Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.106
      1  1.106   msaitoh /*	$NetBSD: cpu.c,v 1.106 2013/11/15 08:47:55 msaitoh Exp $	*/
      2    1.2        ad 
      3    1.2        ad /*-
      4   1.98     rmind  * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
      5    1.2        ad  * All rights reserved.
      6    1.2        ad  *
      7    1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.11        ad  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9    1.2        ad  *
     10    1.2        ad  * Redistribution and use in source and binary forms, with or without
     11    1.2        ad  * modification, are permitted provided that the following conditions
     12    1.2        ad  * are met:
     13    1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14    1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15    1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17    1.2        ad  *    documentation and/or other materials provided with the distribution.
     18    1.2        ad  *
     19    1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30    1.2        ad  */
     31    1.2        ad 
     32    1.2        ad /*
     33    1.2        ad  * Copyright (c) 1999 Stefan Grefen
     34    1.2        ad  *
     35    1.2        ad  * Redistribution and use in source and binary forms, with or without
     36    1.2        ad  * modification, are permitted provided that the following conditions
     37    1.2        ad  * are met:
     38    1.2        ad  * 1. Redistributions of source code must retain the above copyright
     39    1.2        ad  *    notice, this list of conditions and the following disclaimer.
     40    1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     41    1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     42    1.2        ad  *    documentation and/or other materials provided with the distribution.
     43    1.2        ad  * 3. All advertising materials mentioning features or use of this software
     44    1.2        ad  *    must display the following acknowledgement:
     45    1.2        ad  *      This product includes software developed by the NetBSD
     46    1.2        ad  *      Foundation, Inc. and its contributors.
     47    1.2        ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48    1.2        ad  *    contributors may be used to endorse or promote products derived
     49    1.2        ad  *    from this software without specific prior written permission.
     50    1.2        ad  *
     51    1.2        ad  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52    1.2        ad  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53    1.2        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54    1.2        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55    1.2        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56    1.2        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57    1.2        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58    1.2        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59    1.2        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60    1.2        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61    1.2        ad  * SUCH DAMAGE.
     62    1.2        ad  */
     63    1.2        ad 
     64    1.2        ad #include <sys/cdefs.h>
     65  1.106   msaitoh __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.106 2013/11/15 08:47:55 msaitoh Exp $");
     66    1.2        ad 
     67    1.2        ad #include "opt_ddb.h"
     68    1.2        ad #include "opt_mpbios.h"		/* for MPDEBUG */
     69    1.2        ad #include "opt_mtrr.h"
     70  1.101  kiyohara #include "opt_multiprocessor.h"
     71    1.2        ad 
     72    1.2        ad #include "lapic.h"
     73    1.2        ad #include "ioapic.h"
     74    1.2        ad 
     75   1.62    bouyer #ifdef i386
     76   1.62    bouyer #include "npx.h"
     77   1.62    bouyer #endif
     78   1.62    bouyer 
     79    1.2        ad #include <sys/param.h>
     80    1.2        ad #include <sys/proc.h>
     81    1.2        ad #include <sys/systm.h>
     82    1.2        ad #include <sys/device.h>
     83   1.61    cegger #include <sys/kmem.h>
     84    1.9        ad #include <sys/cpu.h>
     85   1.93    jruoho #include <sys/cpufreq.h>
     86   1.98     rmind #include <sys/idle.h>
     87    1.9        ad #include <sys/atomic.h>
     88   1.35        ad #include <sys/reboot.h>
     89    1.2        ad 
     90   1.78  uebayasi #include <uvm/uvm.h>
     91    1.2        ad 
     92  1.102  pgoyette #include "acpica.h"		/* for NACPICA, for mp_verbose */
     93  1.102  pgoyette 
     94    1.2        ad #include <machine/cpufunc.h>
     95    1.2        ad #include <machine/cpuvar.h>
     96    1.2        ad #include <machine/pmap.h>
     97    1.2        ad #include <machine/vmparam.h>
     98  1.102  pgoyette #if defined(MULTIPROCESSOR)
     99    1.2        ad #include <machine/mpbiosvar.h>
    100  1.101  kiyohara #endif
    101  1.102  pgoyette #include <machine/mpconfig.h>		/* for mp_verbose */
    102    1.2        ad #include <machine/pcb.h>
    103    1.2        ad #include <machine/specialreg.h>
    104    1.2        ad #include <machine/segments.h>
    105    1.2        ad #include <machine/gdt.h>
    106    1.2        ad #include <machine/mtrr.h>
    107    1.2        ad #include <machine/pio.h>
    108   1.38        ad #include <machine/cpu_counter.h>
    109    1.2        ad 
    110    1.2        ad #ifdef i386
    111    1.2        ad #include <machine/tlog.h>
    112    1.2        ad #endif
    113    1.2        ad 
    114  1.101  kiyohara #if NLAPIC > 0
    115    1.2        ad #include <machine/apicvar.h>
    116    1.2        ad #include <machine/i82489reg.h>
    117    1.2        ad #include <machine/i82489var.h>
    118  1.101  kiyohara #endif
    119    1.2        ad 
    120    1.2        ad #include <dev/ic/mc146818reg.h>
    121    1.2        ad #include <i386/isa/nvram.h>
    122    1.2        ad #include <dev/isa/isareg.h>
    123    1.2        ad 
    124   1.38        ad #include "tsc.h"
    125   1.38        ad 
    126   1.87    jruoho static int	cpu_match(device_t, cfdata_t, void *);
    127   1.87    jruoho static void	cpu_attach(device_t, device_t, void *);
    128   1.87    jruoho static void	cpu_defer(device_t);
    129   1.87    jruoho static int	cpu_rescan(device_t, const char *, const int *);
    130   1.87    jruoho static void	cpu_childdetached(device_t, device_t);
    131   1.96    jruoho static bool	cpu_stop(device_t);
    132   1.69    dyoung static bool	cpu_suspend(device_t, const pmf_qual_t *);
    133   1.69    dyoung static bool	cpu_resume(device_t, const pmf_qual_t *);
    134   1.79    jruoho static bool	cpu_shutdown(device_t, int);
    135   1.12  jmcneill 
    136    1.2        ad struct cpu_softc {
    137   1.23      cube 	device_t sc_dev;		/* device tree glue */
    138    1.2        ad 	struct cpu_info *sc_info;	/* pointer to CPU info */
    139   1.20  jmcneill 	bool sc_wasonline;
    140    1.2        ad };
    141    1.2        ad 
    142  1.101  kiyohara #ifdef MULTIPROCESSOR
    143   1.14     joerg int mp_cpu_start(struct cpu_info *, paddr_t);
    144    1.2        ad void mp_cpu_start_cleanup(struct cpu_info *);
    145    1.2        ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    146    1.2        ad 					    mp_cpu_start_cleanup };
    147  1.101  kiyohara #endif
    148    1.2        ad 
    149    1.2        ad 
    150   1.81  jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    151   1.81  jmcneill     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    152    1.2        ad 
    153    1.2        ad /*
    154    1.2        ad  * Statically-allocated CPU info for the primary CPU (or the only
    155    1.2        ad  * CPU, on uniprocessors).  The CPU info list is initialized to
    156    1.2        ad  * point at it.
    157    1.2        ad  */
    158    1.2        ad #ifdef TRAPLOG
    159    1.2        ad struct tlog tlog_primary;
    160    1.2        ad #endif
    161   1.21        ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    162    1.2        ad 	.ci_dev = 0,
    163    1.2        ad 	.ci_self = &cpu_info_primary,
    164    1.2        ad 	.ci_idepth = -1,
    165    1.2        ad 	.ci_curlwp = &lwp0,
    166   1.43        ad 	.ci_curldt = -1,
    167    1.2        ad #ifdef TRAPLOG
    168    1.2        ad 	.ci_tlog_base = &tlog_primary,
    169    1.2        ad #endif /* !TRAPLOG */
    170    1.2        ad };
    171    1.2        ad 
    172    1.2        ad struct cpu_info *cpu_info_list = &cpu_info_primary;
    173    1.2        ad 
    174   1.12  jmcneill static void	cpu_set_tss_gates(struct cpu_info *);
    175    1.2        ad 
    176    1.2        ad #ifdef i386
    177   1.15      yamt static void	tss_init(struct i386tss *, void *, void *);
    178    1.2        ad #endif
    179    1.2        ad 
    180   1.12  jmcneill static void	cpu_init_idle_lwp(struct cpu_info *);
    181   1.12  jmcneill 
    182   1.70       jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    183   1.70       jym 			  *	[0] basic features %edx
    184   1.70       jym 			  *	[1] basic features %ecx
    185   1.70       jym 			  *	[2] extended features %edx
    186   1.70       jym 			  *	[3] extended features %ecx
    187   1.70       jym 			  *	[4] VIA padlock features
    188   1.70       jym 			  */
    189   1.70       jym 
    190    1.2        ad extern char x86_64_doubleflt_stack[];
    191    1.2        ad 
    192  1.101  kiyohara #ifdef MULTIPROCESSOR
    193   1.12  jmcneill bool x86_mp_online;
    194   1.12  jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    195  1.101  kiyohara #endif
    196  1.101  kiyohara #if NLAPIC > 0
    197   1.14     joerg static vaddr_t cmos_data_mapping;
    198  1.101  kiyohara #endif
    199   1.45        ad struct cpu_info *cpu_starting;
    200    1.2        ad 
    201  1.101  kiyohara #ifdef MULTIPROCESSOR
    202    1.2        ad void    	cpu_hatch(void *);
    203    1.2        ad static void    	cpu_boot_secondary(struct cpu_info *ci);
    204    1.2        ad static void    	cpu_start_secondary(struct cpu_info *ci);
    205  1.101  kiyohara #endif
    206  1.101  kiyohara #if NLAPIC > 0
    207    1.2        ad static void	cpu_copy_trampoline(void);
    208  1.101  kiyohara #endif
    209    1.2        ad 
    210    1.2        ad /*
    211    1.2        ad  * Runs once per boot once multiprocessor goo has been detected and
    212    1.2        ad  * the local APIC on the boot processor has been mapped.
    213    1.2        ad  *
    214    1.2        ad  * Called from lapic_boot_init() (from mpbios_scan()).
    215    1.2        ad  */
    216  1.101  kiyohara #if NLAPIC > 0
    217    1.2        ad void
    218    1.9        ad cpu_init_first(void)
    219    1.2        ad {
    220    1.2        ad 
    221   1.45        ad 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    222    1.2        ad 	cpu_copy_trampoline();
    223   1.14     joerg 
    224   1.14     joerg 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    225   1.14     joerg 	if (cmos_data_mapping == 0)
    226   1.14     joerg 		panic("No KVA for page 0");
    227   1.64    cegger 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    228   1.14     joerg 	pmap_update(pmap_kernel());
    229    1.2        ad }
    230  1.101  kiyohara #endif
    231    1.2        ad 
    232   1.87    jruoho static int
    233   1.23      cube cpu_match(device_t parent, cfdata_t match, void *aux)
    234    1.2        ad {
    235    1.2        ad 
    236    1.2        ad 	return 1;
    237    1.2        ad }
    238    1.2        ad 
    239    1.2        ad static void
    240    1.2        ad cpu_vm_init(struct cpu_info *ci)
    241    1.2        ad {
    242    1.2        ad 	int ncolors = 2, i;
    243    1.2        ad 
    244    1.2        ad 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    245    1.2        ad 		struct x86_cache_info *cai;
    246    1.2        ad 		int tcolors;
    247    1.2        ad 
    248    1.2        ad 		cai = &ci->ci_cinfo[i];
    249    1.2        ad 
    250    1.2        ad 		tcolors = atop(cai->cai_totalsize);
    251    1.2        ad 		switch(cai->cai_associativity) {
    252    1.2        ad 		case 0xff:
    253    1.2        ad 			tcolors = 1; /* fully associative */
    254    1.2        ad 			break;
    255    1.2        ad 		case 0:
    256    1.2        ad 		case 1:
    257    1.2        ad 			break;
    258    1.2        ad 		default:
    259    1.2        ad 			tcolors /= cai->cai_associativity;
    260    1.2        ad 		}
    261    1.2        ad 		ncolors = max(ncolors, tcolors);
    262   1.32       tls 		/*
    263   1.32       tls 		 * If the desired number of colors is not a power of
    264   1.32       tls 		 * two, it won't be good.  Find the greatest power of
    265   1.32       tls 		 * two which is an even divisor of the number of colors,
    266   1.32       tls 		 * to preserve even coloring of pages.
    267   1.32       tls 		 */
    268   1.32       tls 		if (ncolors & (ncolors - 1) ) {
    269   1.32       tls 			int try, picked = 1;
    270   1.32       tls 			for (try = 1; try < ncolors; try *= 2) {
    271   1.32       tls 				if (ncolors % try == 0) picked = try;
    272   1.32       tls 			}
    273   1.32       tls 			if (picked == 1) {
    274   1.32       tls 				panic("desired number of cache colors %d is "
    275   1.32       tls 			      	" > 1, but not even!", ncolors);
    276   1.32       tls 			}
    277   1.32       tls 			ncolors = picked;
    278   1.32       tls 		}
    279    1.2        ad 	}
    280    1.2        ad 
    281    1.2        ad 	/*
    282   1.94       mrg 	 * Knowing the size of the largest cache on this CPU, potentially
    283   1.94       mrg 	 * re-color our pages.
    284    1.2        ad 	 */
    285   1.52        ad 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    286    1.2        ad 	uvm_page_recolor(ncolors);
    287   1.98     rmind 
    288   1.98     rmind 	pmap_tlb_cpu_init(ci);
    289    1.2        ad }
    290    1.2        ad 
    291   1.87    jruoho static void
    292   1.23      cube cpu_attach(device_t parent, device_t self, void *aux)
    293    1.2        ad {
    294   1.23      cube 	struct cpu_softc *sc = device_private(self);
    295    1.2        ad 	struct cpu_attach_args *caa = aux;
    296    1.2        ad 	struct cpu_info *ci;
    297   1.21        ad 	uintptr_t ptr;
    298  1.101  kiyohara #if NLAPIC > 0
    299    1.2        ad 	int cpunum = caa->cpu_number;
    300  1.101  kiyohara #endif
    301   1.51        ad 	static bool again;
    302    1.2        ad 
    303   1.23      cube 	sc->sc_dev = self;
    304   1.23      cube 
    305   1.98     rmind 	if (ncpu == maxcpus) {
    306   1.98     rmind #ifndef _LP64
    307   1.98     rmind 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    308   1.98     rmind #else
    309   1.98     rmind 		aprint_error(": too many CPUs\n");
    310   1.98     rmind #endif
    311   1.48        ad 		return;
    312   1.48        ad 	}
    313   1.48        ad 
    314    1.2        ad 	/*
    315    1.2        ad 	 * If we're an Application Processor, allocate a cpu_info
    316    1.2        ad 	 * structure, otherwise use the primary's.
    317    1.2        ad 	 */
    318    1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    319   1.36        ad 		if ((boothowto & RB_MD1) != 0) {
    320   1.35        ad 			aprint_error(": multiprocessor boot disabled\n");
    321   1.56  jmcneill 			if (!pmf_device_register(self, NULL, NULL))
    322   1.56  jmcneill 				aprint_error_dev(self,
    323   1.56  jmcneill 				    "couldn't establish power handler\n");
    324   1.35        ad 			return;
    325   1.35        ad 		}
    326    1.2        ad 		aprint_naive(": Application Processor\n");
    327   1.72     rmind 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    328   1.61    cegger 		    KM_SLEEP);
    329   1.67       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    330   1.43        ad 		ci->ci_curldt = -1;
    331    1.2        ad #ifdef TRAPLOG
    332   1.61    cegger 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    333    1.2        ad #endif
    334    1.2        ad 	} else {
    335    1.2        ad 		aprint_naive(": %s Processor\n",
    336    1.2        ad 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    337    1.2        ad 		ci = &cpu_info_primary;
    338  1.101  kiyohara #if NLAPIC > 0
    339    1.2        ad 		if (cpunum != lapic_cpu_number()) {
    340   1.51        ad 			/* XXX should be done earlier. */
    341   1.39        ad 			uint32_t reg;
    342   1.39        ad 			aprint_verbose("\n");
    343   1.47        ad 			aprint_verbose_dev(self, "running CPU at apic %d"
    344   1.47        ad 			    " instead of at expected %d", lapic_cpu_number(),
    345   1.23      cube 			    cpunum);
    346   1.39        ad 			reg = i82489_readreg(LAPIC_ID);
    347   1.39        ad 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    348   1.39        ad 			    (cpunum << LAPIC_ID_SHIFT));
    349    1.2        ad 		}
    350   1.47        ad 		if (cpunum != lapic_cpu_number()) {
    351   1.47        ad 			aprint_error_dev(self, "unable to reset apic id\n");
    352   1.47        ad 		}
    353  1.101  kiyohara #endif
    354    1.2        ad 	}
    355    1.2        ad 
    356    1.2        ad 	ci->ci_self = ci;
    357    1.2        ad 	sc->sc_info = ci;
    358    1.2        ad 	ci->ci_dev = self;
    359   1.74    jruoho 	ci->ci_acpiid = caa->cpu_id;
    360   1.42        ad 	ci->ci_cpuid = caa->cpu_number;
    361    1.2        ad 	ci->ci_func = caa->cpu_func;
    362    1.2        ad 
    363   1.55        ad 	/* Must be before mi_cpu_attach(). */
    364   1.55        ad 	cpu_vm_init(ci);
    365   1.55        ad 
    366    1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    367    1.2        ad 		int error;
    368    1.2        ad 
    369    1.2        ad 		error = mi_cpu_attach(ci);
    370    1.2        ad 		if (error != 0) {
    371    1.2        ad 			aprint_normal("\n");
    372   1.47        ad 			aprint_error_dev(self,
    373   1.30    cegger 			    "mi_cpu_attach failed with %d\n", error);
    374    1.2        ad 			return;
    375    1.2        ad 		}
    376   1.15      yamt 		cpu_init_tss(ci);
    377    1.2        ad 	} else {
    378    1.2        ad 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    379    1.2        ad 	}
    380    1.2        ad 
    381    1.2        ad 	pmap_reference(pmap_kernel());
    382    1.2        ad 	ci->ci_pmap = pmap_kernel();
    383    1.2        ad 	ci->ci_tlbstate = TLBSTATE_STALE;
    384    1.2        ad 
    385   1.51        ad 	/*
    386   1.51        ad 	 * Boot processor may not be attached first, but the below
    387   1.51        ad 	 * must be done to allow booting other processors.
    388   1.51        ad 	 */
    389   1.51        ad 	if (!again) {
    390   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    391   1.51        ad 		/* Basic init. */
    392    1.2        ad 		cpu_intr_init(ci);
    393   1.40        ad 		cpu_get_tsc_freq(ci);
    394    1.2        ad 		cpu_init(ci);
    395    1.2        ad 		cpu_set_tss_gates(ci);
    396    1.2        ad 		pmap_cpu_init_late(ci);
    397  1.101  kiyohara #if NLAPIC > 0
    398   1.51        ad 		if (caa->cpu_role != CPU_ROLE_SP) {
    399   1.51        ad 			/* Enable lapic. */
    400   1.51        ad 			lapic_enable();
    401   1.51        ad 			lapic_set_lvt();
    402   1.51        ad 			lapic_calibrate_timer(ci);
    403   1.51        ad 		}
    404  1.101  kiyohara #endif
    405   1.51        ad 		/* Make sure DELAY() is initialized. */
    406   1.51        ad 		DELAY(1);
    407   1.51        ad 		again = true;
    408   1.51        ad 	}
    409   1.51        ad 
    410   1.51        ad 	/* further PCB init done later. */
    411   1.51        ad 
    412   1.51        ad 	switch (caa->cpu_role) {
    413   1.51        ad 	case CPU_ROLE_SP:
    414   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    415   1.51        ad 		cpu_identify(ci);
    416   1.53        ad 		x86_errata();
    417   1.37     joerg 		x86_cpu_idle_init();
    418    1.2        ad 		break;
    419    1.2        ad 
    420    1.2        ad 	case CPU_ROLE_BP:
    421   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    422   1.40        ad 		cpu_identify(ci);
    423   1.53        ad 		x86_errata();
    424   1.37     joerg 		x86_cpu_idle_init();
    425    1.2        ad 		break;
    426    1.2        ad 
    427  1.101  kiyohara #ifdef MULTIPROCESSOR
    428    1.2        ad 	case CPU_ROLE_AP:
    429    1.2        ad 		/*
    430    1.2        ad 		 * report on an AP
    431    1.2        ad 		 */
    432    1.2        ad 		cpu_intr_init(ci);
    433    1.2        ad 		gdt_alloc_cpu(ci);
    434    1.2        ad 		cpu_set_tss_gates(ci);
    435    1.2        ad 		pmap_cpu_init_late(ci);
    436    1.2        ad 		cpu_start_secondary(ci);
    437    1.2        ad 		if (ci->ci_flags & CPUF_PRESENT) {
    438   1.59    cegger 			struct cpu_info *tmp;
    439   1.59    cegger 
    440   1.40        ad 			cpu_identify(ci);
    441   1.59    cegger 			tmp = cpu_info_list;
    442   1.59    cegger 			while (tmp->ci_next)
    443   1.59    cegger 				tmp = tmp->ci_next;
    444   1.59    cegger 
    445   1.59    cegger 			tmp->ci_next = ci;
    446    1.2        ad 		}
    447    1.2        ad 		break;
    448  1.101  kiyohara #endif
    449    1.2        ad 
    450    1.2        ad 	default:
    451   1.28    cegger 		aprint_normal("\n");
    452    1.2        ad 		panic("unknown processor type??\n");
    453    1.2        ad 	}
    454   1.51        ad 
    455   1.71    cegger 	pat_init(ci);
    456    1.2        ad 
    457   1.79    jruoho 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    458   1.12  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    459   1.12  jmcneill 
    460  1.101  kiyohara #ifdef MULTIPROCESSOR
    461    1.2        ad 	if (mp_verbose) {
    462    1.2        ad 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    463   1.65     rmind 		struct pcb *pcb = lwp_getpcb(l);
    464    1.2        ad 
    465   1.47        ad 		aprint_verbose_dev(self,
    466   1.28    cegger 		    "idle lwp at %p, idle sp at %p\n",
    467   1.28    cegger 		    l,
    468    1.2        ad #ifdef i386
    469   1.65     rmind 		    (void *)pcb->pcb_esp
    470    1.2        ad #else
    471   1.65     rmind 		    (void *)pcb->pcb_rsp
    472    1.2        ad #endif
    473    1.2        ad 		);
    474    1.2        ad 	}
    475  1.101  kiyohara #endif
    476   1.81  jmcneill 
    477   1.89    jruoho 	/*
    478   1.89    jruoho 	 * Postpone the "cpufeaturebus" scan.
    479   1.89    jruoho 	 * It is safe to scan the pseudo-bus
    480   1.89    jruoho 	 * only after all CPUs have attached.
    481   1.89    jruoho 	 */
    482   1.87    jruoho 	(void)config_defer(self, cpu_defer);
    483   1.87    jruoho }
    484   1.87    jruoho 
    485   1.87    jruoho static void
    486   1.87    jruoho cpu_defer(device_t self)
    487   1.87    jruoho {
    488   1.81  jmcneill 	cpu_rescan(self, NULL, NULL);
    489   1.81  jmcneill }
    490   1.81  jmcneill 
    491   1.87    jruoho static int
    492   1.81  jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
    493   1.81  jmcneill {
    494   1.83    jruoho 	struct cpu_softc *sc = device_private(self);
    495   1.81  jmcneill 	struct cpufeature_attach_args cfaa;
    496   1.81  jmcneill 	struct cpu_info *ci = sc->sc_info;
    497   1.81  jmcneill 
    498   1.81  jmcneill 	memset(&cfaa, 0, sizeof(cfaa));
    499   1.81  jmcneill 	cfaa.ci = ci;
    500   1.81  jmcneill 
    501   1.81  jmcneill 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    502   1.82    jruoho 
    503   1.83    jruoho 		if (ci->ci_frequency == NULL) {
    504   1.86    jruoho 			cfaa.name = "frequency";
    505   1.84    jruoho 			ci->ci_frequency = config_found_ia(self,
    506   1.84    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    507   1.84    jruoho 		}
    508   1.84    jruoho 
    509   1.81  jmcneill 		if (ci->ci_padlock == NULL) {
    510   1.81  jmcneill 			cfaa.name = "padlock";
    511   1.81  jmcneill 			ci->ci_padlock = config_found_ia(self,
    512   1.81  jmcneill 			    "cpufeaturebus", &cfaa, NULL);
    513   1.81  jmcneill 		}
    514   1.82    jruoho 
    515   1.86    jruoho 		if (ci->ci_temperature == NULL) {
    516   1.86    jruoho 			cfaa.name = "temperature";
    517   1.86    jruoho 			ci->ci_temperature = config_found_ia(self,
    518   1.85    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    519   1.85    jruoho 		}
    520   1.95  jmcneill 
    521   1.95  jmcneill 		if (ci->ci_vm == NULL) {
    522   1.95  jmcneill 			cfaa.name = "vm";
    523   1.95  jmcneill 			ci->ci_vm = config_found_ia(self,
    524   1.95  jmcneill 			    "cpufeaturebus", &cfaa, NULL);
    525   1.95  jmcneill 		}
    526   1.81  jmcneill 	}
    527   1.81  jmcneill 
    528   1.81  jmcneill 	return 0;
    529   1.81  jmcneill }
    530   1.81  jmcneill 
    531   1.87    jruoho static void
    532   1.81  jmcneill cpu_childdetached(device_t self, device_t child)
    533   1.81  jmcneill {
    534   1.81  jmcneill 	struct cpu_softc *sc = device_private(self);
    535   1.81  jmcneill 	struct cpu_info *ci = sc->sc_info;
    536   1.81  jmcneill 
    537   1.83    jruoho 	if (ci->ci_frequency == child)
    538   1.83    jruoho 		ci->ci_frequency = NULL;
    539   1.82    jruoho 
    540   1.81  jmcneill 	if (ci->ci_padlock == child)
    541   1.81  jmcneill 		ci->ci_padlock = NULL;
    542   1.83    jruoho 
    543   1.86    jruoho 	if (ci->ci_temperature == child)
    544   1.86    jruoho 		ci->ci_temperature = NULL;
    545   1.95  jmcneill 
    546   1.95  jmcneill 	if (ci->ci_vm == child)
    547   1.95  jmcneill 		ci->ci_vm = NULL;
    548    1.2        ad }
    549    1.2        ad 
    550    1.2        ad /*
    551    1.2        ad  * Initialize the processor appropriately.
    552    1.2        ad  */
    553    1.2        ad 
    554    1.2        ad void
    555    1.9        ad cpu_init(struct cpu_info *ci)
    556    1.2        ad {
    557    1.2        ad 
    558    1.2        ad 	lcr0(rcr0() | CR0_WP);
    559    1.2        ad 
    560    1.2        ad 	/*
    561    1.2        ad 	 * On a P6 or above, enable global TLB caching if the
    562    1.2        ad 	 * hardware supports it.
    563    1.2        ad 	 */
    564   1.70       jym 	if (cpu_feature[0] & CPUID_PGE)
    565    1.2        ad 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    566    1.2        ad 
    567    1.2        ad 	/*
    568    1.2        ad 	 * If we have FXSAVE/FXRESTOR, use them.
    569    1.2        ad 	 */
    570   1.70       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    571    1.2        ad 		lcr4(rcr4() | CR4_OSFXSR);
    572    1.2        ad 
    573    1.2        ad 		/*
    574    1.2        ad 		 * If we have SSE/SSE2, enable XMM exceptions.
    575    1.2        ad 		 */
    576   1.70       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    577    1.2        ad 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    578    1.2        ad 	}
    579    1.2        ad 
    580    1.2        ad #ifdef MTRR
    581    1.2        ad 	/*
    582    1.2        ad 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    583    1.2        ad 	 */
    584   1.70       jym 	if (cpu_feature[0] & CPUID_MTRR) {
    585    1.2        ad 		if ((ci->ci_flags & CPUF_AP) == 0)
    586    1.2        ad 			i686_mtrr_init_first();
    587    1.2        ad 		mtrr_init_cpu(ci);
    588    1.2        ad 	}
    589    1.2        ad 
    590    1.2        ad #ifdef i386
    591    1.2        ad 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    592    1.2        ad 		/*
    593    1.2        ad 		 * Must be a K6-2 Step >= 7 or a K6-III.
    594    1.2        ad 		 */
    595  1.106   msaitoh 		if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
    596  1.106   msaitoh 			if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
    597  1.106   msaitoh 			    (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
    598  1.106   msaitoh 			     CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
    599    1.2        ad 				mtrr_funcs = &k6_mtrr_funcs;
    600    1.2        ad 				k6_mtrr_init_first();
    601    1.2        ad 				mtrr_init_cpu(ci);
    602    1.2        ad 			}
    603    1.2        ad 		}
    604    1.2        ad 	}
    605    1.2        ad #endif	/* i386 */
    606    1.2        ad #endif /* MTRR */
    607    1.2        ad 
    608   1.38        ad 	if (ci != &cpu_info_primary) {
    609   1.38        ad 		/* Synchronize TSC again, and check for drift. */
    610   1.38        ad 		wbinvd();
    611   1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    612   1.38        ad 		tsc_sync_ap(ci);
    613   1.38        ad 	} else {
    614   1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    615   1.38        ad 	}
    616    1.2        ad }
    617    1.2        ad 
    618  1.101  kiyohara #ifdef MULTIPROCESSOR
    619    1.2        ad void
    620   1.12  jmcneill cpu_boot_secondary_processors(void)
    621    1.2        ad {
    622    1.2        ad 	struct cpu_info *ci;
    623  1.100       chs 	kcpuset_t *cpus;
    624    1.2        ad 	u_long i;
    625    1.2        ad 
    626    1.5        ad 	/* Now that we know the number of CPUs, patch the text segment. */
    627   1.60        ad 	x86_patch(false);
    628    1.5        ad 
    629  1.100       chs 	kcpuset_create(&cpus, true);
    630  1.100       chs 	kcpuset_set(cpus, cpu_index(curcpu()));
    631  1.100       chs 	for (i = 0; i < maxcpus; i++) {
    632   1.57        ad 		ci = cpu_lookup(i);
    633    1.2        ad 		if (ci == NULL)
    634    1.2        ad 			continue;
    635    1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    636    1.2        ad 			continue;
    637    1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    638    1.2        ad 			continue;
    639    1.2        ad 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    640    1.2        ad 			continue;
    641    1.2        ad 		cpu_boot_secondary(ci);
    642  1.100       chs 		kcpuset_set(cpus, cpu_index(ci));
    643    1.2        ad 	}
    644  1.100       chs 	while (!kcpuset_match(cpus, kcpuset_running))
    645  1.100       chs 		;
    646  1.100       chs 	kcpuset_destroy(cpus);
    647    1.2        ad 
    648    1.2        ad 	x86_mp_online = true;
    649   1.38        ad 
    650   1.38        ad 	/* Now that we know about the TSC, attach the timecounter. */
    651   1.38        ad 	tsc_tc_init();
    652   1.55        ad 
    653   1.55        ad 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    654   1.70       jym 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
    655    1.2        ad }
    656  1.101  kiyohara #endif
    657    1.2        ad 
    658    1.2        ad static void
    659    1.2        ad cpu_init_idle_lwp(struct cpu_info *ci)
    660    1.2        ad {
    661    1.2        ad 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    662   1.65     rmind 	struct pcb *pcb = lwp_getpcb(l);
    663    1.2        ad 
    664    1.2        ad 	pcb->pcb_cr0 = rcr0();
    665    1.2        ad }
    666    1.2        ad 
    667    1.2        ad void
    668   1.12  jmcneill cpu_init_idle_lwps(void)
    669    1.2        ad {
    670    1.2        ad 	struct cpu_info *ci;
    671    1.2        ad 	u_long i;
    672    1.2        ad 
    673   1.54        ad 	for (i = 0; i < maxcpus; i++) {
    674   1.57        ad 		ci = cpu_lookup(i);
    675    1.2        ad 		if (ci == NULL)
    676    1.2        ad 			continue;
    677    1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    678    1.2        ad 			continue;
    679    1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    680    1.2        ad 			continue;
    681    1.2        ad 		cpu_init_idle_lwp(ci);
    682    1.2        ad 	}
    683    1.2        ad }
    684    1.2        ad 
    685  1.101  kiyohara #ifdef MULTIPROCESSOR
    686    1.2        ad void
    687   1.12  jmcneill cpu_start_secondary(struct cpu_info *ci)
    688    1.2        ad {
    689   1.38        ad 	extern paddr_t mp_pdirpa;
    690   1.38        ad 	u_long psl;
    691    1.2        ad 	int i;
    692    1.2        ad 
    693   1.12  jmcneill 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    694    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    695    1.2        ad 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    696   1.45        ad 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    697   1.25        ad 		return;
    698   1.45        ad 	}
    699    1.2        ad 
    700    1.2        ad 	/*
    701   1.50        ad 	 * Wait for it to become ready.   Setting cpu_starting opens the
    702   1.50        ad 	 * initial gate and allows the AP to start soft initialization.
    703    1.2        ad 	 */
    704   1.50        ad 	KASSERT(cpu_starting == NULL);
    705   1.50        ad 	cpu_starting = ci;
    706   1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    707   1.24        ad #ifdef MPDEBUG
    708   1.24        ad 		extern int cpu_trace[3];
    709   1.24        ad 		static int otrace[3];
    710   1.24        ad 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    711   1.26    cegger 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    712   1.26    cegger 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    713   1.24        ad 			memcpy(otrace, cpu_trace, sizeof(otrace));
    714   1.24        ad 		}
    715   1.24        ad #endif
    716   1.11        ad 		i8254_delay(10);
    717    1.2        ad 	}
    718   1.38        ad 
    719    1.9        ad 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    720   1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    721    1.2        ad #if defined(MPDEBUG) && defined(DDB)
    722    1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    723    1.2        ad 		Debugger();
    724    1.2        ad #endif
    725   1.38        ad 	} else {
    726   1.38        ad 		/*
    727   1.68       jym 		 * Synchronize time stamp counters. Invalidate cache and do
    728   1.68       jym 		 * twice to try and minimize possible cache effects. Disable
    729   1.68       jym 		 * interrupts to try and rule out any external interference.
    730   1.38        ad 		 */
    731   1.38        ad 		psl = x86_read_psl();
    732   1.38        ad 		x86_disable_intr();
    733   1.38        ad 		wbinvd();
    734   1.38        ad 		tsc_sync_bp(ci);
    735   1.38        ad 		x86_write_psl(psl);
    736    1.2        ad 	}
    737    1.2        ad 
    738    1.2        ad 	CPU_START_CLEANUP(ci);
    739   1.45        ad 	cpu_starting = NULL;
    740    1.2        ad }
    741    1.2        ad 
    742    1.2        ad void
    743   1.12  jmcneill cpu_boot_secondary(struct cpu_info *ci)
    744    1.2        ad {
    745   1.38        ad 	int64_t drift;
    746   1.38        ad 	u_long psl;
    747    1.2        ad 	int i;
    748    1.2        ad 
    749    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    750   1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    751   1.11        ad 		i8254_delay(10);
    752    1.2        ad 	}
    753    1.9        ad 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    754   1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    755    1.2        ad #if defined(MPDEBUG) && defined(DDB)
    756    1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    757    1.2        ad 		Debugger();
    758    1.2        ad #endif
    759   1.38        ad 	} else {
    760   1.38        ad 		/* Synchronize TSC again, check for drift. */
    761   1.38        ad 		drift = ci->ci_data.cpu_cc_skew;
    762   1.38        ad 		psl = x86_read_psl();
    763   1.38        ad 		x86_disable_intr();
    764   1.38        ad 		wbinvd();
    765   1.38        ad 		tsc_sync_bp(ci);
    766   1.38        ad 		x86_write_psl(psl);
    767   1.38        ad 		drift -= ci->ci_data.cpu_cc_skew;
    768   1.38        ad 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    769   1.38        ad 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    770   1.38        ad 		tsc_sync_drift(drift);
    771    1.2        ad 	}
    772    1.2        ad }
    773    1.2        ad 
    774    1.2        ad /*
    775    1.2        ad  * The CPU ends up here when its ready to run
    776    1.2        ad  * This is called from code in mptramp.s; at this point, we are running
    777    1.2        ad  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    778    1.2        ad  * this processor will enter the idle loop and start looking for work.
    779    1.2        ad  */
    780    1.2        ad void
    781    1.2        ad cpu_hatch(void *v)
    782    1.2        ad {
    783    1.2        ad 	struct cpu_info *ci = (struct cpu_info *)v;
    784   1.65     rmind 	struct pcb *pcb;
    785    1.6        ad 	int s, i;
    786    1.2        ad 
    787   1.12  jmcneill 	cpu_init_msrs(ci, true);
    788   1.40        ad 	cpu_probe(ci);
    789   1.46        ad 
    790   1.46        ad 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    791   1.46        ad 	/* cpu_get_tsc_freq(ci); */
    792   1.38        ad 
    793    1.8        ad 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    794   1.38        ad 
    795   1.38        ad 	/*
    796   1.38        ad 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    797   1.38        ad 	 * to try and minimize possible cache effects.  Note that interrupts
    798   1.38        ad 	 * are off at this point.
    799   1.38        ad 	 */
    800   1.38        ad 	wbinvd();
    801    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    802   1.38        ad 	tsc_sync_ap(ci);
    803   1.38        ad 
    804   1.38        ad 	/*
    805   1.38        ad 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    806   1.38        ad 	 * in order to make the TSC drift as much as possible. so that
    807   1.38        ad 	 * we can detect it later.  If not available, try 'pause'.
    808   1.38        ad 	 * We'd like to use 'hlt', but we have interrupts off.
    809   1.38        ad 	 */
    810    1.6        ad 	while ((ci->ci_flags & CPUF_GO) == 0) {
    811   1.70       jym 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    812   1.38        ad 			x86_monitor(&ci->ci_flags, 0, 0);
    813   1.38        ad 			if ((ci->ci_flags & CPUF_GO) != 0) {
    814   1.38        ad 				continue;
    815   1.38        ad 			}
    816   1.38        ad 			x86_mwait(0, 0);
    817   1.38        ad 		} else {
    818   1.38        ad 			for (i = 10000; i != 0; i--) {
    819   1.38        ad 				x86_pause();
    820   1.38        ad 			}
    821   1.38        ad 		}
    822    1.6        ad 	}
    823    1.5        ad 
    824   1.26    cegger 	/* Because the text may have been patched in x86_patch(). */
    825    1.5        ad 	wbinvd();
    826    1.5        ad 	x86_flush();
    827   1.88     rmind 	tlbflushg();
    828    1.5        ad 
    829    1.8        ad 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    830    1.2        ad 
    831   1.73       jym #ifdef PAE
    832   1.73       jym 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    833   1.73       jym 	for (i = 0 ; i < PDP_SIZE; i++) {
    834   1.73       jym 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
    835   1.73       jym 	}
    836   1.73       jym 	lcr3(ci->ci_pae_l3_pdirpa);
    837   1.73       jym #else
    838   1.73       jym 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    839   1.73       jym #endif
    840   1.73       jym 
    841   1.65     rmind 	pcb = lwp_getpcb(curlwp);
    842   1.73       jym 	pcb->pcb_cr3 = rcr3();
    843   1.65     rmind 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    844   1.65     rmind 	lcr0(pcb->pcb_cr0);
    845   1.65     rmind 
    846    1.2        ad 	cpu_init_idt();
    847    1.8        ad 	gdt_init_cpu(ci);
    848    1.8        ad 	lapic_enable();
    849    1.2        ad 	lapic_set_lvt();
    850    1.8        ad 	lapic_initclocks();
    851    1.2        ad 
    852    1.2        ad #ifdef i386
    853   1.62    bouyer #if NNPX > 0
    854    1.2        ad 	npxinit(ci);
    855   1.62    bouyer #endif
    856    1.2        ad #else
    857    1.2        ad 	fpuinit(ci);
    858    1.4      yamt #endif
    859    1.2        ad 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    860   1.15      yamt 	ltr(ci->ci_tss_sel);
    861    1.2        ad 
    862    1.2        ad 	cpu_init(ci);
    863    1.7        ad 	cpu_get_tsc_freq(ci);
    864    1.2        ad 
    865    1.2        ad 	s = splhigh();
    866    1.2        ad #ifdef i386
    867    1.2        ad 	lapic_tpr = 0;
    868    1.2        ad #else
    869    1.2        ad 	lcr8(0);
    870    1.2        ad #endif
    871    1.3        ad 	x86_enable_intr();
    872    1.2        ad 	splx(s);
    873    1.6        ad 	x86_errata();
    874    1.2        ad 
    875   1.42        ad 	aprint_debug_dev(ci->ci_dev, "running\n");
    876   1.98     rmind 
    877   1.98     rmind 	idle_loop(NULL);
    878   1.98     rmind 	KASSERT(false);
    879    1.2        ad }
    880  1.101  kiyohara #endif
    881    1.2        ad 
    882    1.2        ad #if defined(DDB)
    883    1.2        ad 
    884    1.2        ad #include <ddb/db_output.h>
    885    1.2        ad #include <machine/db_machdep.h>
    886    1.2        ad 
    887    1.2        ad /*
    888    1.2        ad  * Dump CPU information from ddb.
    889    1.2        ad  */
    890    1.2        ad void
    891    1.2        ad cpu_debug_dump(void)
    892    1.2        ad {
    893    1.2        ad 	struct cpu_info *ci;
    894    1.2        ad 	CPU_INFO_ITERATOR cii;
    895    1.2        ad 
    896  1.103  drochner 	db_printf("addr		dev	id	flags	ipis	curlwp\n");
    897    1.2        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    898  1.103  drochner 		db_printf("%p	%s	%ld	%x	%x	%10p\n",
    899    1.2        ad 		    ci,
    900   1.27    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    901    1.2        ad 		    (long)ci->ci_cpuid,
    902    1.2        ad 		    ci->ci_flags, ci->ci_ipis,
    903  1.103  drochner 		    ci->ci_curlwp);
    904    1.2        ad 	}
    905    1.2        ad }
    906    1.2        ad #endif
    907    1.2        ad 
    908  1.101  kiyohara #if NLAPIC > 0
    909    1.2        ad static void
    910   1.12  jmcneill cpu_copy_trampoline(void)
    911    1.2        ad {
    912    1.2        ad 	/*
    913    1.2        ad 	 * Copy boot code.
    914    1.2        ad 	 */
    915    1.2        ad 	extern u_char cpu_spinup_trampoline[];
    916    1.2        ad 	extern u_char cpu_spinup_trampoline_end[];
    917   1.12  jmcneill 
    918   1.12  jmcneill 	vaddr_t mp_trampoline_vaddr;
    919   1.12  jmcneill 
    920   1.12  jmcneill 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    921   1.12  jmcneill 	    UVM_KMF_VAONLY);
    922   1.12  jmcneill 
    923   1.12  jmcneill 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    924   1.64    cegger 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    925    1.2        ad 	pmap_update(pmap_kernel());
    926   1.12  jmcneill 	memcpy((void *)mp_trampoline_vaddr,
    927    1.2        ad 	    cpu_spinup_trampoline,
    928   1.26    cegger 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    929   1.12  jmcneill 
    930   1.12  jmcneill 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    931   1.12  jmcneill 	pmap_update(pmap_kernel());
    932   1.12  jmcneill 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    933    1.2        ad }
    934  1.101  kiyohara #endif
    935    1.2        ad 
    936    1.2        ad #ifdef i386
    937    1.2        ad static void
    938   1.15      yamt tss_init(struct i386tss *tss, void *stack, void *func)
    939    1.2        ad {
    940   1.73       jym 	KASSERT(curcpu()->ci_pmap == pmap_kernel());
    941   1.73       jym 
    942    1.2        ad 	memset(tss, 0, sizeof *tss);
    943    1.2        ad 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    944    1.2        ad 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    945    1.2        ad 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    946    1.2        ad 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    947    1.2        ad 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    948    1.2        ad 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    949   1.73       jym 	/* %cr3 contains the value associated to pmap_kernel */
    950   1.73       jym 	tss->tss_cr3 = rcr3();
    951    1.2        ad 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    952    1.2        ad 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    953    1.2        ad 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    954    1.2        ad 	tss->__tss_eip = (int)func;
    955    1.2        ad }
    956    1.2        ad 
    957    1.2        ad /* XXX */
    958    1.2        ad #define IDTVEC(name)	__CONCAT(X, name)
    959    1.2        ad typedef void (vector)(void);
    960    1.2        ad extern vector IDTVEC(tss_trap08);
    961  1.101  kiyohara #if defined(DDB) && defined(MULTIPROCESSOR)
    962    1.2        ad extern vector Xintrddbipi;
    963    1.2        ad extern int ddb_vec;
    964    1.2        ad #endif
    965    1.2        ad 
    966    1.2        ad static void
    967    1.2        ad cpu_set_tss_gates(struct cpu_info *ci)
    968    1.2        ad {
    969    1.2        ad 	struct segment_descriptor sd;
    970    1.2        ad 
    971    1.2        ad 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    972    1.2        ad 	    UVM_KMF_WIRED);
    973   1.15      yamt 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    974    1.2        ad 	    IDTVEC(tss_trap08));
    975    1.2        ad 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    976    1.2        ad 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    977    1.2        ad 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    978    1.2        ad 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    979    1.2        ad 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    980    1.2        ad 
    981  1.101  kiyohara #if defined(DDB) && defined(MULTIPROCESSOR)
    982    1.2        ad 	/*
    983    1.2        ad 	 * Set up separate handler for the DDB IPI, so that it doesn't
    984    1.2        ad 	 * stomp on a possibly corrupted stack.
    985    1.2        ad 	 *
    986    1.2        ad 	 * XXX overwriting the gate set in db_machine_init.
    987    1.2        ad 	 * Should rearrange the code so that it's set only once.
    988    1.2        ad 	 */
    989    1.2        ad 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    990    1.2        ad 	    UVM_KMF_WIRED);
    991   1.15      yamt 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    992    1.2        ad 
    993    1.2        ad 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    994    1.2        ad 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    995    1.2        ad 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    996    1.2        ad 
    997    1.2        ad 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    998    1.2        ad 	    GSEL(GIPITSS_SEL, SEL_KPL));
    999    1.2        ad #endif
   1000    1.2        ad }
   1001    1.2        ad #else
   1002    1.2        ad static void
   1003    1.2        ad cpu_set_tss_gates(struct cpu_info *ci)
   1004    1.2        ad {
   1005    1.2        ad 
   1006    1.2        ad }
   1007    1.2        ad #endif	/* i386 */
   1008    1.2        ad 
   1009  1.101  kiyohara #ifdef MULTIPROCESSOR
   1010    1.2        ad int
   1011   1.14     joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
   1012    1.2        ad {
   1013   1.44        ad 	unsigned short dwordptr[2];
   1014    1.2        ad 	int error;
   1015   1.14     joerg 
   1016   1.14     joerg 	/*
   1017   1.14     joerg 	 * Bootstrap code must be addressable in real mode
   1018   1.14     joerg 	 * and it must be page aligned.
   1019   1.14     joerg 	 */
   1020   1.14     joerg 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
   1021    1.2        ad 
   1022    1.2        ad 	/*
   1023    1.2        ad 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
   1024    1.2        ad 	 */
   1025    1.2        ad 
   1026    1.2        ad 	outb(IO_RTC, NVRAM_RESET);
   1027    1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
   1028    1.2        ad 
   1029    1.2        ad 	/*
   1030    1.2        ad 	 * "and the warm reset vector (DWORD based at 40:67) to point
   1031    1.2        ad 	 * to the AP startup code ..."
   1032    1.2        ad 	 */
   1033    1.2        ad 
   1034    1.2        ad 	dwordptr[0] = 0;
   1035   1.14     joerg 	dwordptr[1] = target >> 4;
   1036    1.2        ad 
   1037   1.25        ad 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
   1038    1.2        ad 
   1039   1.70       jym 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
   1040   1.25        ad 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1041   1.25        ad 		return ENODEV;
   1042   1.25        ad 	}
   1043   1.25        ad 
   1044    1.2        ad 	/*
   1045   1.51        ad 	 * ... prior to executing the following sequence:".  We'll also add in
   1046   1.51        ad 	 * local cache flush, in case the BIOS has left the AP with its cache
   1047   1.51        ad 	 * disabled.  It may not be able to cope with MP coherency.
   1048    1.2        ad 	 */
   1049   1.51        ad 	wbinvd();
   1050    1.2        ad 
   1051    1.2        ad 	if (ci->ci_flags & CPUF_AP) {
   1052   1.42        ad 		error = x86_ipi_init(ci->ci_cpuid);
   1053   1.26    cegger 		if (error != 0) {
   1054   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1055   1.50        ad 			    __func__);
   1056    1.2        ad 			return error;
   1057   1.25        ad 		}
   1058   1.11        ad 		i8254_delay(10000);
   1059    1.2        ad 
   1060   1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1061   1.26    cegger 		if (error != 0) {
   1062   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1063   1.50        ad 			    __func__);
   1064   1.25        ad 			return error;
   1065   1.25        ad 		}
   1066   1.25        ad 		i8254_delay(200);
   1067    1.2        ad 
   1068   1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1069   1.26    cegger 		if (error != 0) {
   1070   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1071   1.50        ad 			    __func__);
   1072   1.25        ad 			return error;
   1073    1.2        ad 		}
   1074   1.25        ad 		i8254_delay(200);
   1075    1.2        ad 	}
   1076   1.44        ad 
   1077    1.2        ad 	return 0;
   1078    1.2        ad }
   1079    1.2        ad 
   1080    1.2        ad void
   1081    1.2        ad mp_cpu_start_cleanup(struct cpu_info *ci)
   1082    1.2        ad {
   1083    1.2        ad 	/*
   1084    1.2        ad 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1085    1.2        ad 	 */
   1086    1.2        ad 
   1087    1.2        ad 	outb(IO_RTC, NVRAM_RESET);
   1088    1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1089    1.2        ad }
   1090  1.101  kiyohara #endif
   1091    1.2        ad 
   1092    1.2        ad #ifdef __x86_64__
   1093    1.2        ad typedef void (vector)(void);
   1094    1.2        ad extern vector Xsyscall, Xsyscall32;
   1095   1.70       jym #endif
   1096    1.2        ad 
   1097    1.2        ad void
   1098   1.12  jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
   1099    1.2        ad {
   1100   1.70       jym #ifdef __x86_64__
   1101    1.2        ad 	wrmsr(MSR_STAR,
   1102    1.2        ad 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1103    1.2        ad 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1104    1.2        ad 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1105    1.2        ad 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1106    1.2        ad 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
   1107    1.2        ad 
   1108   1.12  jmcneill 	if (full) {
   1109   1.12  jmcneill 		wrmsr(MSR_FSBASE, 0);
   1110   1.27    cegger 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1111   1.12  jmcneill 		wrmsr(MSR_KERNELGSBASE, 0);
   1112   1.12  jmcneill 	}
   1113   1.70       jym #endif	/* __x86_64__ */
   1114    1.2        ad 
   1115   1.70       jym 	if (cpu_feature[2] & CPUID_NOX)
   1116    1.2        ad 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1117    1.2        ad }
   1118    1.7        ad 
   1119   1.12  jmcneill /* XXX joerg restructure and restart CPUs individually */
   1120   1.12  jmcneill static bool
   1121   1.96    jruoho cpu_stop(device_t dv)
   1122   1.12  jmcneill {
   1123   1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1124   1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1125   1.18     joerg 	int err;
   1126   1.12  jmcneill 
   1127   1.96    jruoho 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1128   1.93    jruoho 
   1129   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1130   1.93    jruoho 		return true;
   1131   1.93    jruoho 
   1132   1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1133   1.12  jmcneill 		return true;
   1134   1.12  jmcneill 
   1135   1.20  jmcneill 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1136   1.17     joerg 
   1137   1.20  jmcneill 	if (sc->sc_wasonline) {
   1138   1.20  jmcneill 		mutex_enter(&cpu_lock);
   1139   1.58     rmind 		err = cpu_setstate(ci, false);
   1140   1.20  jmcneill 		mutex_exit(&cpu_lock);
   1141   1.79    jruoho 
   1142   1.93    jruoho 		if (err != 0)
   1143   1.20  jmcneill 			return false;
   1144   1.20  jmcneill 	}
   1145   1.17     joerg 
   1146   1.17     joerg 	return true;
   1147   1.12  jmcneill }
   1148   1.12  jmcneill 
   1149   1.12  jmcneill static bool
   1150   1.96    jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1151   1.96    jruoho {
   1152   1.96    jruoho 	struct cpu_softc *sc = device_private(dv);
   1153   1.96    jruoho 	struct cpu_info *ci = sc->sc_info;
   1154   1.96    jruoho 
   1155   1.96    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1156   1.96    jruoho 		return true;
   1157   1.96    jruoho 	else {
   1158   1.96    jruoho 		cpufreq_suspend(ci);
   1159   1.96    jruoho 	}
   1160   1.96    jruoho 
   1161   1.96    jruoho 	return cpu_stop(dv);
   1162   1.96    jruoho }
   1163   1.96    jruoho 
   1164   1.96    jruoho static bool
   1165   1.69    dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
   1166   1.12  jmcneill {
   1167   1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1168   1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1169   1.20  jmcneill 	int err = 0;
   1170   1.12  jmcneill 
   1171   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1172   1.12  jmcneill 		return true;
   1173   1.93    jruoho 
   1174   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1175   1.93    jruoho 		goto out;
   1176   1.93    jruoho 
   1177   1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1178   1.93    jruoho 		goto out;
   1179   1.12  jmcneill 
   1180   1.20  jmcneill 	if (sc->sc_wasonline) {
   1181   1.20  jmcneill 		mutex_enter(&cpu_lock);
   1182   1.58     rmind 		err = cpu_setstate(ci, true);
   1183   1.20  jmcneill 		mutex_exit(&cpu_lock);
   1184   1.20  jmcneill 	}
   1185   1.13     joerg 
   1186   1.93    jruoho out:
   1187   1.93    jruoho 	if (err != 0)
   1188   1.93    jruoho 		return false;
   1189   1.93    jruoho 
   1190   1.93    jruoho 	cpufreq_resume(ci);
   1191   1.93    jruoho 
   1192   1.93    jruoho 	return true;
   1193   1.12  jmcneill }
   1194   1.12  jmcneill 
   1195   1.79    jruoho static bool
   1196   1.79    jruoho cpu_shutdown(device_t dv, int how)
   1197   1.79    jruoho {
   1198   1.90    dyoung 	struct cpu_softc *sc = device_private(dv);
   1199   1.90    dyoung 	struct cpu_info *ci = sc->sc_info;
   1200   1.90    dyoung 
   1201   1.96    jruoho 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1202   1.90    dyoung 		return false;
   1203   1.90    dyoung 
   1204   1.96    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1205   1.96    jruoho 		return true;
   1206   1.96    jruoho 
   1207   1.96    jruoho 	return cpu_stop(dv);
   1208   1.79    jruoho }
   1209   1.79    jruoho 
   1210    1.7        ad void
   1211    1.7        ad cpu_get_tsc_freq(struct cpu_info *ci)
   1212    1.7        ad {
   1213    1.7        ad 	uint64_t last_tsc;
   1214    1.7        ad 
   1215   1.70       jym 	if (cpu_hascounter()) {
   1216   1.80    bouyer 		last_tsc = cpu_counter_serializing();
   1217    1.7        ad 		i8254_delay(100000);
   1218   1.80    bouyer 		ci->ci_data.cpu_cc_freq =
   1219   1.80    bouyer 		    (cpu_counter_serializing() - last_tsc) * 10;
   1220    1.7        ad 	}
   1221    1.7        ad }
   1222   1.37     joerg 
   1223   1.37     joerg void
   1224   1.37     joerg x86_cpu_idle_mwait(void)
   1225   1.37     joerg {
   1226   1.37     joerg 	struct cpu_info *ci = curcpu();
   1227   1.37     joerg 
   1228   1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1229   1.37     joerg 
   1230   1.37     joerg 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1231   1.37     joerg 	if (__predict_false(ci->ci_want_resched)) {
   1232   1.37     joerg 		return;
   1233   1.37     joerg 	}
   1234   1.37     joerg 	x86_mwait(0, 0);
   1235   1.37     joerg }
   1236   1.37     joerg 
   1237   1.37     joerg void
   1238   1.37     joerg x86_cpu_idle_halt(void)
   1239   1.37     joerg {
   1240   1.37     joerg 	struct cpu_info *ci = curcpu();
   1241   1.37     joerg 
   1242   1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1243   1.37     joerg 
   1244   1.37     joerg 	x86_disable_intr();
   1245   1.37     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1246   1.37     joerg 		x86_stihlt();
   1247   1.37     joerg 	} else {
   1248   1.37     joerg 		x86_enable_intr();
   1249   1.37     joerg 	}
   1250   1.37     joerg }
   1251   1.73       jym 
   1252   1.73       jym /*
   1253   1.73       jym  * Loads pmap for the current CPU.
   1254   1.73       jym  */
   1255   1.73       jym void
   1256   1.97    bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1257   1.73       jym {
   1258   1.73       jym #ifdef PAE
   1259   1.99      yamt 	struct cpu_info *ci = curcpu();
   1260   1.99      yamt 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1261   1.99      yamt 	int i;
   1262   1.73       jym 
   1263   1.99      yamt 	/*
   1264   1.99      yamt 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1265   1.99      yamt 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1266   1.99      yamt 	 * reload cr3.
   1267   1.99      yamt 	 */
   1268   1.99      yamt 	x86_disable_intr();
   1269   1.73       jym 	for (i = 0 ; i < PDP_SIZE; i++) {
   1270   1.73       jym 		l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
   1271   1.73       jym 	}
   1272   1.99      yamt 	x86_enable_intr();
   1273   1.73       jym 	tlbflush();
   1274   1.73       jym #else /* PAE */
   1275   1.73       jym 	lcr3(pmap_pdirpa(pmap, 0));
   1276   1.73       jym #endif /* PAE */
   1277   1.73       jym }
   1278   1.91    cherry 
   1279   1.91    cherry /*
   1280   1.91    cherry  * Notify all other cpus to halt.
   1281   1.91    cherry  */
   1282   1.91    cherry 
   1283   1.91    cherry void
   1284   1.92    cherry cpu_broadcast_halt(void)
   1285   1.91    cherry {
   1286   1.91    cherry 	x86_broadcast_ipi(X86_IPI_HALT);
   1287   1.91    cherry }
   1288   1.91    cherry 
   1289   1.91    cherry /*
   1290   1.91    cherry  * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
   1291   1.91    cherry  */
   1292   1.91    cherry 
   1293   1.91    cherry void
   1294   1.91    cherry cpu_kick(struct cpu_info *ci)
   1295   1.91    cherry {
   1296   1.91    cherry 	x86_send_ipi(ci, 0);
   1297   1.91    cherry }
   1298