cpu.c revision 1.117 1 1.117 maxv /* $NetBSD: cpu.c,v 1.117 2015/12/13 15:02:19 maxv Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.98 rmind * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.117 maxv __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.117 2015/12/13 15:02:19 maxv Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.101 kiyohara #include "opt_multiprocessor.h"
71 1.2 ad
72 1.2 ad #include "lapic.h"
73 1.2 ad #include "ioapic.h"
74 1.2 ad
75 1.2 ad #include <sys/param.h>
76 1.2 ad #include <sys/proc.h>
77 1.2 ad #include <sys/systm.h>
78 1.2 ad #include <sys/device.h>
79 1.61 cegger #include <sys/kmem.h>
80 1.9 ad #include <sys/cpu.h>
81 1.93 jruoho #include <sys/cpufreq.h>
82 1.98 rmind #include <sys/idle.h>
83 1.9 ad #include <sys/atomic.h>
84 1.35 ad #include <sys/reboot.h>
85 1.2 ad
86 1.78 uebayasi #include <uvm/uvm.h>
87 1.2 ad
88 1.102 pgoyette #include "acpica.h" /* for NACPICA, for mp_verbose */
89 1.102 pgoyette
90 1.2 ad #include <machine/cpufunc.h>
91 1.2 ad #include <machine/cpuvar.h>
92 1.2 ad #include <machine/pmap.h>
93 1.2 ad #include <machine/vmparam.h>
94 1.102 pgoyette #if defined(MULTIPROCESSOR)
95 1.2 ad #include <machine/mpbiosvar.h>
96 1.101 kiyohara #endif
97 1.102 pgoyette #include <machine/mpconfig.h> /* for mp_verbose */
98 1.2 ad #include <machine/pcb.h>
99 1.2 ad #include <machine/specialreg.h>
100 1.2 ad #include <machine/segments.h>
101 1.2 ad #include <machine/gdt.h>
102 1.2 ad #include <machine/mtrr.h>
103 1.2 ad #include <machine/pio.h>
104 1.38 ad #include <machine/cpu_counter.h>
105 1.2 ad
106 1.109 dsl #include <x86/fpu.h>
107 1.109 dsl
108 1.2 ad #ifdef i386
109 1.2 ad #include <machine/tlog.h>
110 1.2 ad #endif
111 1.2 ad
112 1.101 kiyohara #if NLAPIC > 0
113 1.2 ad #include <machine/apicvar.h>
114 1.2 ad #include <machine/i82489reg.h>
115 1.2 ad #include <machine/i82489var.h>
116 1.101 kiyohara #endif
117 1.2 ad
118 1.2 ad #include <dev/ic/mc146818reg.h>
119 1.2 ad #include <i386/isa/nvram.h>
120 1.2 ad #include <dev/isa/isareg.h>
121 1.2 ad
122 1.38 ad #include "tsc.h"
123 1.38 ad
124 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
125 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
126 1.87 jruoho static void cpu_defer(device_t);
127 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
128 1.87 jruoho static void cpu_childdetached(device_t, device_t);
129 1.96 jruoho static bool cpu_stop(device_t);
130 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
131 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
132 1.79 jruoho static bool cpu_shutdown(device_t, int);
133 1.12 jmcneill
134 1.2 ad struct cpu_softc {
135 1.23 cube device_t sc_dev; /* device tree glue */
136 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
137 1.20 jmcneill bool sc_wasonline;
138 1.2 ad };
139 1.2 ad
140 1.101 kiyohara #ifdef MULTIPROCESSOR
141 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
142 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
143 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
144 1.2 ad mp_cpu_start_cleanup };
145 1.101 kiyohara #endif
146 1.2 ad
147 1.2 ad
148 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
149 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
150 1.2 ad
151 1.2 ad /*
152 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
153 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
154 1.2 ad * point at it.
155 1.2 ad */
156 1.2 ad #ifdef TRAPLOG
157 1.2 ad struct tlog tlog_primary;
158 1.2 ad #endif
159 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 1.2 ad .ci_dev = 0,
161 1.2 ad .ci_self = &cpu_info_primary,
162 1.2 ad .ci_idepth = -1,
163 1.2 ad .ci_curlwp = &lwp0,
164 1.43 ad .ci_curldt = -1,
165 1.2 ad #ifdef TRAPLOG
166 1.2 ad .ci_tlog_base = &tlog_primary,
167 1.2 ad #endif /* !TRAPLOG */
168 1.2 ad };
169 1.2 ad
170 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
171 1.2 ad
172 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
173 1.2 ad
174 1.2 ad #ifdef i386
175 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
176 1.2 ad #endif
177 1.2 ad
178 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
179 1.12 jmcneill
180 1.117 maxv uint32_t cpu_feature[7]; /* X86 CPUID feature bits */
181 1.117 maxv /* [0] basic features cpuid.1:%edx
182 1.117 maxv * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
183 1.117 maxv * [2] extended features cpuid:80000001:%edx
184 1.117 maxv * [3] extended features cpuid:80000001:%ecx
185 1.117 maxv * [4] VIA padlock features
186 1.117 maxv * [5] structured extended features cpuid.7:%ebx
187 1.117 maxv * [6] structured extended features cpuid.7:%ecx
188 1.117 maxv */
189 1.70 jym
190 1.2 ad extern char x86_64_doubleflt_stack[];
191 1.2 ad
192 1.101 kiyohara #ifdef MULTIPROCESSOR
193 1.12 jmcneill bool x86_mp_online;
194 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
195 1.101 kiyohara #endif
196 1.101 kiyohara #if NLAPIC > 0
197 1.14 joerg static vaddr_t cmos_data_mapping;
198 1.101 kiyohara #endif
199 1.45 ad struct cpu_info *cpu_starting;
200 1.2 ad
201 1.101 kiyohara #ifdef MULTIPROCESSOR
202 1.2 ad void cpu_hatch(void *);
203 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
204 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
205 1.101 kiyohara #endif
206 1.101 kiyohara #if NLAPIC > 0
207 1.2 ad static void cpu_copy_trampoline(void);
208 1.101 kiyohara #endif
209 1.2 ad
210 1.2 ad /*
211 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
212 1.2 ad * the local APIC on the boot processor has been mapped.
213 1.2 ad *
214 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
215 1.2 ad */
216 1.101 kiyohara #if NLAPIC > 0
217 1.2 ad void
218 1.9 ad cpu_init_first(void)
219 1.2 ad {
220 1.2 ad
221 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
222 1.2 ad cpu_copy_trampoline();
223 1.14 joerg
224 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
225 1.14 joerg if (cmos_data_mapping == 0)
226 1.14 joerg panic("No KVA for page 0");
227 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
228 1.14 joerg pmap_update(pmap_kernel());
229 1.2 ad }
230 1.101 kiyohara #endif
231 1.2 ad
232 1.87 jruoho static int
233 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
234 1.2 ad {
235 1.2 ad
236 1.2 ad return 1;
237 1.2 ad }
238 1.2 ad
239 1.2 ad static void
240 1.2 ad cpu_vm_init(struct cpu_info *ci)
241 1.2 ad {
242 1.2 ad int ncolors = 2, i;
243 1.2 ad
244 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
245 1.2 ad struct x86_cache_info *cai;
246 1.2 ad int tcolors;
247 1.2 ad
248 1.2 ad cai = &ci->ci_cinfo[i];
249 1.2 ad
250 1.2 ad tcolors = atop(cai->cai_totalsize);
251 1.2 ad switch(cai->cai_associativity) {
252 1.2 ad case 0xff:
253 1.2 ad tcolors = 1; /* fully associative */
254 1.2 ad break;
255 1.2 ad case 0:
256 1.2 ad case 1:
257 1.2 ad break;
258 1.2 ad default:
259 1.2 ad tcolors /= cai->cai_associativity;
260 1.2 ad }
261 1.2 ad ncolors = max(ncolors, tcolors);
262 1.32 tls /*
263 1.32 tls * If the desired number of colors is not a power of
264 1.32 tls * two, it won't be good. Find the greatest power of
265 1.32 tls * two which is an even divisor of the number of colors,
266 1.32 tls * to preserve even coloring of pages.
267 1.32 tls */
268 1.32 tls if (ncolors & (ncolors - 1) ) {
269 1.32 tls int try, picked = 1;
270 1.32 tls for (try = 1; try < ncolors; try *= 2) {
271 1.32 tls if (ncolors % try == 0) picked = try;
272 1.32 tls }
273 1.32 tls if (picked == 1) {
274 1.32 tls panic("desired number of cache colors %d is "
275 1.32 tls " > 1, but not even!", ncolors);
276 1.32 tls }
277 1.32 tls ncolors = picked;
278 1.32 tls }
279 1.2 ad }
280 1.2 ad
281 1.2 ad /*
282 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
283 1.94 mrg * re-color our pages.
284 1.2 ad */
285 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
286 1.2 ad uvm_page_recolor(ncolors);
287 1.98 rmind
288 1.98 rmind pmap_tlb_cpu_init(ci);
289 1.2 ad }
290 1.2 ad
291 1.87 jruoho static void
292 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
293 1.2 ad {
294 1.23 cube struct cpu_softc *sc = device_private(self);
295 1.2 ad struct cpu_attach_args *caa = aux;
296 1.2 ad struct cpu_info *ci;
297 1.21 ad uintptr_t ptr;
298 1.101 kiyohara #if NLAPIC > 0
299 1.2 ad int cpunum = caa->cpu_number;
300 1.101 kiyohara #endif
301 1.51 ad static bool again;
302 1.2 ad
303 1.23 cube sc->sc_dev = self;
304 1.23 cube
305 1.98 rmind if (ncpu == maxcpus) {
306 1.98 rmind #ifndef _LP64
307 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
308 1.98 rmind #else
309 1.98 rmind aprint_error(": too many CPUs\n");
310 1.98 rmind #endif
311 1.48 ad return;
312 1.48 ad }
313 1.48 ad
314 1.2 ad /*
315 1.2 ad * If we're an Application Processor, allocate a cpu_info
316 1.2 ad * structure, otherwise use the primary's.
317 1.2 ad */
318 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
319 1.36 ad if ((boothowto & RB_MD1) != 0) {
320 1.35 ad aprint_error(": multiprocessor boot disabled\n");
321 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
322 1.56 jmcneill aprint_error_dev(self,
323 1.56 jmcneill "couldn't establish power handler\n");
324 1.35 ad return;
325 1.35 ad }
326 1.2 ad aprint_naive(": Application Processor\n");
327 1.72 rmind ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
328 1.61 cegger KM_SLEEP);
329 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
330 1.43 ad ci->ci_curldt = -1;
331 1.2 ad #ifdef TRAPLOG
332 1.61 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
333 1.2 ad #endif
334 1.2 ad } else {
335 1.2 ad aprint_naive(": %s Processor\n",
336 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
337 1.2 ad ci = &cpu_info_primary;
338 1.101 kiyohara #if NLAPIC > 0
339 1.2 ad if (cpunum != lapic_cpu_number()) {
340 1.51 ad /* XXX should be done earlier. */
341 1.39 ad uint32_t reg;
342 1.39 ad aprint_verbose("\n");
343 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
344 1.47 ad " instead of at expected %d", lapic_cpu_number(),
345 1.23 cube cpunum);
346 1.39 ad reg = i82489_readreg(LAPIC_ID);
347 1.39 ad i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
348 1.39 ad (cpunum << LAPIC_ID_SHIFT));
349 1.2 ad }
350 1.47 ad if (cpunum != lapic_cpu_number()) {
351 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
352 1.47 ad }
353 1.101 kiyohara #endif
354 1.2 ad }
355 1.2 ad
356 1.2 ad ci->ci_self = ci;
357 1.2 ad sc->sc_info = ci;
358 1.2 ad ci->ci_dev = self;
359 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
360 1.42 ad ci->ci_cpuid = caa->cpu_number;
361 1.2 ad ci->ci_func = caa->cpu_func;
362 1.112 msaitoh aprint_normal("\n");
363 1.2 ad
364 1.55 ad /* Must be before mi_cpu_attach(). */
365 1.55 ad cpu_vm_init(ci);
366 1.55 ad
367 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
368 1.2 ad int error;
369 1.2 ad
370 1.2 ad error = mi_cpu_attach(ci);
371 1.2 ad if (error != 0) {
372 1.47 ad aprint_error_dev(self,
373 1.30 cegger "mi_cpu_attach failed with %d\n", error);
374 1.2 ad return;
375 1.2 ad }
376 1.15 yamt cpu_init_tss(ci);
377 1.2 ad } else {
378 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
379 1.2 ad }
380 1.2 ad
381 1.2 ad pmap_reference(pmap_kernel());
382 1.2 ad ci->ci_pmap = pmap_kernel();
383 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
384 1.2 ad
385 1.51 ad /*
386 1.51 ad * Boot processor may not be attached first, but the below
387 1.51 ad * must be done to allow booting other processors.
388 1.51 ad */
389 1.51 ad if (!again) {
390 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
391 1.51 ad /* Basic init. */
392 1.2 ad cpu_intr_init(ci);
393 1.40 ad cpu_get_tsc_freq(ci);
394 1.2 ad cpu_init(ci);
395 1.2 ad cpu_set_tss_gates(ci);
396 1.2 ad pmap_cpu_init_late(ci);
397 1.101 kiyohara #if NLAPIC > 0
398 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
399 1.51 ad /* Enable lapic. */
400 1.51 ad lapic_enable();
401 1.51 ad lapic_set_lvt();
402 1.51 ad lapic_calibrate_timer(ci);
403 1.51 ad }
404 1.101 kiyohara #endif
405 1.51 ad /* Make sure DELAY() is initialized. */
406 1.51 ad DELAY(1);
407 1.51 ad again = true;
408 1.51 ad }
409 1.51 ad
410 1.51 ad /* further PCB init done later. */
411 1.51 ad
412 1.51 ad switch (caa->cpu_role) {
413 1.51 ad case CPU_ROLE_SP:
414 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
415 1.51 ad cpu_identify(ci);
416 1.53 ad x86_errata();
417 1.37 joerg x86_cpu_idle_init();
418 1.2 ad break;
419 1.2 ad
420 1.2 ad case CPU_ROLE_BP:
421 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
422 1.40 ad cpu_identify(ci);
423 1.53 ad x86_errata();
424 1.37 joerg x86_cpu_idle_init();
425 1.2 ad break;
426 1.2 ad
427 1.101 kiyohara #ifdef MULTIPROCESSOR
428 1.2 ad case CPU_ROLE_AP:
429 1.2 ad /*
430 1.2 ad * report on an AP
431 1.2 ad */
432 1.2 ad cpu_intr_init(ci);
433 1.2 ad gdt_alloc_cpu(ci);
434 1.2 ad cpu_set_tss_gates(ci);
435 1.2 ad pmap_cpu_init_late(ci);
436 1.2 ad cpu_start_secondary(ci);
437 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
438 1.59 cegger struct cpu_info *tmp;
439 1.59 cegger
440 1.40 ad cpu_identify(ci);
441 1.59 cegger tmp = cpu_info_list;
442 1.59 cegger while (tmp->ci_next)
443 1.59 cegger tmp = tmp->ci_next;
444 1.59 cegger
445 1.59 cegger tmp->ci_next = ci;
446 1.2 ad }
447 1.2 ad break;
448 1.101 kiyohara #endif
449 1.2 ad
450 1.2 ad default:
451 1.2 ad panic("unknown processor type??\n");
452 1.2 ad }
453 1.51 ad
454 1.71 cegger pat_init(ci);
455 1.2 ad
456 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
457 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
458 1.12 jmcneill
459 1.101 kiyohara #ifdef MULTIPROCESSOR
460 1.2 ad if (mp_verbose) {
461 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
462 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
463 1.2 ad
464 1.47 ad aprint_verbose_dev(self,
465 1.28 cegger "idle lwp at %p, idle sp at %p\n",
466 1.28 cegger l,
467 1.2 ad #ifdef i386
468 1.65 rmind (void *)pcb->pcb_esp
469 1.2 ad #else
470 1.65 rmind (void *)pcb->pcb_rsp
471 1.2 ad #endif
472 1.2 ad );
473 1.2 ad }
474 1.101 kiyohara #endif
475 1.81 jmcneill
476 1.89 jruoho /*
477 1.89 jruoho * Postpone the "cpufeaturebus" scan.
478 1.89 jruoho * It is safe to scan the pseudo-bus
479 1.89 jruoho * only after all CPUs have attached.
480 1.89 jruoho */
481 1.87 jruoho (void)config_defer(self, cpu_defer);
482 1.87 jruoho }
483 1.87 jruoho
484 1.87 jruoho static void
485 1.87 jruoho cpu_defer(device_t self)
486 1.87 jruoho {
487 1.81 jmcneill cpu_rescan(self, NULL, NULL);
488 1.81 jmcneill }
489 1.81 jmcneill
490 1.87 jruoho static int
491 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
492 1.81 jmcneill {
493 1.83 jruoho struct cpu_softc *sc = device_private(self);
494 1.81 jmcneill struct cpufeature_attach_args cfaa;
495 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
496 1.81 jmcneill
497 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
498 1.81 jmcneill cfaa.ci = ci;
499 1.81 jmcneill
500 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
501 1.82 jruoho
502 1.83 jruoho if (ci->ci_frequency == NULL) {
503 1.86 jruoho cfaa.name = "frequency";
504 1.84 jruoho ci->ci_frequency = config_found_ia(self,
505 1.84 jruoho "cpufeaturebus", &cfaa, NULL);
506 1.84 jruoho }
507 1.84 jruoho
508 1.81 jmcneill if (ci->ci_padlock == NULL) {
509 1.81 jmcneill cfaa.name = "padlock";
510 1.81 jmcneill ci->ci_padlock = config_found_ia(self,
511 1.81 jmcneill "cpufeaturebus", &cfaa, NULL);
512 1.81 jmcneill }
513 1.82 jruoho
514 1.86 jruoho if (ci->ci_temperature == NULL) {
515 1.86 jruoho cfaa.name = "temperature";
516 1.86 jruoho ci->ci_temperature = config_found_ia(self,
517 1.85 jruoho "cpufeaturebus", &cfaa, NULL);
518 1.85 jruoho }
519 1.95 jmcneill
520 1.95 jmcneill if (ci->ci_vm == NULL) {
521 1.95 jmcneill cfaa.name = "vm";
522 1.95 jmcneill ci->ci_vm = config_found_ia(self,
523 1.95 jmcneill "cpufeaturebus", &cfaa, NULL);
524 1.95 jmcneill }
525 1.81 jmcneill }
526 1.81 jmcneill
527 1.81 jmcneill return 0;
528 1.81 jmcneill }
529 1.81 jmcneill
530 1.87 jruoho static void
531 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
532 1.81 jmcneill {
533 1.81 jmcneill struct cpu_softc *sc = device_private(self);
534 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
535 1.81 jmcneill
536 1.83 jruoho if (ci->ci_frequency == child)
537 1.83 jruoho ci->ci_frequency = NULL;
538 1.82 jruoho
539 1.81 jmcneill if (ci->ci_padlock == child)
540 1.81 jmcneill ci->ci_padlock = NULL;
541 1.83 jruoho
542 1.86 jruoho if (ci->ci_temperature == child)
543 1.86 jruoho ci->ci_temperature = NULL;
544 1.95 jmcneill
545 1.95 jmcneill if (ci->ci_vm == child)
546 1.95 jmcneill ci->ci_vm = NULL;
547 1.2 ad }
548 1.2 ad
549 1.2 ad /*
550 1.2 ad * Initialize the processor appropriately.
551 1.2 ad */
552 1.2 ad
553 1.2 ad void
554 1.9 ad cpu_init(struct cpu_info *ci)
555 1.2 ad {
556 1.113 christos uint32_t cr4 = 0;
557 1.2 ad
558 1.2 ad lcr0(rcr0() | CR0_WP);
559 1.2 ad
560 1.2 ad /*
561 1.2 ad * On a P6 or above, enable global TLB caching if the
562 1.2 ad * hardware supports it.
563 1.2 ad */
564 1.70 jym if (cpu_feature[0] & CPUID_PGE)
565 1.110 dsl cr4 |= CR4_PGE; /* enable global TLB caching */
566 1.2 ad
567 1.2 ad /*
568 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
569 1.2 ad */
570 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
571 1.110 dsl cr4 |= CR4_OSFXSR;
572 1.2 ad
573 1.2 ad /*
574 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
575 1.2 ad */
576 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
577 1.110 dsl cr4 |= CR4_OSXMMEXCPT;
578 1.2 ad }
579 1.2 ad
580 1.110 dsl /* If xsave is supported, enable it */
581 1.110 dsl if (cpu_feature[1] & CPUID2_XSAVE)
582 1.110 dsl cr4 |= CR4_OSXSAVE;
583 1.110 dsl
584 1.113 christos if (cr4) {
585 1.113 christos cr4 |= rcr4();
586 1.113 christos lcr4(cr4);
587 1.113 christos }
588 1.110 dsl
589 1.110 dsl /* If xsave is enabled, enable all fpu features */
590 1.110 dsl if (cr4 & CR4_OSXSAVE)
591 1.110 dsl wrxcr(0, x86_xsave_features & XCR0_FPU);
592 1.110 dsl
593 1.2 ad #ifdef MTRR
594 1.2 ad /*
595 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
596 1.2 ad */
597 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
598 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
599 1.2 ad i686_mtrr_init_first();
600 1.2 ad mtrr_init_cpu(ci);
601 1.2 ad }
602 1.2 ad
603 1.2 ad #ifdef i386
604 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
605 1.2 ad /*
606 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
607 1.2 ad */
608 1.106 msaitoh if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
609 1.106 msaitoh if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
610 1.106 msaitoh (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
611 1.106 msaitoh CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
612 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
613 1.2 ad k6_mtrr_init_first();
614 1.2 ad mtrr_init_cpu(ci);
615 1.2 ad }
616 1.2 ad }
617 1.2 ad }
618 1.2 ad #endif /* i386 */
619 1.2 ad #endif /* MTRR */
620 1.2 ad
621 1.38 ad if (ci != &cpu_info_primary) {
622 1.38 ad /* Synchronize TSC again, and check for drift. */
623 1.38 ad wbinvd();
624 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
625 1.38 ad tsc_sync_ap(ci);
626 1.38 ad } else {
627 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
628 1.38 ad }
629 1.2 ad }
630 1.2 ad
631 1.101 kiyohara #ifdef MULTIPROCESSOR
632 1.2 ad void
633 1.12 jmcneill cpu_boot_secondary_processors(void)
634 1.2 ad {
635 1.2 ad struct cpu_info *ci;
636 1.100 chs kcpuset_t *cpus;
637 1.2 ad u_long i;
638 1.2 ad
639 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
640 1.60 ad x86_patch(false);
641 1.5 ad
642 1.100 chs kcpuset_create(&cpus, true);
643 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
644 1.100 chs for (i = 0; i < maxcpus; i++) {
645 1.57 ad ci = cpu_lookup(i);
646 1.2 ad if (ci == NULL)
647 1.2 ad continue;
648 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
649 1.2 ad continue;
650 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
651 1.2 ad continue;
652 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
653 1.2 ad continue;
654 1.2 ad cpu_boot_secondary(ci);
655 1.100 chs kcpuset_set(cpus, cpu_index(ci));
656 1.2 ad }
657 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
658 1.100 chs ;
659 1.100 chs kcpuset_destroy(cpus);
660 1.2 ad
661 1.2 ad x86_mp_online = true;
662 1.38 ad
663 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
664 1.38 ad tsc_tc_init();
665 1.55 ad
666 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
667 1.70 jym vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
668 1.2 ad }
669 1.101 kiyohara #endif
670 1.2 ad
671 1.2 ad static void
672 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
673 1.2 ad {
674 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
675 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
676 1.2 ad
677 1.2 ad pcb->pcb_cr0 = rcr0();
678 1.2 ad }
679 1.2 ad
680 1.2 ad void
681 1.12 jmcneill cpu_init_idle_lwps(void)
682 1.2 ad {
683 1.2 ad struct cpu_info *ci;
684 1.2 ad u_long i;
685 1.2 ad
686 1.54 ad for (i = 0; i < maxcpus; i++) {
687 1.57 ad ci = cpu_lookup(i);
688 1.2 ad if (ci == NULL)
689 1.2 ad continue;
690 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
691 1.2 ad continue;
692 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
693 1.2 ad continue;
694 1.2 ad cpu_init_idle_lwp(ci);
695 1.2 ad }
696 1.2 ad }
697 1.2 ad
698 1.101 kiyohara #ifdef MULTIPROCESSOR
699 1.2 ad void
700 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
701 1.2 ad {
702 1.38 ad extern paddr_t mp_pdirpa;
703 1.38 ad u_long psl;
704 1.2 ad int i;
705 1.2 ad
706 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
707 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
708 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
709 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
710 1.25 ad return;
711 1.45 ad }
712 1.2 ad
713 1.2 ad /*
714 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
715 1.50 ad * initial gate and allows the AP to start soft initialization.
716 1.2 ad */
717 1.50 ad KASSERT(cpu_starting == NULL);
718 1.50 ad cpu_starting = ci;
719 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
720 1.24 ad #ifdef MPDEBUG
721 1.24 ad extern int cpu_trace[3];
722 1.24 ad static int otrace[3];
723 1.24 ad if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
724 1.26 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
725 1.26 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
726 1.24 ad memcpy(otrace, cpu_trace, sizeof(otrace));
727 1.24 ad }
728 1.24 ad #endif
729 1.11 ad i8254_delay(10);
730 1.2 ad }
731 1.38 ad
732 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
733 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
734 1.2 ad #if defined(MPDEBUG) && defined(DDB)
735 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
736 1.2 ad Debugger();
737 1.2 ad #endif
738 1.38 ad } else {
739 1.38 ad /*
740 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
741 1.68 jym * twice to try and minimize possible cache effects. Disable
742 1.68 jym * interrupts to try and rule out any external interference.
743 1.38 ad */
744 1.38 ad psl = x86_read_psl();
745 1.38 ad x86_disable_intr();
746 1.38 ad wbinvd();
747 1.38 ad tsc_sync_bp(ci);
748 1.38 ad x86_write_psl(psl);
749 1.2 ad }
750 1.2 ad
751 1.2 ad CPU_START_CLEANUP(ci);
752 1.45 ad cpu_starting = NULL;
753 1.2 ad }
754 1.2 ad
755 1.2 ad void
756 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
757 1.2 ad {
758 1.38 ad int64_t drift;
759 1.38 ad u_long psl;
760 1.2 ad int i;
761 1.2 ad
762 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
763 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
764 1.11 ad i8254_delay(10);
765 1.2 ad }
766 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
767 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
768 1.2 ad #if defined(MPDEBUG) && defined(DDB)
769 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
770 1.2 ad Debugger();
771 1.2 ad #endif
772 1.38 ad } else {
773 1.38 ad /* Synchronize TSC again, check for drift. */
774 1.38 ad drift = ci->ci_data.cpu_cc_skew;
775 1.38 ad psl = x86_read_psl();
776 1.38 ad x86_disable_intr();
777 1.38 ad wbinvd();
778 1.38 ad tsc_sync_bp(ci);
779 1.38 ad x86_write_psl(psl);
780 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
781 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
782 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
783 1.38 ad tsc_sync_drift(drift);
784 1.2 ad }
785 1.2 ad }
786 1.2 ad
787 1.2 ad /*
788 1.117 maxv * The CPU ends up here when it's ready to run.
789 1.2 ad * This is called from code in mptramp.s; at this point, we are running
790 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
791 1.2 ad * this processor will enter the idle loop and start looking for work.
792 1.2 ad */
793 1.2 ad void
794 1.2 ad cpu_hatch(void *v)
795 1.2 ad {
796 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
797 1.65 rmind struct pcb *pcb;
798 1.6 ad int s, i;
799 1.2 ad
800 1.12 jmcneill cpu_init_msrs(ci, true);
801 1.40 ad cpu_probe(ci);
802 1.46 ad
803 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
804 1.46 ad /* cpu_get_tsc_freq(ci); */
805 1.38 ad
806 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
807 1.38 ad
808 1.38 ad /*
809 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
810 1.38 ad * to try and minimize possible cache effects. Note that interrupts
811 1.38 ad * are off at this point.
812 1.38 ad */
813 1.38 ad wbinvd();
814 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
815 1.38 ad tsc_sync_ap(ci);
816 1.38 ad
817 1.38 ad /*
818 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
819 1.38 ad * in order to make the TSC drift as much as possible. so that
820 1.38 ad * we can detect it later. If not available, try 'pause'.
821 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
822 1.38 ad */
823 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
824 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
825 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
826 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
827 1.38 ad continue;
828 1.38 ad }
829 1.38 ad x86_mwait(0, 0);
830 1.38 ad } else {
831 1.38 ad for (i = 10000; i != 0; i--) {
832 1.38 ad x86_pause();
833 1.38 ad }
834 1.38 ad }
835 1.6 ad }
836 1.5 ad
837 1.26 cegger /* Because the text may have been patched in x86_patch(). */
838 1.5 ad wbinvd();
839 1.5 ad x86_flush();
840 1.88 rmind tlbflushg();
841 1.5 ad
842 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
843 1.2 ad
844 1.73 jym #ifdef PAE
845 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
846 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
847 1.73 jym l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
848 1.73 jym }
849 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
850 1.73 jym #else
851 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
852 1.73 jym #endif
853 1.73 jym
854 1.65 rmind pcb = lwp_getpcb(curlwp);
855 1.73 jym pcb->pcb_cr3 = rcr3();
856 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
857 1.65 rmind lcr0(pcb->pcb_cr0);
858 1.65 rmind
859 1.2 ad cpu_init_idt();
860 1.8 ad gdt_init_cpu(ci);
861 1.111 joerg #if NLAPIC > 0
862 1.8 ad lapic_enable();
863 1.2 ad lapic_set_lvt();
864 1.8 ad lapic_initclocks();
865 1.111 joerg #endif
866 1.2 ad
867 1.2 ad fpuinit(ci);
868 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
869 1.15 yamt ltr(ci->ci_tss_sel);
870 1.2 ad
871 1.2 ad cpu_init(ci);
872 1.7 ad cpu_get_tsc_freq(ci);
873 1.2 ad
874 1.2 ad s = splhigh();
875 1.2 ad #ifdef i386
876 1.2 ad lapic_tpr = 0;
877 1.2 ad #else
878 1.2 ad lcr8(0);
879 1.2 ad #endif
880 1.3 ad x86_enable_intr();
881 1.2 ad splx(s);
882 1.6 ad x86_errata();
883 1.2 ad
884 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
885 1.98 rmind
886 1.98 rmind idle_loop(NULL);
887 1.98 rmind KASSERT(false);
888 1.2 ad }
889 1.101 kiyohara #endif
890 1.2 ad
891 1.2 ad #if defined(DDB)
892 1.2 ad
893 1.2 ad #include <ddb/db_output.h>
894 1.2 ad #include <machine/db_machdep.h>
895 1.2 ad
896 1.2 ad /*
897 1.2 ad * Dump CPU information from ddb.
898 1.2 ad */
899 1.2 ad void
900 1.2 ad cpu_debug_dump(void)
901 1.2 ad {
902 1.2 ad struct cpu_info *ci;
903 1.2 ad CPU_INFO_ITERATOR cii;
904 1.2 ad
905 1.107 christos db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
906 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
907 1.107 christos db_printf("%p %s %ld %x %x %10p %10p\n",
908 1.2 ad ci,
909 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
910 1.2 ad (long)ci->ci_cpuid,
911 1.2 ad ci->ci_flags, ci->ci_ipis,
912 1.107 christos ci->ci_curlwp,
913 1.107 christos ci->ci_fpcurlwp);
914 1.2 ad }
915 1.2 ad }
916 1.2 ad #endif
917 1.2 ad
918 1.101 kiyohara #if NLAPIC > 0
919 1.2 ad static void
920 1.12 jmcneill cpu_copy_trampoline(void)
921 1.2 ad {
922 1.2 ad /*
923 1.2 ad * Copy boot code.
924 1.2 ad */
925 1.2 ad extern u_char cpu_spinup_trampoline[];
926 1.2 ad extern u_char cpu_spinup_trampoline_end[];
927 1.12 jmcneill
928 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
929 1.12 jmcneill
930 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
931 1.12 jmcneill UVM_KMF_VAONLY);
932 1.12 jmcneill
933 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
934 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
935 1.2 ad pmap_update(pmap_kernel());
936 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
937 1.2 ad cpu_spinup_trampoline,
938 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
939 1.12 jmcneill
940 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
941 1.12 jmcneill pmap_update(pmap_kernel());
942 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
943 1.2 ad }
944 1.101 kiyohara #endif
945 1.2 ad
946 1.2 ad #ifdef i386
947 1.2 ad static void
948 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
949 1.2 ad {
950 1.73 jym KASSERT(curcpu()->ci_pmap == pmap_kernel());
951 1.73 jym
952 1.2 ad memset(tss, 0, sizeof *tss);
953 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
954 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
955 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
956 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
957 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
958 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
959 1.73 jym /* %cr3 contains the value associated to pmap_kernel */
960 1.73 jym tss->tss_cr3 = rcr3();
961 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
962 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
963 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
964 1.2 ad tss->__tss_eip = (int)func;
965 1.2 ad }
966 1.2 ad
967 1.2 ad /* XXX */
968 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
969 1.2 ad typedef void (vector)(void);
970 1.2 ad extern vector IDTVEC(tss_trap08);
971 1.101 kiyohara #if defined(DDB) && defined(MULTIPROCESSOR)
972 1.2 ad extern vector Xintrddbipi;
973 1.2 ad extern int ddb_vec;
974 1.2 ad #endif
975 1.2 ad
976 1.2 ad static void
977 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
978 1.2 ad {
979 1.2 ad struct segment_descriptor sd;
980 1.2 ad
981 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
982 1.2 ad UVM_KMF_WIRED);
983 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
984 1.2 ad IDTVEC(tss_trap08));
985 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
986 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
987 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
988 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
989 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
990 1.2 ad
991 1.101 kiyohara #if defined(DDB) && defined(MULTIPROCESSOR)
992 1.2 ad /*
993 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
994 1.2 ad * stomp on a possibly corrupted stack.
995 1.2 ad *
996 1.2 ad * XXX overwriting the gate set in db_machine_init.
997 1.2 ad * Should rearrange the code so that it's set only once.
998 1.2 ad */
999 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
1000 1.2 ad UVM_KMF_WIRED);
1001 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
1002 1.2 ad
1003 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
1004 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
1005 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
1006 1.2 ad
1007 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
1008 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
1009 1.2 ad #endif
1010 1.2 ad }
1011 1.2 ad #else
1012 1.2 ad static void
1013 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
1014 1.2 ad {
1015 1.2 ad
1016 1.2 ad }
1017 1.2 ad #endif /* i386 */
1018 1.2 ad
1019 1.101 kiyohara #ifdef MULTIPROCESSOR
1020 1.2 ad int
1021 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
1022 1.2 ad {
1023 1.44 ad unsigned short dwordptr[2];
1024 1.2 ad int error;
1025 1.14 joerg
1026 1.14 joerg /*
1027 1.14 joerg * Bootstrap code must be addressable in real mode
1028 1.14 joerg * and it must be page aligned.
1029 1.14 joerg */
1030 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1031 1.2 ad
1032 1.2 ad /*
1033 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1034 1.2 ad */
1035 1.2 ad
1036 1.2 ad outb(IO_RTC, NVRAM_RESET);
1037 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
1038 1.2 ad
1039 1.2 ad /*
1040 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
1041 1.2 ad * to the AP startup code ..."
1042 1.2 ad */
1043 1.2 ad
1044 1.2 ad dwordptr[0] = 0;
1045 1.14 joerg dwordptr[1] = target >> 4;
1046 1.2 ad
1047 1.111 joerg #if NLAPIC > 0
1048 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1049 1.111 joerg #endif
1050 1.2 ad
1051 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
1052 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
1053 1.25 ad return ENODEV;
1054 1.25 ad }
1055 1.25 ad
1056 1.2 ad /*
1057 1.51 ad * ... prior to executing the following sequence:". We'll also add in
1058 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
1059 1.51 ad * disabled. It may not be able to cope with MP coherency.
1060 1.2 ad */
1061 1.51 ad wbinvd();
1062 1.2 ad
1063 1.2 ad if (ci->ci_flags & CPUF_AP) {
1064 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
1065 1.26 cegger if (error != 0) {
1066 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1067 1.50 ad __func__);
1068 1.2 ad return error;
1069 1.25 ad }
1070 1.11 ad i8254_delay(10000);
1071 1.2 ad
1072 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1073 1.26 cegger if (error != 0) {
1074 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1075 1.50 ad __func__);
1076 1.25 ad return error;
1077 1.25 ad }
1078 1.25 ad i8254_delay(200);
1079 1.2 ad
1080 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1081 1.26 cegger if (error != 0) {
1082 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1083 1.50 ad __func__);
1084 1.25 ad return error;
1085 1.2 ad }
1086 1.25 ad i8254_delay(200);
1087 1.2 ad }
1088 1.44 ad
1089 1.2 ad return 0;
1090 1.2 ad }
1091 1.2 ad
1092 1.2 ad void
1093 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1094 1.2 ad {
1095 1.2 ad /*
1096 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1097 1.2 ad */
1098 1.2 ad
1099 1.2 ad outb(IO_RTC, NVRAM_RESET);
1100 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1101 1.2 ad }
1102 1.101 kiyohara #endif
1103 1.2 ad
1104 1.2 ad #ifdef __x86_64__
1105 1.2 ad typedef void (vector)(void);
1106 1.2 ad extern vector Xsyscall, Xsyscall32;
1107 1.70 jym #endif
1108 1.2 ad
1109 1.2 ad void
1110 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1111 1.2 ad {
1112 1.70 jym #ifdef __x86_64__
1113 1.2 ad wrmsr(MSR_STAR,
1114 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1115 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1116 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1117 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1118 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1119 1.2 ad
1120 1.12 jmcneill if (full) {
1121 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1122 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1123 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1124 1.12 jmcneill }
1125 1.70 jym #endif /* __x86_64__ */
1126 1.2 ad
1127 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1128 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1129 1.2 ad }
1130 1.7 ad
1131 1.107 christos void
1132 1.107 christos cpu_offline_md(void)
1133 1.107 christos {
1134 1.107 christos int s;
1135 1.107 christos
1136 1.107 christos s = splhigh();
1137 1.107 christos fpusave_cpu(true);
1138 1.107 christos splx(s);
1139 1.107 christos }
1140 1.107 christos
1141 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1142 1.12 jmcneill static bool
1143 1.96 jruoho cpu_stop(device_t dv)
1144 1.12 jmcneill {
1145 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1146 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1147 1.18 joerg int err;
1148 1.12 jmcneill
1149 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1150 1.93 jruoho
1151 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1152 1.93 jruoho return true;
1153 1.93 jruoho
1154 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1155 1.12 jmcneill return true;
1156 1.12 jmcneill
1157 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1158 1.17 joerg
1159 1.20 jmcneill if (sc->sc_wasonline) {
1160 1.20 jmcneill mutex_enter(&cpu_lock);
1161 1.58 rmind err = cpu_setstate(ci, false);
1162 1.20 jmcneill mutex_exit(&cpu_lock);
1163 1.79 jruoho
1164 1.93 jruoho if (err != 0)
1165 1.20 jmcneill return false;
1166 1.20 jmcneill }
1167 1.17 joerg
1168 1.17 joerg return true;
1169 1.12 jmcneill }
1170 1.12 jmcneill
1171 1.12 jmcneill static bool
1172 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1173 1.96 jruoho {
1174 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1175 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1176 1.96 jruoho
1177 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1178 1.96 jruoho return true;
1179 1.96 jruoho else {
1180 1.96 jruoho cpufreq_suspend(ci);
1181 1.96 jruoho }
1182 1.96 jruoho
1183 1.96 jruoho return cpu_stop(dv);
1184 1.96 jruoho }
1185 1.96 jruoho
1186 1.96 jruoho static bool
1187 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1188 1.12 jmcneill {
1189 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1190 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1191 1.20 jmcneill int err = 0;
1192 1.12 jmcneill
1193 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1194 1.12 jmcneill return true;
1195 1.93 jruoho
1196 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1197 1.93 jruoho goto out;
1198 1.93 jruoho
1199 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1200 1.93 jruoho goto out;
1201 1.12 jmcneill
1202 1.20 jmcneill if (sc->sc_wasonline) {
1203 1.20 jmcneill mutex_enter(&cpu_lock);
1204 1.58 rmind err = cpu_setstate(ci, true);
1205 1.20 jmcneill mutex_exit(&cpu_lock);
1206 1.20 jmcneill }
1207 1.13 joerg
1208 1.93 jruoho out:
1209 1.93 jruoho if (err != 0)
1210 1.93 jruoho return false;
1211 1.93 jruoho
1212 1.93 jruoho cpufreq_resume(ci);
1213 1.93 jruoho
1214 1.93 jruoho return true;
1215 1.12 jmcneill }
1216 1.12 jmcneill
1217 1.79 jruoho static bool
1218 1.79 jruoho cpu_shutdown(device_t dv, int how)
1219 1.79 jruoho {
1220 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1221 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1222 1.90 dyoung
1223 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1224 1.90 dyoung return false;
1225 1.90 dyoung
1226 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1227 1.96 jruoho return true;
1228 1.96 jruoho
1229 1.96 jruoho return cpu_stop(dv);
1230 1.79 jruoho }
1231 1.79 jruoho
1232 1.7 ad void
1233 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1234 1.7 ad {
1235 1.7 ad uint64_t last_tsc;
1236 1.7 ad
1237 1.70 jym if (cpu_hascounter()) {
1238 1.80 bouyer last_tsc = cpu_counter_serializing();
1239 1.7 ad i8254_delay(100000);
1240 1.80 bouyer ci->ci_data.cpu_cc_freq =
1241 1.80 bouyer (cpu_counter_serializing() - last_tsc) * 10;
1242 1.7 ad }
1243 1.7 ad }
1244 1.37 joerg
1245 1.37 joerg void
1246 1.37 joerg x86_cpu_idle_mwait(void)
1247 1.37 joerg {
1248 1.37 joerg struct cpu_info *ci = curcpu();
1249 1.37 joerg
1250 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1251 1.37 joerg
1252 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1253 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1254 1.37 joerg return;
1255 1.37 joerg }
1256 1.37 joerg x86_mwait(0, 0);
1257 1.37 joerg }
1258 1.37 joerg
1259 1.37 joerg void
1260 1.37 joerg x86_cpu_idle_halt(void)
1261 1.37 joerg {
1262 1.37 joerg struct cpu_info *ci = curcpu();
1263 1.37 joerg
1264 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1265 1.37 joerg
1266 1.37 joerg x86_disable_intr();
1267 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1268 1.37 joerg x86_stihlt();
1269 1.37 joerg } else {
1270 1.37 joerg x86_enable_intr();
1271 1.37 joerg }
1272 1.37 joerg }
1273 1.73 jym
1274 1.73 jym /*
1275 1.73 jym * Loads pmap for the current CPU.
1276 1.73 jym */
1277 1.73 jym void
1278 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1279 1.73 jym {
1280 1.73 jym #ifdef PAE
1281 1.99 yamt struct cpu_info *ci = curcpu();
1282 1.116 nat bool interrupts_enabled;
1283 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1284 1.99 yamt int i;
1285 1.73 jym
1286 1.99 yamt /*
1287 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1288 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1289 1.99 yamt * reload cr3.
1290 1.99 yamt */
1291 1.116 nat interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1292 1.116 nat if (interrupts_enabled)
1293 1.116 nat x86_disable_intr();
1294 1.116 nat
1295 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1296 1.73 jym l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1297 1.73 jym }
1298 1.116 nat
1299 1.116 nat if (interrupts_enabled)
1300 1.116 nat x86_enable_intr();
1301 1.73 jym tlbflush();
1302 1.73 jym #else /* PAE */
1303 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1304 1.73 jym #endif /* PAE */
1305 1.73 jym }
1306 1.91 cherry
1307 1.91 cherry /*
1308 1.91 cherry * Notify all other cpus to halt.
1309 1.91 cherry */
1310 1.91 cherry
1311 1.91 cherry void
1312 1.92 cherry cpu_broadcast_halt(void)
1313 1.91 cherry {
1314 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1315 1.91 cherry }
1316 1.91 cherry
1317 1.91 cherry /*
1318 1.91 cherry * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1319 1.91 cherry */
1320 1.91 cherry
1321 1.91 cherry void
1322 1.91 cherry cpu_kick(struct cpu_info *ci)
1323 1.91 cherry {
1324 1.91 cherry x86_send_ipi(ci, 0);
1325 1.91 cherry }
1326