cpu.c revision 1.100 1 1.100 chs /* $NetBSD: cpu.c,v 1.100 2012/07/02 01:05:48 chs Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.98 rmind * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.100 chs __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.100 2012/07/02 01:05:48 chs Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.2 ad
71 1.2 ad #include "lapic.h"
72 1.2 ad #include "ioapic.h"
73 1.2 ad
74 1.62 bouyer #ifdef i386
75 1.62 bouyer #include "npx.h"
76 1.62 bouyer #endif
77 1.62 bouyer
78 1.2 ad #include <sys/param.h>
79 1.2 ad #include <sys/proc.h>
80 1.2 ad #include <sys/systm.h>
81 1.2 ad #include <sys/device.h>
82 1.61 cegger #include <sys/kmem.h>
83 1.9 ad #include <sys/cpu.h>
84 1.93 jruoho #include <sys/cpufreq.h>
85 1.98 rmind #include <sys/idle.h>
86 1.9 ad #include <sys/atomic.h>
87 1.35 ad #include <sys/reboot.h>
88 1.2 ad
89 1.78 uebayasi #include <uvm/uvm.h>
90 1.2 ad
91 1.2 ad #include <machine/cpufunc.h>
92 1.2 ad #include <machine/cpuvar.h>
93 1.2 ad #include <machine/pmap.h>
94 1.2 ad #include <machine/vmparam.h>
95 1.2 ad #include <machine/mpbiosvar.h>
96 1.2 ad #include <machine/pcb.h>
97 1.2 ad #include <machine/specialreg.h>
98 1.2 ad #include <machine/segments.h>
99 1.2 ad #include <machine/gdt.h>
100 1.2 ad #include <machine/mtrr.h>
101 1.2 ad #include <machine/pio.h>
102 1.38 ad #include <machine/cpu_counter.h>
103 1.2 ad
104 1.2 ad #ifdef i386
105 1.2 ad #include <machine/tlog.h>
106 1.2 ad #endif
107 1.2 ad
108 1.2 ad #include <machine/apicvar.h>
109 1.2 ad #include <machine/i82489reg.h>
110 1.2 ad #include <machine/i82489var.h>
111 1.2 ad
112 1.2 ad #include <dev/ic/mc146818reg.h>
113 1.2 ad #include <i386/isa/nvram.h>
114 1.2 ad #include <dev/isa/isareg.h>
115 1.2 ad
116 1.38 ad #include "tsc.h"
117 1.38 ad
118 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
119 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
120 1.87 jruoho static void cpu_defer(device_t);
121 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
122 1.87 jruoho static void cpu_childdetached(device_t, device_t);
123 1.96 jruoho static bool cpu_stop(device_t);
124 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
125 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
126 1.79 jruoho static bool cpu_shutdown(device_t, int);
127 1.12 jmcneill
128 1.2 ad struct cpu_softc {
129 1.23 cube device_t sc_dev; /* device tree glue */
130 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
131 1.20 jmcneill bool sc_wasonline;
132 1.2 ad };
133 1.2 ad
134 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
135 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
136 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
137 1.2 ad mp_cpu_start_cleanup };
138 1.2 ad
139 1.2 ad
140 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
141 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
142 1.2 ad
143 1.2 ad /*
144 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
145 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
146 1.2 ad * point at it.
147 1.2 ad */
148 1.2 ad #ifdef TRAPLOG
149 1.2 ad struct tlog tlog_primary;
150 1.2 ad #endif
151 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
152 1.2 ad .ci_dev = 0,
153 1.2 ad .ci_self = &cpu_info_primary,
154 1.2 ad .ci_idepth = -1,
155 1.2 ad .ci_curlwp = &lwp0,
156 1.43 ad .ci_curldt = -1,
157 1.2 ad #ifdef TRAPLOG
158 1.2 ad .ci_tlog_base = &tlog_primary,
159 1.2 ad #endif /* !TRAPLOG */
160 1.2 ad };
161 1.2 ad
162 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
163 1.2 ad
164 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
165 1.2 ad
166 1.2 ad #ifdef i386
167 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
168 1.2 ad #endif
169 1.2 ad
170 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
171 1.12 jmcneill
172 1.70 jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
173 1.70 jym * [0] basic features %edx
174 1.70 jym * [1] basic features %ecx
175 1.70 jym * [2] extended features %edx
176 1.70 jym * [3] extended features %ecx
177 1.70 jym * [4] VIA padlock features
178 1.70 jym */
179 1.70 jym
180 1.2 ad extern char x86_64_doubleflt_stack[];
181 1.2 ad
182 1.12 jmcneill bool x86_mp_online;
183 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
184 1.14 joerg static vaddr_t cmos_data_mapping;
185 1.45 ad struct cpu_info *cpu_starting;
186 1.2 ad
187 1.2 ad void cpu_hatch(void *);
188 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
189 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
190 1.2 ad static void cpu_copy_trampoline(void);
191 1.2 ad
192 1.2 ad /*
193 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
194 1.2 ad * the local APIC on the boot processor has been mapped.
195 1.2 ad *
196 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
197 1.2 ad */
198 1.2 ad void
199 1.9 ad cpu_init_first(void)
200 1.2 ad {
201 1.2 ad
202 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
203 1.2 ad cpu_copy_trampoline();
204 1.14 joerg
205 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
206 1.14 joerg if (cmos_data_mapping == 0)
207 1.14 joerg panic("No KVA for page 0");
208 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
209 1.14 joerg pmap_update(pmap_kernel());
210 1.2 ad }
211 1.2 ad
212 1.87 jruoho static int
213 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
214 1.2 ad {
215 1.2 ad
216 1.2 ad return 1;
217 1.2 ad }
218 1.2 ad
219 1.2 ad static void
220 1.2 ad cpu_vm_init(struct cpu_info *ci)
221 1.2 ad {
222 1.2 ad int ncolors = 2, i;
223 1.2 ad
224 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
225 1.2 ad struct x86_cache_info *cai;
226 1.2 ad int tcolors;
227 1.2 ad
228 1.2 ad cai = &ci->ci_cinfo[i];
229 1.2 ad
230 1.2 ad tcolors = atop(cai->cai_totalsize);
231 1.2 ad switch(cai->cai_associativity) {
232 1.2 ad case 0xff:
233 1.2 ad tcolors = 1; /* fully associative */
234 1.2 ad break;
235 1.2 ad case 0:
236 1.2 ad case 1:
237 1.2 ad break;
238 1.2 ad default:
239 1.2 ad tcolors /= cai->cai_associativity;
240 1.2 ad }
241 1.2 ad ncolors = max(ncolors, tcolors);
242 1.32 tls /*
243 1.32 tls * If the desired number of colors is not a power of
244 1.32 tls * two, it won't be good. Find the greatest power of
245 1.32 tls * two which is an even divisor of the number of colors,
246 1.32 tls * to preserve even coloring of pages.
247 1.32 tls */
248 1.32 tls if (ncolors & (ncolors - 1) ) {
249 1.32 tls int try, picked = 1;
250 1.32 tls for (try = 1; try < ncolors; try *= 2) {
251 1.32 tls if (ncolors % try == 0) picked = try;
252 1.32 tls }
253 1.32 tls if (picked == 1) {
254 1.32 tls panic("desired number of cache colors %d is "
255 1.32 tls " > 1, but not even!", ncolors);
256 1.32 tls }
257 1.32 tls ncolors = picked;
258 1.32 tls }
259 1.2 ad }
260 1.2 ad
261 1.2 ad /*
262 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
263 1.94 mrg * re-color our pages.
264 1.2 ad */
265 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
266 1.2 ad uvm_page_recolor(ncolors);
267 1.98 rmind
268 1.98 rmind pmap_tlb_cpu_init(ci);
269 1.2 ad }
270 1.2 ad
271 1.87 jruoho static void
272 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
273 1.2 ad {
274 1.23 cube struct cpu_softc *sc = device_private(self);
275 1.2 ad struct cpu_attach_args *caa = aux;
276 1.2 ad struct cpu_info *ci;
277 1.21 ad uintptr_t ptr;
278 1.2 ad int cpunum = caa->cpu_number;
279 1.51 ad static bool again;
280 1.2 ad
281 1.23 cube sc->sc_dev = self;
282 1.23 cube
283 1.98 rmind if (ncpu == maxcpus) {
284 1.98 rmind #ifndef _LP64
285 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
286 1.98 rmind #else
287 1.98 rmind aprint_error(": too many CPUs\n");
288 1.98 rmind #endif
289 1.48 ad return;
290 1.48 ad }
291 1.48 ad
292 1.2 ad /*
293 1.2 ad * If we're an Application Processor, allocate a cpu_info
294 1.2 ad * structure, otherwise use the primary's.
295 1.2 ad */
296 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
297 1.36 ad if ((boothowto & RB_MD1) != 0) {
298 1.35 ad aprint_error(": multiprocessor boot disabled\n");
299 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
300 1.56 jmcneill aprint_error_dev(self,
301 1.56 jmcneill "couldn't establish power handler\n");
302 1.35 ad return;
303 1.35 ad }
304 1.2 ad aprint_naive(": Application Processor\n");
305 1.72 rmind ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
306 1.61 cegger KM_SLEEP);
307 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
308 1.43 ad ci->ci_curldt = -1;
309 1.2 ad #ifdef TRAPLOG
310 1.61 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
311 1.2 ad #endif
312 1.2 ad } else {
313 1.2 ad aprint_naive(": %s Processor\n",
314 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
315 1.2 ad ci = &cpu_info_primary;
316 1.2 ad if (cpunum != lapic_cpu_number()) {
317 1.51 ad /* XXX should be done earlier. */
318 1.39 ad uint32_t reg;
319 1.39 ad aprint_verbose("\n");
320 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
321 1.47 ad " instead of at expected %d", lapic_cpu_number(),
322 1.23 cube cpunum);
323 1.39 ad reg = i82489_readreg(LAPIC_ID);
324 1.39 ad i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
325 1.39 ad (cpunum << LAPIC_ID_SHIFT));
326 1.2 ad }
327 1.47 ad if (cpunum != lapic_cpu_number()) {
328 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
329 1.47 ad }
330 1.2 ad }
331 1.2 ad
332 1.2 ad ci->ci_self = ci;
333 1.2 ad sc->sc_info = ci;
334 1.2 ad ci->ci_dev = self;
335 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
336 1.42 ad ci->ci_cpuid = caa->cpu_number;
337 1.2 ad ci->ci_func = caa->cpu_func;
338 1.2 ad
339 1.55 ad /* Must be before mi_cpu_attach(). */
340 1.55 ad cpu_vm_init(ci);
341 1.55 ad
342 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
343 1.2 ad int error;
344 1.2 ad
345 1.2 ad error = mi_cpu_attach(ci);
346 1.2 ad if (error != 0) {
347 1.2 ad aprint_normal("\n");
348 1.47 ad aprint_error_dev(self,
349 1.30 cegger "mi_cpu_attach failed with %d\n", error);
350 1.2 ad return;
351 1.2 ad }
352 1.15 yamt cpu_init_tss(ci);
353 1.2 ad } else {
354 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
355 1.2 ad }
356 1.2 ad
357 1.2 ad pmap_reference(pmap_kernel());
358 1.2 ad ci->ci_pmap = pmap_kernel();
359 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
360 1.2 ad
361 1.51 ad /*
362 1.51 ad * Boot processor may not be attached first, but the below
363 1.51 ad * must be done to allow booting other processors.
364 1.51 ad */
365 1.51 ad if (!again) {
366 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
367 1.51 ad /* Basic init. */
368 1.2 ad cpu_intr_init(ci);
369 1.40 ad cpu_get_tsc_freq(ci);
370 1.2 ad cpu_init(ci);
371 1.2 ad cpu_set_tss_gates(ci);
372 1.2 ad pmap_cpu_init_late(ci);
373 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
374 1.51 ad /* Enable lapic. */
375 1.51 ad lapic_enable();
376 1.51 ad lapic_set_lvt();
377 1.51 ad lapic_calibrate_timer(ci);
378 1.51 ad }
379 1.51 ad /* Make sure DELAY() is initialized. */
380 1.51 ad DELAY(1);
381 1.51 ad again = true;
382 1.51 ad }
383 1.51 ad
384 1.51 ad /* further PCB init done later. */
385 1.51 ad
386 1.51 ad switch (caa->cpu_role) {
387 1.51 ad case CPU_ROLE_SP:
388 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
389 1.51 ad cpu_identify(ci);
390 1.53 ad x86_errata();
391 1.37 joerg x86_cpu_idle_init();
392 1.2 ad break;
393 1.2 ad
394 1.2 ad case CPU_ROLE_BP:
395 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
396 1.40 ad cpu_identify(ci);
397 1.53 ad x86_errata();
398 1.37 joerg x86_cpu_idle_init();
399 1.2 ad break;
400 1.2 ad
401 1.2 ad case CPU_ROLE_AP:
402 1.2 ad /*
403 1.2 ad * report on an AP
404 1.2 ad */
405 1.2 ad cpu_intr_init(ci);
406 1.2 ad gdt_alloc_cpu(ci);
407 1.2 ad cpu_set_tss_gates(ci);
408 1.2 ad pmap_cpu_init_late(ci);
409 1.2 ad cpu_start_secondary(ci);
410 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
411 1.59 cegger struct cpu_info *tmp;
412 1.59 cegger
413 1.40 ad cpu_identify(ci);
414 1.59 cegger tmp = cpu_info_list;
415 1.59 cegger while (tmp->ci_next)
416 1.59 cegger tmp = tmp->ci_next;
417 1.59 cegger
418 1.59 cegger tmp->ci_next = ci;
419 1.2 ad }
420 1.2 ad break;
421 1.2 ad
422 1.2 ad default:
423 1.28 cegger aprint_normal("\n");
424 1.2 ad panic("unknown processor type??\n");
425 1.2 ad }
426 1.51 ad
427 1.71 cegger pat_init(ci);
428 1.2 ad
429 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
430 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
431 1.12 jmcneill
432 1.2 ad if (mp_verbose) {
433 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
434 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
435 1.2 ad
436 1.47 ad aprint_verbose_dev(self,
437 1.28 cegger "idle lwp at %p, idle sp at %p\n",
438 1.28 cegger l,
439 1.2 ad #ifdef i386
440 1.65 rmind (void *)pcb->pcb_esp
441 1.2 ad #else
442 1.65 rmind (void *)pcb->pcb_rsp
443 1.2 ad #endif
444 1.2 ad );
445 1.2 ad }
446 1.81 jmcneill
447 1.89 jruoho /*
448 1.89 jruoho * Postpone the "cpufeaturebus" scan.
449 1.89 jruoho * It is safe to scan the pseudo-bus
450 1.89 jruoho * only after all CPUs have attached.
451 1.89 jruoho */
452 1.87 jruoho (void)config_defer(self, cpu_defer);
453 1.87 jruoho }
454 1.87 jruoho
455 1.87 jruoho static void
456 1.87 jruoho cpu_defer(device_t self)
457 1.87 jruoho {
458 1.81 jmcneill cpu_rescan(self, NULL, NULL);
459 1.81 jmcneill }
460 1.81 jmcneill
461 1.87 jruoho static int
462 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
463 1.81 jmcneill {
464 1.83 jruoho struct cpu_softc *sc = device_private(self);
465 1.81 jmcneill struct cpufeature_attach_args cfaa;
466 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
467 1.81 jmcneill
468 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
469 1.81 jmcneill cfaa.ci = ci;
470 1.81 jmcneill
471 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
472 1.82 jruoho
473 1.83 jruoho if (ci->ci_frequency == NULL) {
474 1.86 jruoho cfaa.name = "frequency";
475 1.84 jruoho ci->ci_frequency = config_found_ia(self,
476 1.84 jruoho "cpufeaturebus", &cfaa, NULL);
477 1.84 jruoho }
478 1.84 jruoho
479 1.81 jmcneill if (ci->ci_padlock == NULL) {
480 1.81 jmcneill cfaa.name = "padlock";
481 1.81 jmcneill ci->ci_padlock = config_found_ia(self,
482 1.81 jmcneill "cpufeaturebus", &cfaa, NULL);
483 1.81 jmcneill }
484 1.82 jruoho
485 1.86 jruoho if (ci->ci_temperature == NULL) {
486 1.86 jruoho cfaa.name = "temperature";
487 1.86 jruoho ci->ci_temperature = config_found_ia(self,
488 1.85 jruoho "cpufeaturebus", &cfaa, NULL);
489 1.85 jruoho }
490 1.95 jmcneill
491 1.95 jmcneill if (ci->ci_vm == NULL) {
492 1.95 jmcneill cfaa.name = "vm";
493 1.95 jmcneill ci->ci_vm = config_found_ia(self,
494 1.95 jmcneill "cpufeaturebus", &cfaa, NULL);
495 1.95 jmcneill }
496 1.81 jmcneill }
497 1.81 jmcneill
498 1.81 jmcneill return 0;
499 1.81 jmcneill }
500 1.81 jmcneill
501 1.87 jruoho static void
502 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
503 1.81 jmcneill {
504 1.81 jmcneill struct cpu_softc *sc = device_private(self);
505 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
506 1.81 jmcneill
507 1.83 jruoho if (ci->ci_frequency == child)
508 1.83 jruoho ci->ci_frequency = NULL;
509 1.82 jruoho
510 1.81 jmcneill if (ci->ci_padlock == child)
511 1.81 jmcneill ci->ci_padlock = NULL;
512 1.83 jruoho
513 1.86 jruoho if (ci->ci_temperature == child)
514 1.86 jruoho ci->ci_temperature = NULL;
515 1.95 jmcneill
516 1.95 jmcneill if (ci->ci_vm == child)
517 1.95 jmcneill ci->ci_vm = NULL;
518 1.2 ad }
519 1.2 ad
520 1.2 ad /*
521 1.2 ad * Initialize the processor appropriately.
522 1.2 ad */
523 1.2 ad
524 1.2 ad void
525 1.9 ad cpu_init(struct cpu_info *ci)
526 1.2 ad {
527 1.2 ad
528 1.2 ad lcr0(rcr0() | CR0_WP);
529 1.2 ad
530 1.2 ad /*
531 1.2 ad * On a P6 or above, enable global TLB caching if the
532 1.2 ad * hardware supports it.
533 1.2 ad */
534 1.70 jym if (cpu_feature[0] & CPUID_PGE)
535 1.2 ad lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
536 1.2 ad
537 1.2 ad /*
538 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
539 1.2 ad */
540 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
541 1.2 ad lcr4(rcr4() | CR4_OSFXSR);
542 1.2 ad
543 1.2 ad /*
544 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
545 1.2 ad */
546 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
547 1.2 ad lcr4(rcr4() | CR4_OSXMMEXCPT);
548 1.2 ad }
549 1.2 ad
550 1.2 ad #ifdef MTRR
551 1.2 ad /*
552 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
553 1.2 ad */
554 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
555 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
556 1.2 ad i686_mtrr_init_first();
557 1.2 ad mtrr_init_cpu(ci);
558 1.2 ad }
559 1.2 ad
560 1.2 ad #ifdef i386
561 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
562 1.2 ad /*
563 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
564 1.2 ad */
565 1.2 ad if (CPUID2FAMILY(ci->ci_signature) == 5) {
566 1.2 ad if (CPUID2MODEL(ci->ci_signature) > 8 ||
567 1.2 ad (CPUID2MODEL(ci->ci_signature) == 8 &&
568 1.2 ad CPUID2STEPPING(ci->ci_signature) >= 7)) {
569 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
570 1.2 ad k6_mtrr_init_first();
571 1.2 ad mtrr_init_cpu(ci);
572 1.2 ad }
573 1.2 ad }
574 1.2 ad }
575 1.2 ad #endif /* i386 */
576 1.2 ad #endif /* MTRR */
577 1.2 ad
578 1.38 ad if (ci != &cpu_info_primary) {
579 1.38 ad /* Synchronize TSC again, and check for drift. */
580 1.38 ad wbinvd();
581 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
582 1.38 ad tsc_sync_ap(ci);
583 1.38 ad } else {
584 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
585 1.38 ad }
586 1.2 ad }
587 1.2 ad
588 1.2 ad void
589 1.12 jmcneill cpu_boot_secondary_processors(void)
590 1.2 ad {
591 1.2 ad struct cpu_info *ci;
592 1.100 chs kcpuset_t *cpus;
593 1.2 ad u_long i;
594 1.2 ad
595 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
596 1.60 ad x86_patch(false);
597 1.5 ad
598 1.100 chs kcpuset_create(&cpus, true);
599 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
600 1.100 chs for (i = 0; i < maxcpus; i++) {
601 1.57 ad ci = cpu_lookup(i);
602 1.2 ad if (ci == NULL)
603 1.2 ad continue;
604 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
605 1.2 ad continue;
606 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
607 1.2 ad continue;
608 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
609 1.2 ad continue;
610 1.2 ad cpu_boot_secondary(ci);
611 1.100 chs kcpuset_set(cpus, cpu_index(ci));
612 1.2 ad }
613 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
614 1.100 chs ;
615 1.100 chs kcpuset_destroy(cpus);
616 1.2 ad
617 1.2 ad x86_mp_online = true;
618 1.38 ad
619 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
620 1.38 ad tsc_tc_init();
621 1.55 ad
622 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
623 1.70 jym vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
624 1.2 ad }
625 1.2 ad
626 1.2 ad static void
627 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
628 1.2 ad {
629 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
630 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
631 1.2 ad
632 1.2 ad pcb->pcb_cr0 = rcr0();
633 1.2 ad }
634 1.2 ad
635 1.2 ad void
636 1.12 jmcneill cpu_init_idle_lwps(void)
637 1.2 ad {
638 1.2 ad struct cpu_info *ci;
639 1.2 ad u_long i;
640 1.2 ad
641 1.54 ad for (i = 0; i < maxcpus; i++) {
642 1.57 ad ci = cpu_lookup(i);
643 1.2 ad if (ci == NULL)
644 1.2 ad continue;
645 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
646 1.2 ad continue;
647 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
648 1.2 ad continue;
649 1.2 ad cpu_init_idle_lwp(ci);
650 1.2 ad }
651 1.2 ad }
652 1.2 ad
653 1.2 ad void
654 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
655 1.2 ad {
656 1.38 ad extern paddr_t mp_pdirpa;
657 1.38 ad u_long psl;
658 1.2 ad int i;
659 1.2 ad
660 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
661 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
662 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
663 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
664 1.25 ad return;
665 1.45 ad }
666 1.2 ad
667 1.2 ad /*
668 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
669 1.50 ad * initial gate and allows the AP to start soft initialization.
670 1.2 ad */
671 1.50 ad KASSERT(cpu_starting == NULL);
672 1.50 ad cpu_starting = ci;
673 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
674 1.24 ad #ifdef MPDEBUG
675 1.24 ad extern int cpu_trace[3];
676 1.24 ad static int otrace[3];
677 1.24 ad if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
678 1.26 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
679 1.26 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
680 1.24 ad memcpy(otrace, cpu_trace, sizeof(otrace));
681 1.24 ad }
682 1.24 ad #endif
683 1.11 ad i8254_delay(10);
684 1.2 ad }
685 1.38 ad
686 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
687 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
688 1.2 ad #if defined(MPDEBUG) && defined(DDB)
689 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
690 1.2 ad Debugger();
691 1.2 ad #endif
692 1.38 ad } else {
693 1.38 ad /*
694 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
695 1.68 jym * twice to try and minimize possible cache effects. Disable
696 1.68 jym * interrupts to try and rule out any external interference.
697 1.38 ad */
698 1.38 ad psl = x86_read_psl();
699 1.38 ad x86_disable_intr();
700 1.38 ad wbinvd();
701 1.38 ad tsc_sync_bp(ci);
702 1.38 ad x86_write_psl(psl);
703 1.2 ad }
704 1.2 ad
705 1.2 ad CPU_START_CLEANUP(ci);
706 1.45 ad cpu_starting = NULL;
707 1.2 ad }
708 1.2 ad
709 1.2 ad void
710 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
711 1.2 ad {
712 1.38 ad int64_t drift;
713 1.38 ad u_long psl;
714 1.2 ad int i;
715 1.2 ad
716 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
717 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
718 1.11 ad i8254_delay(10);
719 1.2 ad }
720 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
721 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
722 1.2 ad #if defined(MPDEBUG) && defined(DDB)
723 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
724 1.2 ad Debugger();
725 1.2 ad #endif
726 1.38 ad } else {
727 1.38 ad /* Synchronize TSC again, check for drift. */
728 1.38 ad drift = ci->ci_data.cpu_cc_skew;
729 1.38 ad psl = x86_read_psl();
730 1.38 ad x86_disable_intr();
731 1.38 ad wbinvd();
732 1.38 ad tsc_sync_bp(ci);
733 1.38 ad x86_write_psl(psl);
734 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
735 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
736 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
737 1.38 ad tsc_sync_drift(drift);
738 1.2 ad }
739 1.2 ad }
740 1.2 ad
741 1.2 ad /*
742 1.2 ad * The CPU ends up here when its ready to run
743 1.2 ad * This is called from code in mptramp.s; at this point, we are running
744 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
745 1.2 ad * this processor will enter the idle loop and start looking for work.
746 1.2 ad */
747 1.2 ad void
748 1.2 ad cpu_hatch(void *v)
749 1.2 ad {
750 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
751 1.65 rmind struct pcb *pcb;
752 1.6 ad int s, i;
753 1.2 ad
754 1.12 jmcneill cpu_init_msrs(ci, true);
755 1.40 ad cpu_probe(ci);
756 1.46 ad
757 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
758 1.46 ad /* cpu_get_tsc_freq(ci); */
759 1.38 ad
760 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
761 1.38 ad
762 1.38 ad /*
763 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
764 1.38 ad * to try and minimize possible cache effects. Note that interrupts
765 1.38 ad * are off at this point.
766 1.38 ad */
767 1.38 ad wbinvd();
768 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
769 1.38 ad tsc_sync_ap(ci);
770 1.38 ad
771 1.38 ad /*
772 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
773 1.38 ad * in order to make the TSC drift as much as possible. so that
774 1.38 ad * we can detect it later. If not available, try 'pause'.
775 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
776 1.38 ad */
777 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
778 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
779 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
780 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
781 1.38 ad continue;
782 1.38 ad }
783 1.38 ad x86_mwait(0, 0);
784 1.38 ad } else {
785 1.38 ad for (i = 10000; i != 0; i--) {
786 1.38 ad x86_pause();
787 1.38 ad }
788 1.38 ad }
789 1.6 ad }
790 1.5 ad
791 1.26 cegger /* Because the text may have been patched in x86_patch(). */
792 1.5 ad wbinvd();
793 1.5 ad x86_flush();
794 1.88 rmind tlbflushg();
795 1.5 ad
796 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
797 1.2 ad
798 1.73 jym #ifdef PAE
799 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
800 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
801 1.73 jym l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
802 1.73 jym }
803 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
804 1.73 jym #else
805 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
806 1.73 jym #endif
807 1.73 jym
808 1.65 rmind pcb = lwp_getpcb(curlwp);
809 1.73 jym pcb->pcb_cr3 = rcr3();
810 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
811 1.65 rmind lcr0(pcb->pcb_cr0);
812 1.65 rmind
813 1.2 ad cpu_init_idt();
814 1.8 ad gdt_init_cpu(ci);
815 1.8 ad lapic_enable();
816 1.2 ad lapic_set_lvt();
817 1.8 ad lapic_initclocks();
818 1.2 ad
819 1.2 ad #ifdef i386
820 1.62 bouyer #if NNPX > 0
821 1.2 ad npxinit(ci);
822 1.62 bouyer #endif
823 1.2 ad #else
824 1.2 ad fpuinit(ci);
825 1.4 yamt #endif
826 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
827 1.15 yamt ltr(ci->ci_tss_sel);
828 1.2 ad
829 1.2 ad cpu_init(ci);
830 1.7 ad cpu_get_tsc_freq(ci);
831 1.2 ad
832 1.2 ad s = splhigh();
833 1.2 ad #ifdef i386
834 1.2 ad lapic_tpr = 0;
835 1.2 ad #else
836 1.2 ad lcr8(0);
837 1.2 ad #endif
838 1.3 ad x86_enable_intr();
839 1.2 ad splx(s);
840 1.6 ad x86_errata();
841 1.2 ad
842 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
843 1.98 rmind
844 1.98 rmind idle_loop(NULL);
845 1.98 rmind KASSERT(false);
846 1.2 ad }
847 1.2 ad
848 1.2 ad #if defined(DDB)
849 1.2 ad
850 1.2 ad #include <ddb/db_output.h>
851 1.2 ad #include <machine/db_machdep.h>
852 1.2 ad
853 1.2 ad /*
854 1.2 ad * Dump CPU information from ddb.
855 1.2 ad */
856 1.2 ad void
857 1.2 ad cpu_debug_dump(void)
858 1.2 ad {
859 1.2 ad struct cpu_info *ci;
860 1.2 ad CPU_INFO_ITERATOR cii;
861 1.2 ad
862 1.29 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
863 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
864 1.2 ad db_printf("%p %s %ld %x %x %10p %10p\n",
865 1.2 ad ci,
866 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
867 1.2 ad (long)ci->ci_cpuid,
868 1.2 ad ci->ci_flags, ci->ci_ipis,
869 1.2 ad ci->ci_curlwp,
870 1.2 ad ci->ci_fpcurlwp);
871 1.2 ad }
872 1.2 ad }
873 1.2 ad #endif
874 1.2 ad
875 1.2 ad static void
876 1.12 jmcneill cpu_copy_trampoline(void)
877 1.2 ad {
878 1.2 ad /*
879 1.2 ad * Copy boot code.
880 1.2 ad */
881 1.2 ad extern u_char cpu_spinup_trampoline[];
882 1.2 ad extern u_char cpu_spinup_trampoline_end[];
883 1.12 jmcneill
884 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
885 1.12 jmcneill
886 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
887 1.12 jmcneill UVM_KMF_VAONLY);
888 1.12 jmcneill
889 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
890 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
891 1.2 ad pmap_update(pmap_kernel());
892 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
893 1.2 ad cpu_spinup_trampoline,
894 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
895 1.12 jmcneill
896 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
897 1.12 jmcneill pmap_update(pmap_kernel());
898 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
899 1.2 ad }
900 1.2 ad
901 1.2 ad #ifdef i386
902 1.2 ad static void
903 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
904 1.2 ad {
905 1.73 jym KASSERT(curcpu()->ci_pmap == pmap_kernel());
906 1.73 jym
907 1.2 ad memset(tss, 0, sizeof *tss);
908 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
909 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
910 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
911 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
912 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
913 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
914 1.73 jym /* %cr3 contains the value associated to pmap_kernel */
915 1.73 jym tss->tss_cr3 = rcr3();
916 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
917 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
918 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
919 1.2 ad tss->__tss_eip = (int)func;
920 1.2 ad }
921 1.2 ad
922 1.2 ad /* XXX */
923 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
924 1.2 ad typedef void (vector)(void);
925 1.2 ad extern vector IDTVEC(tss_trap08);
926 1.2 ad #ifdef DDB
927 1.2 ad extern vector Xintrddbipi;
928 1.2 ad extern int ddb_vec;
929 1.2 ad #endif
930 1.2 ad
931 1.2 ad static void
932 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
933 1.2 ad {
934 1.2 ad struct segment_descriptor sd;
935 1.2 ad
936 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
937 1.2 ad UVM_KMF_WIRED);
938 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
939 1.2 ad IDTVEC(tss_trap08));
940 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
941 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
942 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
943 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
944 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
945 1.2 ad
946 1.44 ad #if defined(DDB)
947 1.2 ad /*
948 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
949 1.2 ad * stomp on a possibly corrupted stack.
950 1.2 ad *
951 1.2 ad * XXX overwriting the gate set in db_machine_init.
952 1.2 ad * Should rearrange the code so that it's set only once.
953 1.2 ad */
954 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
955 1.2 ad UVM_KMF_WIRED);
956 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
957 1.2 ad
958 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
959 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
960 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
961 1.2 ad
962 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
963 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
964 1.2 ad #endif
965 1.2 ad }
966 1.2 ad #else
967 1.2 ad static void
968 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
969 1.2 ad {
970 1.2 ad
971 1.2 ad }
972 1.2 ad #endif /* i386 */
973 1.2 ad
974 1.2 ad int
975 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
976 1.2 ad {
977 1.44 ad unsigned short dwordptr[2];
978 1.2 ad int error;
979 1.14 joerg
980 1.14 joerg /*
981 1.14 joerg * Bootstrap code must be addressable in real mode
982 1.14 joerg * and it must be page aligned.
983 1.14 joerg */
984 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
985 1.2 ad
986 1.2 ad /*
987 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
988 1.2 ad */
989 1.2 ad
990 1.2 ad outb(IO_RTC, NVRAM_RESET);
991 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
992 1.2 ad
993 1.2 ad /*
994 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
995 1.2 ad * to the AP startup code ..."
996 1.2 ad */
997 1.2 ad
998 1.2 ad dwordptr[0] = 0;
999 1.14 joerg dwordptr[1] = target >> 4;
1000 1.2 ad
1001 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1002 1.2 ad
1003 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
1004 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
1005 1.25 ad return ENODEV;
1006 1.25 ad }
1007 1.25 ad
1008 1.2 ad /*
1009 1.51 ad * ... prior to executing the following sequence:". We'll also add in
1010 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
1011 1.51 ad * disabled. It may not be able to cope with MP coherency.
1012 1.2 ad */
1013 1.51 ad wbinvd();
1014 1.2 ad
1015 1.2 ad if (ci->ci_flags & CPUF_AP) {
1016 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
1017 1.26 cegger if (error != 0) {
1018 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1019 1.50 ad __func__);
1020 1.2 ad return error;
1021 1.25 ad }
1022 1.11 ad i8254_delay(10000);
1023 1.2 ad
1024 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1025 1.26 cegger if (error != 0) {
1026 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1027 1.50 ad __func__);
1028 1.25 ad return error;
1029 1.25 ad }
1030 1.25 ad i8254_delay(200);
1031 1.2 ad
1032 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1033 1.26 cegger if (error != 0) {
1034 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1035 1.50 ad __func__);
1036 1.25 ad return error;
1037 1.2 ad }
1038 1.25 ad i8254_delay(200);
1039 1.2 ad }
1040 1.44 ad
1041 1.2 ad return 0;
1042 1.2 ad }
1043 1.2 ad
1044 1.2 ad void
1045 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1046 1.2 ad {
1047 1.2 ad /*
1048 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1049 1.2 ad */
1050 1.2 ad
1051 1.2 ad outb(IO_RTC, NVRAM_RESET);
1052 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1053 1.2 ad }
1054 1.2 ad
1055 1.2 ad #ifdef __x86_64__
1056 1.2 ad typedef void (vector)(void);
1057 1.2 ad extern vector Xsyscall, Xsyscall32;
1058 1.70 jym #endif
1059 1.2 ad
1060 1.2 ad void
1061 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1062 1.2 ad {
1063 1.70 jym #ifdef __x86_64__
1064 1.2 ad wrmsr(MSR_STAR,
1065 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1066 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1067 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1068 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1069 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1070 1.2 ad
1071 1.12 jmcneill if (full) {
1072 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1073 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1074 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1075 1.12 jmcneill }
1076 1.70 jym #endif /* __x86_64__ */
1077 1.2 ad
1078 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1079 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1080 1.2 ad }
1081 1.7 ad
1082 1.18 joerg void
1083 1.18 joerg cpu_offline_md(void)
1084 1.18 joerg {
1085 1.18 joerg int s;
1086 1.18 joerg
1087 1.18 joerg s = splhigh();
1088 1.62 bouyer #ifdef i386
1089 1.62 bouyer #if NNPX > 0
1090 1.18 joerg npxsave_cpu(true);
1091 1.62 bouyer #endif
1092 1.18 joerg #else
1093 1.18 joerg fpusave_cpu(true);
1094 1.18 joerg #endif
1095 1.18 joerg splx(s);
1096 1.18 joerg }
1097 1.18 joerg
1098 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1099 1.12 jmcneill static bool
1100 1.96 jruoho cpu_stop(device_t dv)
1101 1.12 jmcneill {
1102 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1103 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1104 1.18 joerg int err;
1105 1.12 jmcneill
1106 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1107 1.93 jruoho
1108 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1109 1.93 jruoho return true;
1110 1.93 jruoho
1111 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1112 1.12 jmcneill return true;
1113 1.12 jmcneill
1114 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1115 1.17 joerg
1116 1.20 jmcneill if (sc->sc_wasonline) {
1117 1.20 jmcneill mutex_enter(&cpu_lock);
1118 1.58 rmind err = cpu_setstate(ci, false);
1119 1.20 jmcneill mutex_exit(&cpu_lock);
1120 1.79 jruoho
1121 1.93 jruoho if (err != 0)
1122 1.20 jmcneill return false;
1123 1.20 jmcneill }
1124 1.17 joerg
1125 1.17 joerg return true;
1126 1.12 jmcneill }
1127 1.12 jmcneill
1128 1.12 jmcneill static bool
1129 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1130 1.96 jruoho {
1131 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1132 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1133 1.96 jruoho
1134 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1135 1.96 jruoho return true;
1136 1.96 jruoho else {
1137 1.96 jruoho cpufreq_suspend(ci);
1138 1.96 jruoho }
1139 1.96 jruoho
1140 1.96 jruoho return cpu_stop(dv);
1141 1.96 jruoho }
1142 1.96 jruoho
1143 1.96 jruoho static bool
1144 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1145 1.12 jmcneill {
1146 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1147 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1148 1.20 jmcneill int err = 0;
1149 1.12 jmcneill
1150 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1151 1.12 jmcneill return true;
1152 1.93 jruoho
1153 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1154 1.93 jruoho goto out;
1155 1.93 jruoho
1156 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1157 1.93 jruoho goto out;
1158 1.12 jmcneill
1159 1.20 jmcneill if (sc->sc_wasonline) {
1160 1.20 jmcneill mutex_enter(&cpu_lock);
1161 1.58 rmind err = cpu_setstate(ci, true);
1162 1.20 jmcneill mutex_exit(&cpu_lock);
1163 1.20 jmcneill }
1164 1.13 joerg
1165 1.93 jruoho out:
1166 1.93 jruoho if (err != 0)
1167 1.93 jruoho return false;
1168 1.93 jruoho
1169 1.93 jruoho cpufreq_resume(ci);
1170 1.93 jruoho
1171 1.93 jruoho return true;
1172 1.12 jmcneill }
1173 1.12 jmcneill
1174 1.79 jruoho static bool
1175 1.79 jruoho cpu_shutdown(device_t dv, int how)
1176 1.79 jruoho {
1177 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1178 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1179 1.90 dyoung
1180 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1181 1.90 dyoung return false;
1182 1.90 dyoung
1183 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1184 1.96 jruoho return true;
1185 1.96 jruoho
1186 1.96 jruoho return cpu_stop(dv);
1187 1.79 jruoho }
1188 1.79 jruoho
1189 1.7 ad void
1190 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1191 1.7 ad {
1192 1.7 ad uint64_t last_tsc;
1193 1.7 ad
1194 1.70 jym if (cpu_hascounter()) {
1195 1.80 bouyer last_tsc = cpu_counter_serializing();
1196 1.7 ad i8254_delay(100000);
1197 1.80 bouyer ci->ci_data.cpu_cc_freq =
1198 1.80 bouyer (cpu_counter_serializing() - last_tsc) * 10;
1199 1.7 ad }
1200 1.7 ad }
1201 1.37 joerg
1202 1.37 joerg void
1203 1.37 joerg x86_cpu_idle_mwait(void)
1204 1.37 joerg {
1205 1.37 joerg struct cpu_info *ci = curcpu();
1206 1.37 joerg
1207 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1208 1.37 joerg
1209 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1210 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1211 1.37 joerg return;
1212 1.37 joerg }
1213 1.37 joerg x86_mwait(0, 0);
1214 1.37 joerg }
1215 1.37 joerg
1216 1.37 joerg void
1217 1.37 joerg x86_cpu_idle_halt(void)
1218 1.37 joerg {
1219 1.37 joerg struct cpu_info *ci = curcpu();
1220 1.37 joerg
1221 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1222 1.37 joerg
1223 1.37 joerg x86_disable_intr();
1224 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1225 1.37 joerg x86_stihlt();
1226 1.37 joerg } else {
1227 1.37 joerg x86_enable_intr();
1228 1.37 joerg }
1229 1.37 joerg }
1230 1.73 jym
1231 1.73 jym /*
1232 1.73 jym * Loads pmap for the current CPU.
1233 1.73 jym */
1234 1.73 jym void
1235 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1236 1.73 jym {
1237 1.73 jym #ifdef PAE
1238 1.99 yamt struct cpu_info *ci = curcpu();
1239 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1240 1.99 yamt int i;
1241 1.73 jym
1242 1.99 yamt /*
1243 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1244 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1245 1.99 yamt * reload cr3.
1246 1.99 yamt */
1247 1.99 yamt x86_disable_intr();
1248 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1249 1.73 jym l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1250 1.73 jym }
1251 1.99 yamt x86_enable_intr();
1252 1.73 jym tlbflush();
1253 1.73 jym #else /* PAE */
1254 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1255 1.73 jym #endif /* PAE */
1256 1.73 jym }
1257 1.91 cherry
1258 1.91 cherry /*
1259 1.91 cherry * Notify all other cpus to halt.
1260 1.91 cherry */
1261 1.91 cherry
1262 1.91 cherry void
1263 1.92 cherry cpu_broadcast_halt(void)
1264 1.91 cherry {
1265 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1266 1.91 cherry }
1267 1.91 cherry
1268 1.91 cherry /*
1269 1.91 cherry * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1270 1.91 cherry */
1271 1.91 cherry
1272 1.91 cherry void
1273 1.91 cherry cpu_kick(struct cpu_info *ci)
1274 1.91 cherry {
1275 1.91 cherry x86_send_ipi(ci, 0);
1276 1.91 cherry }
1277