
   1268   1.91    cherry /*
   1269   1.91    cherry  * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
   1270   1.91    cherry  */
   1271   1.91    cherry 
   1272   1.91    cherry void
   1273   1.91    cherry cpu_kick(struct cpu_info *ci)
   1274   1.91    cherry {
   1275   1.91    cherry 	x86_send_ipi(ci, 0);
   1276   1.91    cherry }
   1277