cpu.c revision 1.116 1 1.116 nat /* $NetBSD: cpu.c,v 1.116 2015/09/17 23:48:01 nat Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.98 rmind * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.116 nat __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.116 2015/09/17 23:48:01 nat Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.101 kiyohara #include "opt_multiprocessor.h"
71 1.2 ad
72 1.2 ad #include "lapic.h"
73 1.2 ad #include "ioapic.h"
74 1.2 ad
75 1.2 ad #include <sys/param.h>
76 1.2 ad #include <sys/proc.h>
77 1.2 ad #include <sys/systm.h>
78 1.2 ad #include <sys/device.h>
79 1.61 cegger #include <sys/kmem.h>
80 1.9 ad #include <sys/cpu.h>
81 1.93 jruoho #include <sys/cpufreq.h>
82 1.98 rmind #include <sys/idle.h>
83 1.9 ad #include <sys/atomic.h>
84 1.35 ad #include <sys/reboot.h>
85 1.2 ad
86 1.78 uebayasi #include <uvm/uvm.h>
87 1.2 ad
88 1.102 pgoyette #include "acpica.h" /* for NACPICA, for mp_verbose */
89 1.102 pgoyette
90 1.2 ad #include <machine/cpufunc.h>
91 1.2 ad #include <machine/cpuvar.h>
92 1.2 ad #include <machine/pmap.h>
93 1.2 ad #include <machine/vmparam.h>
94 1.102 pgoyette #if defined(MULTIPROCESSOR)
95 1.2 ad #include <machine/mpbiosvar.h>
96 1.101 kiyohara #endif
97 1.102 pgoyette #include <machine/mpconfig.h> /* for mp_verbose */
98 1.2 ad #include <machine/pcb.h>
99 1.2 ad #include <machine/specialreg.h>
100 1.2 ad #include <machine/segments.h>
101 1.2 ad #include <machine/gdt.h>
102 1.2 ad #include <machine/mtrr.h>
103 1.2 ad #include <machine/pio.h>
104 1.38 ad #include <machine/cpu_counter.h>
105 1.2 ad
106 1.109 dsl #include <x86/fpu.h>
107 1.109 dsl
108 1.2 ad #ifdef i386
109 1.2 ad #include <machine/tlog.h>
110 1.2 ad #endif
111 1.2 ad
112 1.101 kiyohara #if NLAPIC > 0
113 1.2 ad #include <machine/apicvar.h>
114 1.2 ad #include <machine/i82489reg.h>
115 1.2 ad #include <machine/i82489var.h>
116 1.101 kiyohara #endif
117 1.2 ad
118 1.2 ad #include <dev/ic/mc146818reg.h>
119 1.2 ad #include <i386/isa/nvram.h>
120 1.2 ad #include <dev/isa/isareg.h>
121 1.2 ad
122 1.38 ad #include "tsc.h"
123 1.38 ad
124 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
125 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
126 1.87 jruoho static void cpu_defer(device_t);
127 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
128 1.87 jruoho static void cpu_childdetached(device_t, device_t);
129 1.96 jruoho static bool cpu_stop(device_t);
130 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
131 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
132 1.79 jruoho static bool cpu_shutdown(device_t, int);
133 1.12 jmcneill
134 1.2 ad struct cpu_softc {
135 1.23 cube device_t sc_dev; /* device tree glue */
136 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
137 1.20 jmcneill bool sc_wasonline;
138 1.2 ad };
139 1.2 ad
140 1.101 kiyohara #ifdef MULTIPROCESSOR
141 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
142 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
143 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
144 1.2 ad mp_cpu_start_cleanup };
145 1.101 kiyohara #endif
146 1.2 ad
147 1.2 ad
148 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
149 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
150 1.2 ad
151 1.2 ad /*
152 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
153 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
154 1.2 ad * point at it.
155 1.2 ad */
156 1.2 ad #ifdef TRAPLOG
157 1.2 ad struct tlog tlog_primary;
158 1.2 ad #endif
159 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 1.2 ad .ci_dev = 0,
161 1.2 ad .ci_self = &cpu_info_primary,
162 1.2 ad .ci_idepth = -1,
163 1.2 ad .ci_curlwp = &lwp0,
164 1.43 ad .ci_curldt = -1,
165 1.2 ad #ifdef TRAPLOG
166 1.2 ad .ci_tlog_base = &tlog_primary,
167 1.2 ad #endif /* !TRAPLOG */
168 1.2 ad };
169 1.2 ad
170 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
171 1.2 ad
172 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
173 1.2 ad
174 1.2 ad #ifdef i386
175 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
176 1.2 ad #endif
177 1.2 ad
178 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
179 1.12 jmcneill
180 1.70 jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
181 1.70 jym * [0] basic features %edx
182 1.70 jym * [1] basic features %ecx
183 1.70 jym * [2] extended features %edx
184 1.70 jym * [3] extended features %ecx
185 1.70 jym * [4] VIA padlock features
186 1.70 jym */
187 1.70 jym
188 1.2 ad extern char x86_64_doubleflt_stack[];
189 1.2 ad
190 1.101 kiyohara #ifdef MULTIPROCESSOR
191 1.12 jmcneill bool x86_mp_online;
192 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
193 1.101 kiyohara #endif
194 1.101 kiyohara #if NLAPIC > 0
195 1.14 joerg static vaddr_t cmos_data_mapping;
196 1.101 kiyohara #endif
197 1.45 ad struct cpu_info *cpu_starting;
198 1.2 ad
199 1.101 kiyohara #ifdef MULTIPROCESSOR
200 1.2 ad void cpu_hatch(void *);
201 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
202 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
203 1.101 kiyohara #endif
204 1.101 kiyohara #if NLAPIC > 0
205 1.2 ad static void cpu_copy_trampoline(void);
206 1.101 kiyohara #endif
207 1.2 ad
208 1.2 ad /*
209 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
210 1.2 ad * the local APIC on the boot processor has been mapped.
211 1.2 ad *
212 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
213 1.2 ad */
214 1.101 kiyohara #if NLAPIC > 0
215 1.2 ad void
216 1.9 ad cpu_init_first(void)
217 1.2 ad {
218 1.2 ad
219 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
220 1.2 ad cpu_copy_trampoline();
221 1.14 joerg
222 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
223 1.14 joerg if (cmos_data_mapping == 0)
224 1.14 joerg panic("No KVA for page 0");
225 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
226 1.14 joerg pmap_update(pmap_kernel());
227 1.2 ad }
228 1.101 kiyohara #endif
229 1.2 ad
230 1.87 jruoho static int
231 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
232 1.2 ad {
233 1.2 ad
234 1.2 ad return 1;
235 1.2 ad }
236 1.2 ad
237 1.2 ad static void
238 1.2 ad cpu_vm_init(struct cpu_info *ci)
239 1.2 ad {
240 1.2 ad int ncolors = 2, i;
241 1.2 ad
242 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
243 1.2 ad struct x86_cache_info *cai;
244 1.2 ad int tcolors;
245 1.2 ad
246 1.2 ad cai = &ci->ci_cinfo[i];
247 1.2 ad
248 1.2 ad tcolors = atop(cai->cai_totalsize);
249 1.2 ad switch(cai->cai_associativity) {
250 1.2 ad case 0xff:
251 1.2 ad tcolors = 1; /* fully associative */
252 1.2 ad break;
253 1.2 ad case 0:
254 1.2 ad case 1:
255 1.2 ad break;
256 1.2 ad default:
257 1.2 ad tcolors /= cai->cai_associativity;
258 1.2 ad }
259 1.2 ad ncolors = max(ncolors, tcolors);
260 1.32 tls /*
261 1.32 tls * If the desired number of colors is not a power of
262 1.32 tls * two, it won't be good. Find the greatest power of
263 1.32 tls * two which is an even divisor of the number of colors,
264 1.32 tls * to preserve even coloring of pages.
265 1.32 tls */
266 1.32 tls if (ncolors & (ncolors - 1) ) {
267 1.32 tls int try, picked = 1;
268 1.32 tls for (try = 1; try < ncolors; try *= 2) {
269 1.32 tls if (ncolors % try == 0) picked = try;
270 1.32 tls }
271 1.32 tls if (picked == 1) {
272 1.32 tls panic("desired number of cache colors %d is "
273 1.32 tls " > 1, but not even!", ncolors);
274 1.32 tls }
275 1.32 tls ncolors = picked;
276 1.32 tls }
277 1.2 ad }
278 1.2 ad
279 1.2 ad /*
280 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
281 1.94 mrg * re-color our pages.
282 1.2 ad */
283 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
284 1.2 ad uvm_page_recolor(ncolors);
285 1.98 rmind
286 1.98 rmind pmap_tlb_cpu_init(ci);
287 1.2 ad }
288 1.2 ad
289 1.87 jruoho static void
290 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
291 1.2 ad {
292 1.23 cube struct cpu_softc *sc = device_private(self);
293 1.2 ad struct cpu_attach_args *caa = aux;
294 1.2 ad struct cpu_info *ci;
295 1.21 ad uintptr_t ptr;
296 1.101 kiyohara #if NLAPIC > 0
297 1.2 ad int cpunum = caa->cpu_number;
298 1.101 kiyohara #endif
299 1.51 ad static bool again;
300 1.2 ad
301 1.23 cube sc->sc_dev = self;
302 1.23 cube
303 1.98 rmind if (ncpu == maxcpus) {
304 1.98 rmind #ifndef _LP64
305 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
306 1.98 rmind #else
307 1.98 rmind aprint_error(": too many CPUs\n");
308 1.98 rmind #endif
309 1.48 ad return;
310 1.48 ad }
311 1.48 ad
312 1.2 ad /*
313 1.2 ad * If we're an Application Processor, allocate a cpu_info
314 1.2 ad * structure, otherwise use the primary's.
315 1.2 ad */
316 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
317 1.36 ad if ((boothowto & RB_MD1) != 0) {
318 1.35 ad aprint_error(": multiprocessor boot disabled\n");
319 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
320 1.56 jmcneill aprint_error_dev(self,
321 1.56 jmcneill "couldn't establish power handler\n");
322 1.35 ad return;
323 1.35 ad }
324 1.2 ad aprint_naive(": Application Processor\n");
325 1.72 rmind ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
326 1.61 cegger KM_SLEEP);
327 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
328 1.43 ad ci->ci_curldt = -1;
329 1.2 ad #ifdef TRAPLOG
330 1.61 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
331 1.2 ad #endif
332 1.2 ad } else {
333 1.2 ad aprint_naive(": %s Processor\n",
334 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
335 1.2 ad ci = &cpu_info_primary;
336 1.101 kiyohara #if NLAPIC > 0
337 1.2 ad if (cpunum != lapic_cpu_number()) {
338 1.51 ad /* XXX should be done earlier. */
339 1.39 ad uint32_t reg;
340 1.39 ad aprint_verbose("\n");
341 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
342 1.47 ad " instead of at expected %d", lapic_cpu_number(),
343 1.23 cube cpunum);
344 1.39 ad reg = i82489_readreg(LAPIC_ID);
345 1.39 ad i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
346 1.39 ad (cpunum << LAPIC_ID_SHIFT));
347 1.2 ad }
348 1.47 ad if (cpunum != lapic_cpu_number()) {
349 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
350 1.47 ad }
351 1.101 kiyohara #endif
352 1.2 ad }
353 1.2 ad
354 1.2 ad ci->ci_self = ci;
355 1.2 ad sc->sc_info = ci;
356 1.2 ad ci->ci_dev = self;
357 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
358 1.42 ad ci->ci_cpuid = caa->cpu_number;
359 1.2 ad ci->ci_func = caa->cpu_func;
360 1.112 msaitoh aprint_normal("\n");
361 1.2 ad
362 1.55 ad /* Must be before mi_cpu_attach(). */
363 1.55 ad cpu_vm_init(ci);
364 1.55 ad
365 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
366 1.2 ad int error;
367 1.2 ad
368 1.2 ad error = mi_cpu_attach(ci);
369 1.2 ad if (error != 0) {
370 1.47 ad aprint_error_dev(self,
371 1.30 cegger "mi_cpu_attach failed with %d\n", error);
372 1.2 ad return;
373 1.2 ad }
374 1.15 yamt cpu_init_tss(ci);
375 1.2 ad } else {
376 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
377 1.2 ad }
378 1.2 ad
379 1.2 ad pmap_reference(pmap_kernel());
380 1.2 ad ci->ci_pmap = pmap_kernel();
381 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
382 1.2 ad
383 1.51 ad /*
384 1.51 ad * Boot processor may not be attached first, but the below
385 1.51 ad * must be done to allow booting other processors.
386 1.51 ad */
387 1.51 ad if (!again) {
388 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
389 1.51 ad /* Basic init. */
390 1.2 ad cpu_intr_init(ci);
391 1.40 ad cpu_get_tsc_freq(ci);
392 1.2 ad cpu_init(ci);
393 1.2 ad cpu_set_tss_gates(ci);
394 1.2 ad pmap_cpu_init_late(ci);
395 1.101 kiyohara #if NLAPIC > 0
396 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
397 1.51 ad /* Enable lapic. */
398 1.51 ad lapic_enable();
399 1.51 ad lapic_set_lvt();
400 1.51 ad lapic_calibrate_timer(ci);
401 1.51 ad }
402 1.101 kiyohara #endif
403 1.51 ad /* Make sure DELAY() is initialized. */
404 1.51 ad DELAY(1);
405 1.51 ad again = true;
406 1.51 ad }
407 1.51 ad
408 1.51 ad /* further PCB init done later. */
409 1.51 ad
410 1.51 ad switch (caa->cpu_role) {
411 1.51 ad case CPU_ROLE_SP:
412 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
413 1.51 ad cpu_identify(ci);
414 1.53 ad x86_errata();
415 1.37 joerg x86_cpu_idle_init();
416 1.2 ad break;
417 1.2 ad
418 1.2 ad case CPU_ROLE_BP:
419 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
420 1.40 ad cpu_identify(ci);
421 1.53 ad x86_errata();
422 1.37 joerg x86_cpu_idle_init();
423 1.2 ad break;
424 1.2 ad
425 1.101 kiyohara #ifdef MULTIPROCESSOR
426 1.2 ad case CPU_ROLE_AP:
427 1.2 ad /*
428 1.2 ad * report on an AP
429 1.2 ad */
430 1.2 ad cpu_intr_init(ci);
431 1.2 ad gdt_alloc_cpu(ci);
432 1.2 ad cpu_set_tss_gates(ci);
433 1.2 ad pmap_cpu_init_late(ci);
434 1.2 ad cpu_start_secondary(ci);
435 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
436 1.59 cegger struct cpu_info *tmp;
437 1.59 cegger
438 1.40 ad cpu_identify(ci);
439 1.59 cegger tmp = cpu_info_list;
440 1.59 cegger while (tmp->ci_next)
441 1.59 cegger tmp = tmp->ci_next;
442 1.59 cegger
443 1.59 cegger tmp->ci_next = ci;
444 1.2 ad }
445 1.2 ad break;
446 1.101 kiyohara #endif
447 1.2 ad
448 1.2 ad default:
449 1.2 ad panic("unknown processor type??\n");
450 1.2 ad }
451 1.51 ad
452 1.71 cegger pat_init(ci);
453 1.2 ad
454 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
455 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
456 1.12 jmcneill
457 1.101 kiyohara #ifdef MULTIPROCESSOR
458 1.2 ad if (mp_verbose) {
459 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
460 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
461 1.2 ad
462 1.47 ad aprint_verbose_dev(self,
463 1.28 cegger "idle lwp at %p, idle sp at %p\n",
464 1.28 cegger l,
465 1.2 ad #ifdef i386
466 1.65 rmind (void *)pcb->pcb_esp
467 1.2 ad #else
468 1.65 rmind (void *)pcb->pcb_rsp
469 1.2 ad #endif
470 1.2 ad );
471 1.2 ad }
472 1.101 kiyohara #endif
473 1.81 jmcneill
474 1.89 jruoho /*
475 1.89 jruoho * Postpone the "cpufeaturebus" scan.
476 1.89 jruoho * It is safe to scan the pseudo-bus
477 1.89 jruoho * only after all CPUs have attached.
478 1.89 jruoho */
479 1.87 jruoho (void)config_defer(self, cpu_defer);
480 1.87 jruoho }
481 1.87 jruoho
482 1.87 jruoho static void
483 1.87 jruoho cpu_defer(device_t self)
484 1.87 jruoho {
485 1.81 jmcneill cpu_rescan(self, NULL, NULL);
486 1.81 jmcneill }
487 1.81 jmcneill
488 1.87 jruoho static int
489 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
490 1.81 jmcneill {
491 1.83 jruoho struct cpu_softc *sc = device_private(self);
492 1.81 jmcneill struct cpufeature_attach_args cfaa;
493 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
494 1.81 jmcneill
495 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
496 1.81 jmcneill cfaa.ci = ci;
497 1.81 jmcneill
498 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
499 1.82 jruoho
500 1.83 jruoho if (ci->ci_frequency == NULL) {
501 1.86 jruoho cfaa.name = "frequency";
502 1.84 jruoho ci->ci_frequency = config_found_ia(self,
503 1.84 jruoho "cpufeaturebus", &cfaa, NULL);
504 1.84 jruoho }
505 1.84 jruoho
506 1.81 jmcneill if (ci->ci_padlock == NULL) {
507 1.81 jmcneill cfaa.name = "padlock";
508 1.81 jmcneill ci->ci_padlock = config_found_ia(self,
509 1.81 jmcneill "cpufeaturebus", &cfaa, NULL);
510 1.81 jmcneill }
511 1.82 jruoho
512 1.86 jruoho if (ci->ci_temperature == NULL) {
513 1.86 jruoho cfaa.name = "temperature";
514 1.86 jruoho ci->ci_temperature = config_found_ia(self,
515 1.85 jruoho "cpufeaturebus", &cfaa, NULL);
516 1.85 jruoho }
517 1.95 jmcneill
518 1.95 jmcneill if (ci->ci_vm == NULL) {
519 1.95 jmcneill cfaa.name = "vm";
520 1.95 jmcneill ci->ci_vm = config_found_ia(self,
521 1.95 jmcneill "cpufeaturebus", &cfaa, NULL);
522 1.95 jmcneill }
523 1.81 jmcneill }
524 1.81 jmcneill
525 1.81 jmcneill return 0;
526 1.81 jmcneill }
527 1.81 jmcneill
528 1.87 jruoho static void
529 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
530 1.81 jmcneill {
531 1.81 jmcneill struct cpu_softc *sc = device_private(self);
532 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
533 1.81 jmcneill
534 1.83 jruoho if (ci->ci_frequency == child)
535 1.83 jruoho ci->ci_frequency = NULL;
536 1.82 jruoho
537 1.81 jmcneill if (ci->ci_padlock == child)
538 1.81 jmcneill ci->ci_padlock = NULL;
539 1.83 jruoho
540 1.86 jruoho if (ci->ci_temperature == child)
541 1.86 jruoho ci->ci_temperature = NULL;
542 1.95 jmcneill
543 1.95 jmcneill if (ci->ci_vm == child)
544 1.95 jmcneill ci->ci_vm = NULL;
545 1.2 ad }
546 1.2 ad
547 1.2 ad /*
548 1.2 ad * Initialize the processor appropriately.
549 1.2 ad */
550 1.2 ad
551 1.2 ad void
552 1.9 ad cpu_init(struct cpu_info *ci)
553 1.2 ad {
554 1.113 christos uint32_t cr4 = 0;
555 1.2 ad
556 1.2 ad lcr0(rcr0() | CR0_WP);
557 1.2 ad
558 1.2 ad /*
559 1.2 ad * On a P6 or above, enable global TLB caching if the
560 1.2 ad * hardware supports it.
561 1.2 ad */
562 1.70 jym if (cpu_feature[0] & CPUID_PGE)
563 1.110 dsl cr4 |= CR4_PGE; /* enable global TLB caching */
564 1.2 ad
565 1.2 ad /*
566 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
567 1.2 ad */
568 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
569 1.110 dsl cr4 |= CR4_OSFXSR;
570 1.2 ad
571 1.2 ad /*
572 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
573 1.2 ad */
574 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
575 1.110 dsl cr4 |= CR4_OSXMMEXCPT;
576 1.2 ad }
577 1.2 ad
578 1.110 dsl /* If xsave is supported, enable it */
579 1.110 dsl if (cpu_feature[1] & CPUID2_XSAVE)
580 1.110 dsl cr4 |= CR4_OSXSAVE;
581 1.110 dsl
582 1.113 christos if (cr4) {
583 1.113 christos cr4 |= rcr4();
584 1.113 christos lcr4(cr4);
585 1.113 christos }
586 1.110 dsl
587 1.110 dsl /* If xsave is enabled, enable all fpu features */
588 1.110 dsl if (cr4 & CR4_OSXSAVE)
589 1.110 dsl wrxcr(0, x86_xsave_features & XCR0_FPU);
590 1.110 dsl
591 1.2 ad #ifdef MTRR
592 1.2 ad /*
593 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
594 1.2 ad */
595 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
596 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
597 1.2 ad i686_mtrr_init_first();
598 1.2 ad mtrr_init_cpu(ci);
599 1.2 ad }
600 1.2 ad
601 1.2 ad #ifdef i386
602 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
603 1.2 ad /*
604 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
605 1.2 ad */
606 1.106 msaitoh if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
607 1.106 msaitoh if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
608 1.106 msaitoh (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
609 1.106 msaitoh CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
610 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
611 1.2 ad k6_mtrr_init_first();
612 1.2 ad mtrr_init_cpu(ci);
613 1.2 ad }
614 1.2 ad }
615 1.2 ad }
616 1.2 ad #endif /* i386 */
617 1.2 ad #endif /* MTRR */
618 1.2 ad
619 1.38 ad if (ci != &cpu_info_primary) {
620 1.38 ad /* Synchronize TSC again, and check for drift. */
621 1.38 ad wbinvd();
622 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
623 1.38 ad tsc_sync_ap(ci);
624 1.38 ad } else {
625 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
626 1.38 ad }
627 1.2 ad }
628 1.2 ad
629 1.101 kiyohara #ifdef MULTIPROCESSOR
630 1.2 ad void
631 1.12 jmcneill cpu_boot_secondary_processors(void)
632 1.2 ad {
633 1.2 ad struct cpu_info *ci;
634 1.100 chs kcpuset_t *cpus;
635 1.2 ad u_long i;
636 1.2 ad
637 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
638 1.60 ad x86_patch(false);
639 1.5 ad
640 1.100 chs kcpuset_create(&cpus, true);
641 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
642 1.100 chs for (i = 0; i < maxcpus; i++) {
643 1.57 ad ci = cpu_lookup(i);
644 1.2 ad if (ci == NULL)
645 1.2 ad continue;
646 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
647 1.2 ad continue;
648 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
649 1.2 ad continue;
650 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
651 1.2 ad continue;
652 1.2 ad cpu_boot_secondary(ci);
653 1.100 chs kcpuset_set(cpus, cpu_index(ci));
654 1.2 ad }
655 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
656 1.100 chs ;
657 1.100 chs kcpuset_destroy(cpus);
658 1.2 ad
659 1.2 ad x86_mp_online = true;
660 1.38 ad
661 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
662 1.38 ad tsc_tc_init();
663 1.55 ad
664 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
665 1.70 jym vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
666 1.2 ad }
667 1.101 kiyohara #endif
668 1.2 ad
669 1.2 ad static void
670 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
671 1.2 ad {
672 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
673 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
674 1.2 ad
675 1.2 ad pcb->pcb_cr0 = rcr0();
676 1.2 ad }
677 1.2 ad
678 1.2 ad void
679 1.12 jmcneill cpu_init_idle_lwps(void)
680 1.2 ad {
681 1.2 ad struct cpu_info *ci;
682 1.2 ad u_long i;
683 1.2 ad
684 1.54 ad for (i = 0; i < maxcpus; i++) {
685 1.57 ad ci = cpu_lookup(i);
686 1.2 ad if (ci == NULL)
687 1.2 ad continue;
688 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
689 1.2 ad continue;
690 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
691 1.2 ad continue;
692 1.2 ad cpu_init_idle_lwp(ci);
693 1.2 ad }
694 1.2 ad }
695 1.2 ad
696 1.101 kiyohara #ifdef MULTIPROCESSOR
697 1.2 ad void
698 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
699 1.2 ad {
700 1.38 ad extern paddr_t mp_pdirpa;
701 1.38 ad u_long psl;
702 1.2 ad int i;
703 1.2 ad
704 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
705 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
706 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
707 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
708 1.25 ad return;
709 1.45 ad }
710 1.2 ad
711 1.2 ad /*
712 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
713 1.50 ad * initial gate and allows the AP to start soft initialization.
714 1.2 ad */
715 1.50 ad KASSERT(cpu_starting == NULL);
716 1.50 ad cpu_starting = ci;
717 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
718 1.24 ad #ifdef MPDEBUG
719 1.24 ad extern int cpu_trace[3];
720 1.24 ad static int otrace[3];
721 1.24 ad if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
722 1.26 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
723 1.26 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
724 1.24 ad memcpy(otrace, cpu_trace, sizeof(otrace));
725 1.24 ad }
726 1.24 ad #endif
727 1.11 ad i8254_delay(10);
728 1.2 ad }
729 1.38 ad
730 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
731 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
732 1.2 ad #if defined(MPDEBUG) && defined(DDB)
733 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
734 1.2 ad Debugger();
735 1.2 ad #endif
736 1.38 ad } else {
737 1.38 ad /*
738 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
739 1.68 jym * twice to try and minimize possible cache effects. Disable
740 1.68 jym * interrupts to try and rule out any external interference.
741 1.38 ad */
742 1.38 ad psl = x86_read_psl();
743 1.38 ad x86_disable_intr();
744 1.38 ad wbinvd();
745 1.38 ad tsc_sync_bp(ci);
746 1.38 ad x86_write_psl(psl);
747 1.2 ad }
748 1.2 ad
749 1.2 ad CPU_START_CLEANUP(ci);
750 1.45 ad cpu_starting = NULL;
751 1.2 ad }
752 1.2 ad
753 1.2 ad void
754 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
755 1.2 ad {
756 1.38 ad int64_t drift;
757 1.38 ad u_long psl;
758 1.2 ad int i;
759 1.2 ad
760 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
761 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
762 1.11 ad i8254_delay(10);
763 1.2 ad }
764 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
765 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
766 1.2 ad #if defined(MPDEBUG) && defined(DDB)
767 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
768 1.2 ad Debugger();
769 1.2 ad #endif
770 1.38 ad } else {
771 1.38 ad /* Synchronize TSC again, check for drift. */
772 1.38 ad drift = ci->ci_data.cpu_cc_skew;
773 1.38 ad psl = x86_read_psl();
774 1.38 ad x86_disable_intr();
775 1.38 ad wbinvd();
776 1.38 ad tsc_sync_bp(ci);
777 1.38 ad x86_write_psl(psl);
778 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
779 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
780 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
781 1.38 ad tsc_sync_drift(drift);
782 1.2 ad }
783 1.2 ad }
784 1.2 ad
785 1.2 ad /*
786 1.2 ad * The CPU ends up here when its ready to run
787 1.2 ad * This is called from code in mptramp.s; at this point, we are running
788 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
789 1.2 ad * this processor will enter the idle loop and start looking for work.
790 1.2 ad */
791 1.2 ad void
792 1.2 ad cpu_hatch(void *v)
793 1.2 ad {
794 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
795 1.65 rmind struct pcb *pcb;
796 1.6 ad int s, i;
797 1.2 ad
798 1.12 jmcneill cpu_init_msrs(ci, true);
799 1.40 ad cpu_probe(ci);
800 1.46 ad
801 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
802 1.46 ad /* cpu_get_tsc_freq(ci); */
803 1.38 ad
804 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
805 1.38 ad
806 1.38 ad /*
807 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
808 1.38 ad * to try and minimize possible cache effects. Note that interrupts
809 1.38 ad * are off at this point.
810 1.38 ad */
811 1.38 ad wbinvd();
812 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
813 1.38 ad tsc_sync_ap(ci);
814 1.38 ad
815 1.38 ad /*
816 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
817 1.38 ad * in order to make the TSC drift as much as possible. so that
818 1.38 ad * we can detect it later. If not available, try 'pause'.
819 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
820 1.38 ad */
821 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
822 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
823 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
824 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
825 1.38 ad continue;
826 1.38 ad }
827 1.38 ad x86_mwait(0, 0);
828 1.38 ad } else {
829 1.38 ad for (i = 10000; i != 0; i--) {
830 1.38 ad x86_pause();
831 1.38 ad }
832 1.38 ad }
833 1.6 ad }
834 1.5 ad
835 1.26 cegger /* Because the text may have been patched in x86_patch(). */
836 1.5 ad wbinvd();
837 1.5 ad x86_flush();
838 1.88 rmind tlbflushg();
839 1.5 ad
840 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
841 1.2 ad
842 1.73 jym #ifdef PAE
843 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
844 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
845 1.73 jym l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
846 1.73 jym }
847 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
848 1.73 jym #else
849 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
850 1.73 jym #endif
851 1.73 jym
852 1.65 rmind pcb = lwp_getpcb(curlwp);
853 1.73 jym pcb->pcb_cr3 = rcr3();
854 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
855 1.65 rmind lcr0(pcb->pcb_cr0);
856 1.65 rmind
857 1.2 ad cpu_init_idt();
858 1.8 ad gdt_init_cpu(ci);
859 1.111 joerg #if NLAPIC > 0
860 1.8 ad lapic_enable();
861 1.2 ad lapic_set_lvt();
862 1.8 ad lapic_initclocks();
863 1.111 joerg #endif
864 1.2 ad
865 1.2 ad fpuinit(ci);
866 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
867 1.15 yamt ltr(ci->ci_tss_sel);
868 1.2 ad
869 1.2 ad cpu_init(ci);
870 1.7 ad cpu_get_tsc_freq(ci);
871 1.2 ad
872 1.2 ad s = splhigh();
873 1.2 ad #ifdef i386
874 1.2 ad lapic_tpr = 0;
875 1.2 ad #else
876 1.2 ad lcr8(0);
877 1.2 ad #endif
878 1.3 ad x86_enable_intr();
879 1.2 ad splx(s);
880 1.6 ad x86_errata();
881 1.2 ad
882 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
883 1.98 rmind
884 1.98 rmind idle_loop(NULL);
885 1.98 rmind KASSERT(false);
886 1.2 ad }
887 1.101 kiyohara #endif
888 1.2 ad
889 1.2 ad #if defined(DDB)
890 1.2 ad
891 1.2 ad #include <ddb/db_output.h>
892 1.2 ad #include <machine/db_machdep.h>
893 1.2 ad
894 1.2 ad /*
895 1.2 ad * Dump CPU information from ddb.
896 1.2 ad */
897 1.2 ad void
898 1.2 ad cpu_debug_dump(void)
899 1.2 ad {
900 1.2 ad struct cpu_info *ci;
901 1.2 ad CPU_INFO_ITERATOR cii;
902 1.2 ad
903 1.107 christos db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
904 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
905 1.107 christos db_printf("%p %s %ld %x %x %10p %10p\n",
906 1.2 ad ci,
907 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
908 1.2 ad (long)ci->ci_cpuid,
909 1.2 ad ci->ci_flags, ci->ci_ipis,
910 1.107 christos ci->ci_curlwp,
911 1.107 christos ci->ci_fpcurlwp);
912 1.2 ad }
913 1.2 ad }
914 1.2 ad #endif
915 1.2 ad
916 1.101 kiyohara #if NLAPIC > 0
917 1.2 ad static void
918 1.12 jmcneill cpu_copy_trampoline(void)
919 1.2 ad {
920 1.2 ad /*
921 1.2 ad * Copy boot code.
922 1.2 ad */
923 1.2 ad extern u_char cpu_spinup_trampoline[];
924 1.2 ad extern u_char cpu_spinup_trampoline_end[];
925 1.12 jmcneill
926 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
927 1.12 jmcneill
928 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
929 1.12 jmcneill UVM_KMF_VAONLY);
930 1.12 jmcneill
931 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
932 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
933 1.2 ad pmap_update(pmap_kernel());
934 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
935 1.2 ad cpu_spinup_trampoline,
936 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
937 1.12 jmcneill
938 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
939 1.12 jmcneill pmap_update(pmap_kernel());
940 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
941 1.2 ad }
942 1.101 kiyohara #endif
943 1.2 ad
944 1.2 ad #ifdef i386
945 1.2 ad static void
946 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
947 1.2 ad {
948 1.73 jym KASSERT(curcpu()->ci_pmap == pmap_kernel());
949 1.73 jym
950 1.2 ad memset(tss, 0, sizeof *tss);
951 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
952 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
953 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
954 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
955 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
956 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
957 1.73 jym /* %cr3 contains the value associated to pmap_kernel */
958 1.73 jym tss->tss_cr3 = rcr3();
959 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
960 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
961 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
962 1.2 ad tss->__tss_eip = (int)func;
963 1.2 ad }
964 1.2 ad
965 1.2 ad /* XXX */
966 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
967 1.2 ad typedef void (vector)(void);
968 1.2 ad extern vector IDTVEC(tss_trap08);
969 1.101 kiyohara #if defined(DDB) && defined(MULTIPROCESSOR)
970 1.2 ad extern vector Xintrddbipi;
971 1.2 ad extern int ddb_vec;
972 1.2 ad #endif
973 1.2 ad
974 1.2 ad static void
975 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
976 1.2 ad {
977 1.2 ad struct segment_descriptor sd;
978 1.2 ad
979 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
980 1.2 ad UVM_KMF_WIRED);
981 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
982 1.2 ad IDTVEC(tss_trap08));
983 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
984 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
985 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
986 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
987 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
988 1.2 ad
989 1.101 kiyohara #if defined(DDB) && defined(MULTIPROCESSOR)
990 1.2 ad /*
991 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
992 1.2 ad * stomp on a possibly corrupted stack.
993 1.2 ad *
994 1.2 ad * XXX overwriting the gate set in db_machine_init.
995 1.2 ad * Should rearrange the code so that it's set only once.
996 1.2 ad */
997 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
998 1.2 ad UVM_KMF_WIRED);
999 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
1000 1.2 ad
1001 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
1002 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
1003 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
1004 1.2 ad
1005 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
1006 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
1007 1.2 ad #endif
1008 1.2 ad }
1009 1.2 ad #else
1010 1.2 ad static void
1011 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
1012 1.2 ad {
1013 1.2 ad
1014 1.2 ad }
1015 1.2 ad #endif /* i386 */
1016 1.2 ad
1017 1.101 kiyohara #ifdef MULTIPROCESSOR
1018 1.2 ad int
1019 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
1020 1.2 ad {
1021 1.44 ad unsigned short dwordptr[2];
1022 1.2 ad int error;
1023 1.14 joerg
1024 1.14 joerg /*
1025 1.14 joerg * Bootstrap code must be addressable in real mode
1026 1.14 joerg * and it must be page aligned.
1027 1.14 joerg */
1028 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1029 1.2 ad
1030 1.2 ad /*
1031 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1032 1.2 ad */
1033 1.2 ad
1034 1.2 ad outb(IO_RTC, NVRAM_RESET);
1035 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
1036 1.2 ad
1037 1.2 ad /*
1038 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
1039 1.2 ad * to the AP startup code ..."
1040 1.2 ad */
1041 1.2 ad
1042 1.2 ad dwordptr[0] = 0;
1043 1.14 joerg dwordptr[1] = target >> 4;
1044 1.2 ad
1045 1.111 joerg #if NLAPIC > 0
1046 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1047 1.111 joerg #endif
1048 1.2 ad
1049 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
1050 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
1051 1.25 ad return ENODEV;
1052 1.25 ad }
1053 1.25 ad
1054 1.2 ad /*
1055 1.51 ad * ... prior to executing the following sequence:". We'll also add in
1056 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
1057 1.51 ad * disabled. It may not be able to cope with MP coherency.
1058 1.2 ad */
1059 1.51 ad wbinvd();
1060 1.2 ad
1061 1.2 ad if (ci->ci_flags & CPUF_AP) {
1062 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
1063 1.26 cegger if (error != 0) {
1064 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1065 1.50 ad __func__);
1066 1.2 ad return error;
1067 1.25 ad }
1068 1.11 ad i8254_delay(10000);
1069 1.2 ad
1070 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1071 1.26 cegger if (error != 0) {
1072 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1073 1.50 ad __func__);
1074 1.25 ad return error;
1075 1.25 ad }
1076 1.25 ad i8254_delay(200);
1077 1.2 ad
1078 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1079 1.26 cegger if (error != 0) {
1080 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1081 1.50 ad __func__);
1082 1.25 ad return error;
1083 1.2 ad }
1084 1.25 ad i8254_delay(200);
1085 1.2 ad }
1086 1.44 ad
1087 1.2 ad return 0;
1088 1.2 ad }
1089 1.2 ad
1090 1.2 ad void
1091 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1092 1.2 ad {
1093 1.2 ad /*
1094 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1095 1.2 ad */
1096 1.2 ad
1097 1.2 ad outb(IO_RTC, NVRAM_RESET);
1098 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1099 1.2 ad }
1100 1.101 kiyohara #endif
1101 1.2 ad
1102 1.2 ad #ifdef __x86_64__
1103 1.2 ad typedef void (vector)(void);
1104 1.2 ad extern vector Xsyscall, Xsyscall32;
1105 1.70 jym #endif
1106 1.2 ad
1107 1.2 ad void
1108 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1109 1.2 ad {
1110 1.70 jym #ifdef __x86_64__
1111 1.2 ad wrmsr(MSR_STAR,
1112 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1113 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1114 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1115 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1116 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1117 1.2 ad
1118 1.12 jmcneill if (full) {
1119 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1120 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1121 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1122 1.12 jmcneill }
1123 1.70 jym #endif /* __x86_64__ */
1124 1.2 ad
1125 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1126 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1127 1.2 ad }
1128 1.7 ad
1129 1.107 christos void
1130 1.107 christos cpu_offline_md(void)
1131 1.107 christos {
1132 1.107 christos int s;
1133 1.107 christos
1134 1.107 christos s = splhigh();
1135 1.107 christos fpusave_cpu(true);
1136 1.107 christos splx(s);
1137 1.107 christos }
1138 1.107 christos
1139 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1140 1.12 jmcneill static bool
1141 1.96 jruoho cpu_stop(device_t dv)
1142 1.12 jmcneill {
1143 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1144 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1145 1.18 joerg int err;
1146 1.12 jmcneill
1147 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1148 1.93 jruoho
1149 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1150 1.93 jruoho return true;
1151 1.93 jruoho
1152 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1153 1.12 jmcneill return true;
1154 1.12 jmcneill
1155 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1156 1.17 joerg
1157 1.20 jmcneill if (sc->sc_wasonline) {
1158 1.20 jmcneill mutex_enter(&cpu_lock);
1159 1.58 rmind err = cpu_setstate(ci, false);
1160 1.20 jmcneill mutex_exit(&cpu_lock);
1161 1.79 jruoho
1162 1.93 jruoho if (err != 0)
1163 1.20 jmcneill return false;
1164 1.20 jmcneill }
1165 1.17 joerg
1166 1.17 joerg return true;
1167 1.12 jmcneill }
1168 1.12 jmcneill
1169 1.12 jmcneill static bool
1170 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1171 1.96 jruoho {
1172 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1173 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1174 1.96 jruoho
1175 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1176 1.96 jruoho return true;
1177 1.96 jruoho else {
1178 1.96 jruoho cpufreq_suspend(ci);
1179 1.96 jruoho }
1180 1.96 jruoho
1181 1.96 jruoho return cpu_stop(dv);
1182 1.96 jruoho }
1183 1.96 jruoho
1184 1.96 jruoho static bool
1185 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1186 1.12 jmcneill {
1187 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1188 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1189 1.20 jmcneill int err = 0;
1190 1.12 jmcneill
1191 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1192 1.12 jmcneill return true;
1193 1.93 jruoho
1194 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1195 1.93 jruoho goto out;
1196 1.93 jruoho
1197 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1198 1.93 jruoho goto out;
1199 1.12 jmcneill
1200 1.20 jmcneill if (sc->sc_wasonline) {
1201 1.20 jmcneill mutex_enter(&cpu_lock);
1202 1.58 rmind err = cpu_setstate(ci, true);
1203 1.20 jmcneill mutex_exit(&cpu_lock);
1204 1.20 jmcneill }
1205 1.13 joerg
1206 1.93 jruoho out:
1207 1.93 jruoho if (err != 0)
1208 1.93 jruoho return false;
1209 1.93 jruoho
1210 1.93 jruoho cpufreq_resume(ci);
1211 1.93 jruoho
1212 1.93 jruoho return true;
1213 1.12 jmcneill }
1214 1.12 jmcneill
1215 1.79 jruoho static bool
1216 1.79 jruoho cpu_shutdown(device_t dv, int how)
1217 1.79 jruoho {
1218 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1219 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1220 1.90 dyoung
1221 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1222 1.90 dyoung return false;
1223 1.90 dyoung
1224 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1225 1.96 jruoho return true;
1226 1.96 jruoho
1227 1.96 jruoho return cpu_stop(dv);
1228 1.79 jruoho }
1229 1.79 jruoho
1230 1.7 ad void
1231 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1232 1.7 ad {
1233 1.7 ad uint64_t last_tsc;
1234 1.7 ad
1235 1.70 jym if (cpu_hascounter()) {
1236 1.80 bouyer last_tsc = cpu_counter_serializing();
1237 1.7 ad i8254_delay(100000);
1238 1.80 bouyer ci->ci_data.cpu_cc_freq =
1239 1.80 bouyer (cpu_counter_serializing() - last_tsc) * 10;
1240 1.7 ad }
1241 1.7 ad }
1242 1.37 joerg
1243 1.37 joerg void
1244 1.37 joerg x86_cpu_idle_mwait(void)
1245 1.37 joerg {
1246 1.37 joerg struct cpu_info *ci = curcpu();
1247 1.37 joerg
1248 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1249 1.37 joerg
1250 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1251 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1252 1.37 joerg return;
1253 1.37 joerg }
1254 1.37 joerg x86_mwait(0, 0);
1255 1.37 joerg }
1256 1.37 joerg
1257 1.37 joerg void
1258 1.37 joerg x86_cpu_idle_halt(void)
1259 1.37 joerg {
1260 1.37 joerg struct cpu_info *ci = curcpu();
1261 1.37 joerg
1262 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1263 1.37 joerg
1264 1.37 joerg x86_disable_intr();
1265 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1266 1.37 joerg x86_stihlt();
1267 1.37 joerg } else {
1268 1.37 joerg x86_enable_intr();
1269 1.37 joerg }
1270 1.37 joerg }
1271 1.73 jym
1272 1.73 jym /*
1273 1.73 jym * Loads pmap for the current CPU.
1274 1.73 jym */
1275 1.73 jym void
1276 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1277 1.73 jym {
1278 1.73 jym #ifdef PAE
1279 1.99 yamt struct cpu_info *ci = curcpu();
1280 1.116 nat bool interrupts_enabled;
1281 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1282 1.99 yamt int i;
1283 1.73 jym
1284 1.99 yamt /*
1285 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1286 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1287 1.99 yamt * reload cr3.
1288 1.99 yamt */
1289 1.116 nat interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1290 1.116 nat if (interrupts_enabled)
1291 1.116 nat x86_disable_intr();
1292 1.116 nat
1293 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1294 1.73 jym l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1295 1.73 jym }
1296 1.116 nat
1297 1.116 nat if (interrupts_enabled)
1298 1.116 nat x86_enable_intr();
1299 1.73 jym tlbflush();
1300 1.73 jym #else /* PAE */
1301 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1302 1.73 jym #endif /* PAE */
1303 1.73 jym }
1304 1.91 cherry
1305 1.91 cherry /*
1306 1.91 cherry * Notify all other cpus to halt.
1307 1.91 cherry */
1308 1.91 cherry
1309 1.91 cherry void
1310 1.92 cherry cpu_broadcast_halt(void)
1311 1.91 cherry {
1312 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1313 1.91 cherry }
1314 1.91 cherry
1315 1.91 cherry /*
1316 1.91 cherry * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1317 1.91 cherry */
1318 1.91 cherry
1319 1.91 cherry void
1320 1.91 cherry cpu_kick(struct cpu_info *ci)
1321 1.91 cherry {
1322 1.91 cherry x86_send_ipi(ci, 0);
1323 1.91 cherry }
1324