cpu.c revision 1.134 1 1.133 maxv /* $NetBSD: cpu.c,v 1.134 2017/08/27 09:32:12 maxv Exp $ */
2 1.2 ad
3 1.134 maxv /*
4 1.98 rmind * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.133 maxv __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.134 2017/08/27 09:32:12 maxv Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.101 kiyohara #include "opt_multiprocessor.h"
71 1.2 ad
72 1.2 ad #include "lapic.h"
73 1.2 ad #include "ioapic.h"
74 1.2 ad
75 1.2 ad #include <sys/param.h>
76 1.2 ad #include <sys/proc.h>
77 1.2 ad #include <sys/systm.h>
78 1.2 ad #include <sys/device.h>
79 1.61 cegger #include <sys/kmem.h>
80 1.9 ad #include <sys/cpu.h>
81 1.93 jruoho #include <sys/cpufreq.h>
82 1.98 rmind #include <sys/idle.h>
83 1.9 ad #include <sys/atomic.h>
84 1.35 ad #include <sys/reboot.h>
85 1.2 ad
86 1.78 uebayasi #include <uvm/uvm.h>
87 1.2 ad
88 1.102 pgoyette #include "acpica.h" /* for NACPICA, for mp_verbose */
89 1.102 pgoyette
90 1.2 ad #include <machine/cpufunc.h>
91 1.2 ad #include <machine/cpuvar.h>
92 1.2 ad #include <machine/pmap.h>
93 1.2 ad #include <machine/vmparam.h>
94 1.102 pgoyette #if defined(MULTIPROCESSOR)
95 1.2 ad #include <machine/mpbiosvar.h>
96 1.101 kiyohara #endif
97 1.102 pgoyette #include <machine/mpconfig.h> /* for mp_verbose */
98 1.2 ad #include <machine/pcb.h>
99 1.2 ad #include <machine/specialreg.h>
100 1.2 ad #include <machine/segments.h>
101 1.2 ad #include <machine/gdt.h>
102 1.2 ad #include <machine/mtrr.h>
103 1.2 ad #include <machine/pio.h>
104 1.38 ad #include <machine/cpu_counter.h>
105 1.2 ad
106 1.109 dsl #include <x86/fpu.h>
107 1.109 dsl
108 1.2 ad #ifdef i386
109 1.2 ad #include <machine/tlog.h>
110 1.2 ad #endif
111 1.2 ad
112 1.101 kiyohara #if NLAPIC > 0
113 1.2 ad #include <machine/apicvar.h>
114 1.2 ad #include <machine/i82489reg.h>
115 1.2 ad #include <machine/i82489var.h>
116 1.101 kiyohara #endif
117 1.2 ad
118 1.2 ad #include <dev/ic/mc146818reg.h>
119 1.2 ad #include <i386/isa/nvram.h>
120 1.2 ad #include <dev/isa/isareg.h>
121 1.2 ad
122 1.38 ad #include "tsc.h"
123 1.38 ad
124 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
125 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
126 1.87 jruoho static void cpu_defer(device_t);
127 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
128 1.87 jruoho static void cpu_childdetached(device_t, device_t);
129 1.96 jruoho static bool cpu_stop(device_t);
130 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
131 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
132 1.79 jruoho static bool cpu_shutdown(device_t, int);
133 1.12 jmcneill
134 1.2 ad struct cpu_softc {
135 1.23 cube device_t sc_dev; /* device tree glue */
136 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
137 1.20 jmcneill bool sc_wasonline;
138 1.2 ad };
139 1.2 ad
140 1.101 kiyohara #ifdef MULTIPROCESSOR
141 1.120 msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
142 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
143 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
144 1.2 ad mp_cpu_start_cleanup };
145 1.101 kiyohara #endif
146 1.2 ad
147 1.2 ad
148 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
149 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
150 1.2 ad
151 1.2 ad /*
152 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
153 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
154 1.2 ad * point at it.
155 1.2 ad */
156 1.2 ad #ifdef TRAPLOG
157 1.2 ad struct tlog tlog_primary;
158 1.2 ad #endif
159 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 1.2 ad .ci_dev = 0,
161 1.2 ad .ci_self = &cpu_info_primary,
162 1.2 ad .ci_idepth = -1,
163 1.2 ad .ci_curlwp = &lwp0,
164 1.43 ad .ci_curldt = -1,
165 1.2 ad #ifdef TRAPLOG
166 1.2 ad .ci_tlog_base = &tlog_primary,
167 1.134 maxv #endif
168 1.2 ad };
169 1.2 ad
170 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
171 1.2 ad
172 1.2 ad #ifdef i386
173 1.134 maxv void cpu_set_tss_gates(struct cpu_info *);
174 1.2 ad #endif
175 1.2 ad
176 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
177 1.12 jmcneill
178 1.122 maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
179 1.117 maxv /* [0] basic features cpuid.1:%edx
180 1.117 maxv * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
181 1.117 maxv * [2] extended features cpuid:80000001:%edx
182 1.117 maxv * [3] extended features cpuid:80000001:%ecx
183 1.117 maxv * [4] VIA padlock features
184 1.117 maxv * [5] structured extended features cpuid.7:%ebx
185 1.117 maxv * [6] structured extended features cpuid.7:%ecx
186 1.117 maxv */
187 1.70 jym
188 1.101 kiyohara #ifdef MULTIPROCESSOR
189 1.12 jmcneill bool x86_mp_online;
190 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
191 1.101 kiyohara #endif
192 1.101 kiyohara #if NLAPIC > 0
193 1.14 joerg static vaddr_t cmos_data_mapping;
194 1.101 kiyohara #endif
195 1.45 ad struct cpu_info *cpu_starting;
196 1.2 ad
197 1.101 kiyohara #ifdef MULTIPROCESSOR
198 1.2 ad void cpu_hatch(void *);
199 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
200 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
201 1.101 kiyohara #endif
202 1.101 kiyohara #if NLAPIC > 0
203 1.2 ad static void cpu_copy_trampoline(void);
204 1.101 kiyohara #endif
205 1.2 ad
206 1.2 ad /*
207 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
208 1.2 ad * the local APIC on the boot processor has been mapped.
209 1.2 ad *
210 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
211 1.2 ad */
212 1.101 kiyohara #if NLAPIC > 0
213 1.2 ad void
214 1.9 ad cpu_init_first(void)
215 1.2 ad {
216 1.2 ad
217 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
218 1.2 ad cpu_copy_trampoline();
219 1.14 joerg
220 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
221 1.14 joerg if (cmos_data_mapping == 0)
222 1.14 joerg panic("No KVA for page 0");
223 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
224 1.14 joerg pmap_update(pmap_kernel());
225 1.2 ad }
226 1.101 kiyohara #endif
227 1.2 ad
228 1.87 jruoho static int
229 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
230 1.2 ad {
231 1.2 ad
232 1.2 ad return 1;
233 1.2 ad }
234 1.2 ad
235 1.2 ad static void
236 1.2 ad cpu_vm_init(struct cpu_info *ci)
237 1.2 ad {
238 1.2 ad int ncolors = 2, i;
239 1.2 ad
240 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
241 1.2 ad struct x86_cache_info *cai;
242 1.2 ad int tcolors;
243 1.2 ad
244 1.2 ad cai = &ci->ci_cinfo[i];
245 1.2 ad
246 1.2 ad tcolors = atop(cai->cai_totalsize);
247 1.2 ad switch(cai->cai_associativity) {
248 1.2 ad case 0xff:
249 1.2 ad tcolors = 1; /* fully associative */
250 1.2 ad break;
251 1.2 ad case 0:
252 1.2 ad case 1:
253 1.2 ad break;
254 1.2 ad default:
255 1.2 ad tcolors /= cai->cai_associativity;
256 1.2 ad }
257 1.2 ad ncolors = max(ncolors, tcolors);
258 1.32 tls /*
259 1.32 tls * If the desired number of colors is not a power of
260 1.32 tls * two, it won't be good. Find the greatest power of
261 1.32 tls * two which is an even divisor of the number of colors,
262 1.32 tls * to preserve even coloring of pages.
263 1.32 tls */
264 1.32 tls if (ncolors & (ncolors - 1) ) {
265 1.32 tls int try, picked = 1;
266 1.32 tls for (try = 1; try < ncolors; try *= 2) {
267 1.32 tls if (ncolors % try == 0) picked = try;
268 1.32 tls }
269 1.32 tls if (picked == 1) {
270 1.32 tls panic("desired number of cache colors %d is "
271 1.32 tls " > 1, but not even!", ncolors);
272 1.32 tls }
273 1.32 tls ncolors = picked;
274 1.32 tls }
275 1.2 ad }
276 1.2 ad
277 1.2 ad /*
278 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
279 1.94 mrg * re-color our pages.
280 1.2 ad */
281 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
282 1.2 ad uvm_page_recolor(ncolors);
283 1.98 rmind
284 1.98 rmind pmap_tlb_cpu_init(ci);
285 1.123 maxv #ifndef __HAVE_DIRECT_MAP
286 1.123 maxv pmap_vpage_cpu_init(ci);
287 1.123 maxv #endif
288 1.2 ad }
289 1.2 ad
290 1.87 jruoho static void
291 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
292 1.2 ad {
293 1.23 cube struct cpu_softc *sc = device_private(self);
294 1.2 ad struct cpu_attach_args *caa = aux;
295 1.2 ad struct cpu_info *ci;
296 1.21 ad uintptr_t ptr;
297 1.101 kiyohara #if NLAPIC > 0
298 1.2 ad int cpunum = caa->cpu_number;
299 1.101 kiyohara #endif
300 1.51 ad static bool again;
301 1.2 ad
302 1.23 cube sc->sc_dev = self;
303 1.23 cube
304 1.98 rmind if (ncpu == maxcpus) {
305 1.98 rmind #ifndef _LP64
306 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
307 1.98 rmind #else
308 1.98 rmind aprint_error(": too many CPUs\n");
309 1.98 rmind #endif
310 1.48 ad return;
311 1.48 ad }
312 1.48 ad
313 1.2 ad /*
314 1.2 ad * If we're an Application Processor, allocate a cpu_info
315 1.2 ad * structure, otherwise use the primary's.
316 1.2 ad */
317 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
318 1.36 ad if ((boothowto & RB_MD1) != 0) {
319 1.35 ad aprint_error(": multiprocessor boot disabled\n");
320 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
321 1.56 jmcneill aprint_error_dev(self,
322 1.56 jmcneill "couldn't establish power handler\n");
323 1.35 ad return;
324 1.35 ad }
325 1.2 ad aprint_naive(": Application Processor\n");
326 1.72 rmind ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
327 1.61 cegger KM_SLEEP);
328 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
329 1.43 ad ci->ci_curldt = -1;
330 1.2 ad #ifdef TRAPLOG
331 1.61 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
332 1.2 ad #endif
333 1.2 ad } else {
334 1.2 ad aprint_naive(": %s Processor\n",
335 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
336 1.2 ad ci = &cpu_info_primary;
337 1.101 kiyohara #if NLAPIC > 0
338 1.2 ad if (cpunum != lapic_cpu_number()) {
339 1.51 ad /* XXX should be done earlier. */
340 1.39 ad uint32_t reg;
341 1.39 ad aprint_verbose("\n");
342 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
343 1.47 ad " instead of at expected %d", lapic_cpu_number(),
344 1.23 cube cpunum);
345 1.125 nonaka reg = lapic_readreg(LAPIC_ID);
346 1.125 nonaka lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
347 1.39 ad (cpunum << LAPIC_ID_SHIFT));
348 1.2 ad }
349 1.47 ad if (cpunum != lapic_cpu_number()) {
350 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
351 1.47 ad }
352 1.101 kiyohara #endif
353 1.2 ad }
354 1.2 ad
355 1.2 ad ci->ci_self = ci;
356 1.2 ad sc->sc_info = ci;
357 1.2 ad ci->ci_dev = self;
358 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
359 1.42 ad ci->ci_cpuid = caa->cpu_number;
360 1.2 ad ci->ci_func = caa->cpu_func;
361 1.112 msaitoh aprint_normal("\n");
362 1.2 ad
363 1.55 ad /* Must be before mi_cpu_attach(). */
364 1.55 ad cpu_vm_init(ci);
365 1.55 ad
366 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
367 1.2 ad int error;
368 1.2 ad
369 1.2 ad error = mi_cpu_attach(ci);
370 1.2 ad if (error != 0) {
371 1.47 ad aprint_error_dev(self,
372 1.30 cegger "mi_cpu_attach failed with %d\n", error);
373 1.2 ad return;
374 1.2 ad }
375 1.15 yamt cpu_init_tss(ci);
376 1.2 ad } else {
377 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
378 1.2 ad }
379 1.2 ad
380 1.2 ad pmap_reference(pmap_kernel());
381 1.2 ad ci->ci_pmap = pmap_kernel();
382 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
383 1.2 ad
384 1.51 ad /*
385 1.51 ad * Boot processor may not be attached first, but the below
386 1.51 ad * must be done to allow booting other processors.
387 1.51 ad */
388 1.51 ad if (!again) {
389 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
390 1.51 ad /* Basic init. */
391 1.2 ad cpu_intr_init(ci);
392 1.40 ad cpu_get_tsc_freq(ci);
393 1.2 ad cpu_init(ci);
394 1.134 maxv #ifdef i386
395 1.2 ad cpu_set_tss_gates(ci);
396 1.134 maxv #endif
397 1.2 ad pmap_cpu_init_late(ci);
398 1.101 kiyohara #if NLAPIC > 0
399 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
400 1.51 ad /* Enable lapic. */
401 1.51 ad lapic_enable();
402 1.51 ad lapic_set_lvt();
403 1.51 ad lapic_calibrate_timer(ci);
404 1.51 ad }
405 1.101 kiyohara #endif
406 1.51 ad /* Make sure DELAY() is initialized. */
407 1.51 ad DELAY(1);
408 1.51 ad again = true;
409 1.51 ad }
410 1.51 ad
411 1.51 ad /* further PCB init done later. */
412 1.51 ad
413 1.51 ad switch (caa->cpu_role) {
414 1.51 ad case CPU_ROLE_SP:
415 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
416 1.51 ad cpu_identify(ci);
417 1.53 ad x86_errata();
418 1.37 joerg x86_cpu_idle_init();
419 1.2 ad break;
420 1.2 ad
421 1.2 ad case CPU_ROLE_BP:
422 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
423 1.40 ad cpu_identify(ci);
424 1.53 ad x86_errata();
425 1.37 joerg x86_cpu_idle_init();
426 1.2 ad break;
427 1.2 ad
428 1.101 kiyohara #ifdef MULTIPROCESSOR
429 1.2 ad case CPU_ROLE_AP:
430 1.2 ad /*
431 1.2 ad * report on an AP
432 1.2 ad */
433 1.2 ad cpu_intr_init(ci);
434 1.2 ad gdt_alloc_cpu(ci);
435 1.134 maxv #ifdef i386
436 1.2 ad cpu_set_tss_gates(ci);
437 1.134 maxv #endif
438 1.2 ad pmap_cpu_init_late(ci);
439 1.2 ad cpu_start_secondary(ci);
440 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
441 1.59 cegger struct cpu_info *tmp;
442 1.59 cegger
443 1.40 ad cpu_identify(ci);
444 1.59 cegger tmp = cpu_info_list;
445 1.59 cegger while (tmp->ci_next)
446 1.59 cegger tmp = tmp->ci_next;
447 1.59 cegger
448 1.59 cegger tmp->ci_next = ci;
449 1.2 ad }
450 1.2 ad break;
451 1.101 kiyohara #endif
452 1.2 ad
453 1.2 ad default:
454 1.2 ad panic("unknown processor type??\n");
455 1.2 ad }
456 1.51 ad
457 1.71 cegger pat_init(ci);
458 1.2 ad
459 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
460 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
461 1.12 jmcneill
462 1.101 kiyohara #ifdef MULTIPROCESSOR
463 1.2 ad if (mp_verbose) {
464 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
465 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
466 1.2 ad
467 1.47 ad aprint_verbose_dev(self,
468 1.28 cegger "idle lwp at %p, idle sp at %p\n",
469 1.28 cegger l,
470 1.2 ad #ifdef i386
471 1.65 rmind (void *)pcb->pcb_esp
472 1.2 ad #else
473 1.65 rmind (void *)pcb->pcb_rsp
474 1.2 ad #endif
475 1.2 ad );
476 1.2 ad }
477 1.101 kiyohara #endif
478 1.81 jmcneill
479 1.89 jruoho /*
480 1.89 jruoho * Postpone the "cpufeaturebus" scan.
481 1.89 jruoho * It is safe to scan the pseudo-bus
482 1.89 jruoho * only after all CPUs have attached.
483 1.89 jruoho */
484 1.87 jruoho (void)config_defer(self, cpu_defer);
485 1.87 jruoho }
486 1.87 jruoho
487 1.87 jruoho static void
488 1.87 jruoho cpu_defer(device_t self)
489 1.87 jruoho {
490 1.81 jmcneill cpu_rescan(self, NULL, NULL);
491 1.81 jmcneill }
492 1.81 jmcneill
493 1.87 jruoho static int
494 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
495 1.81 jmcneill {
496 1.83 jruoho struct cpu_softc *sc = device_private(self);
497 1.81 jmcneill struct cpufeature_attach_args cfaa;
498 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
499 1.81 jmcneill
500 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
501 1.81 jmcneill cfaa.ci = ci;
502 1.81 jmcneill
503 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
504 1.83 jruoho if (ci->ci_frequency == NULL) {
505 1.86 jruoho cfaa.name = "frequency";
506 1.84 jruoho ci->ci_frequency = config_found_ia(self,
507 1.84 jruoho "cpufeaturebus", &cfaa, NULL);
508 1.84 jruoho }
509 1.84 jruoho
510 1.81 jmcneill if (ci->ci_padlock == NULL) {
511 1.81 jmcneill cfaa.name = "padlock";
512 1.81 jmcneill ci->ci_padlock = config_found_ia(self,
513 1.81 jmcneill "cpufeaturebus", &cfaa, NULL);
514 1.81 jmcneill }
515 1.82 jruoho
516 1.86 jruoho if (ci->ci_temperature == NULL) {
517 1.86 jruoho cfaa.name = "temperature";
518 1.86 jruoho ci->ci_temperature = config_found_ia(self,
519 1.85 jruoho "cpufeaturebus", &cfaa, NULL);
520 1.85 jruoho }
521 1.95 jmcneill
522 1.95 jmcneill if (ci->ci_vm == NULL) {
523 1.95 jmcneill cfaa.name = "vm";
524 1.95 jmcneill ci->ci_vm = config_found_ia(self,
525 1.95 jmcneill "cpufeaturebus", &cfaa, NULL);
526 1.95 jmcneill }
527 1.81 jmcneill }
528 1.81 jmcneill
529 1.81 jmcneill return 0;
530 1.81 jmcneill }
531 1.81 jmcneill
532 1.87 jruoho static void
533 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
534 1.81 jmcneill {
535 1.81 jmcneill struct cpu_softc *sc = device_private(self);
536 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
537 1.81 jmcneill
538 1.83 jruoho if (ci->ci_frequency == child)
539 1.83 jruoho ci->ci_frequency = NULL;
540 1.82 jruoho
541 1.81 jmcneill if (ci->ci_padlock == child)
542 1.81 jmcneill ci->ci_padlock = NULL;
543 1.83 jruoho
544 1.86 jruoho if (ci->ci_temperature == child)
545 1.86 jruoho ci->ci_temperature = NULL;
546 1.95 jmcneill
547 1.95 jmcneill if (ci->ci_vm == child)
548 1.95 jmcneill ci->ci_vm = NULL;
549 1.2 ad }
550 1.2 ad
551 1.2 ad /*
552 1.2 ad * Initialize the processor appropriately.
553 1.2 ad */
554 1.2 ad
555 1.2 ad void
556 1.9 ad cpu_init(struct cpu_info *ci)
557 1.2 ad {
558 1.113 christos uint32_t cr4 = 0;
559 1.2 ad
560 1.2 ad lcr0(rcr0() | CR0_WP);
561 1.2 ad
562 1.2 ad /*
563 1.2 ad * On a P6 or above, enable global TLB caching if the
564 1.2 ad * hardware supports it.
565 1.2 ad */
566 1.70 jym if (cpu_feature[0] & CPUID_PGE)
567 1.110 dsl cr4 |= CR4_PGE; /* enable global TLB caching */
568 1.2 ad
569 1.2 ad /*
570 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
571 1.2 ad */
572 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
573 1.110 dsl cr4 |= CR4_OSFXSR;
574 1.2 ad
575 1.2 ad /*
576 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
577 1.2 ad */
578 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
579 1.110 dsl cr4 |= CR4_OSXMMEXCPT;
580 1.2 ad }
581 1.2 ad
582 1.110 dsl /* If xsave is supported, enable it */
583 1.110 dsl if (cpu_feature[1] & CPUID2_XSAVE)
584 1.110 dsl cr4 |= CR4_OSXSAVE;
585 1.110 dsl
586 1.118 maxv /* If SMEP is supported, enable it */
587 1.118 maxv if (cpu_feature[5] & CPUID_SEF_SMEP)
588 1.118 maxv cr4 |= CR4_SMEP;
589 1.118 maxv
590 1.113 christos if (cr4) {
591 1.113 christos cr4 |= rcr4();
592 1.113 christos lcr4(cr4);
593 1.113 christos }
594 1.110 dsl
595 1.110 dsl /* If xsave is enabled, enable all fpu features */
596 1.110 dsl if (cr4 & CR4_OSXSAVE)
597 1.110 dsl wrxcr(0, x86_xsave_features & XCR0_FPU);
598 1.110 dsl
599 1.2 ad #ifdef MTRR
600 1.2 ad /*
601 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
602 1.2 ad */
603 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
604 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
605 1.2 ad i686_mtrr_init_first();
606 1.2 ad mtrr_init_cpu(ci);
607 1.2 ad }
608 1.2 ad
609 1.2 ad #ifdef i386
610 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
611 1.2 ad /*
612 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
613 1.2 ad */
614 1.106 msaitoh if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
615 1.106 msaitoh if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
616 1.106 msaitoh (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
617 1.106 msaitoh CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
618 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
619 1.2 ad k6_mtrr_init_first();
620 1.2 ad mtrr_init_cpu(ci);
621 1.2 ad }
622 1.2 ad }
623 1.2 ad }
624 1.2 ad #endif /* i386 */
625 1.2 ad #endif /* MTRR */
626 1.2 ad
627 1.38 ad if (ci != &cpu_info_primary) {
628 1.38 ad /* Synchronize TSC again, and check for drift. */
629 1.38 ad wbinvd();
630 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
631 1.38 ad tsc_sync_ap(ci);
632 1.38 ad } else {
633 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
634 1.38 ad }
635 1.2 ad }
636 1.2 ad
637 1.101 kiyohara #ifdef MULTIPROCESSOR
638 1.2 ad void
639 1.12 jmcneill cpu_boot_secondary_processors(void)
640 1.2 ad {
641 1.2 ad struct cpu_info *ci;
642 1.100 chs kcpuset_t *cpus;
643 1.2 ad u_long i;
644 1.2 ad
645 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
646 1.60 ad x86_patch(false);
647 1.5 ad
648 1.100 chs kcpuset_create(&cpus, true);
649 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
650 1.100 chs for (i = 0; i < maxcpus; i++) {
651 1.57 ad ci = cpu_lookup(i);
652 1.2 ad if (ci == NULL)
653 1.2 ad continue;
654 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
655 1.2 ad continue;
656 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
657 1.2 ad continue;
658 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
659 1.2 ad continue;
660 1.2 ad cpu_boot_secondary(ci);
661 1.100 chs kcpuset_set(cpus, cpu_index(ci));
662 1.2 ad }
663 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
664 1.100 chs ;
665 1.100 chs kcpuset_destroy(cpus);
666 1.2 ad
667 1.2 ad x86_mp_online = true;
668 1.38 ad
669 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
670 1.38 ad tsc_tc_init();
671 1.55 ad
672 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
673 1.70 jym vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
674 1.2 ad }
675 1.101 kiyohara #endif
676 1.2 ad
677 1.2 ad static void
678 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
679 1.2 ad {
680 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
681 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
682 1.2 ad
683 1.2 ad pcb->pcb_cr0 = rcr0();
684 1.2 ad }
685 1.2 ad
686 1.2 ad void
687 1.12 jmcneill cpu_init_idle_lwps(void)
688 1.2 ad {
689 1.2 ad struct cpu_info *ci;
690 1.2 ad u_long i;
691 1.2 ad
692 1.54 ad for (i = 0; i < maxcpus; i++) {
693 1.57 ad ci = cpu_lookup(i);
694 1.2 ad if (ci == NULL)
695 1.2 ad continue;
696 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
697 1.2 ad continue;
698 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
699 1.2 ad continue;
700 1.2 ad cpu_init_idle_lwp(ci);
701 1.2 ad }
702 1.2 ad }
703 1.2 ad
704 1.101 kiyohara #ifdef MULTIPROCESSOR
705 1.2 ad void
706 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
707 1.2 ad {
708 1.38 ad extern paddr_t mp_pdirpa;
709 1.38 ad u_long psl;
710 1.2 ad int i;
711 1.2 ad
712 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
713 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
714 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
715 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
716 1.25 ad return;
717 1.45 ad }
718 1.2 ad
719 1.2 ad /*
720 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
721 1.50 ad * initial gate and allows the AP to start soft initialization.
722 1.2 ad */
723 1.50 ad KASSERT(cpu_starting == NULL);
724 1.50 ad cpu_starting = ci;
725 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
726 1.11 ad i8254_delay(10);
727 1.2 ad }
728 1.38 ad
729 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
730 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
731 1.2 ad #if defined(MPDEBUG) && defined(DDB)
732 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
733 1.2 ad Debugger();
734 1.2 ad #endif
735 1.38 ad } else {
736 1.38 ad /*
737 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
738 1.68 jym * twice to try and minimize possible cache effects. Disable
739 1.68 jym * interrupts to try and rule out any external interference.
740 1.38 ad */
741 1.38 ad psl = x86_read_psl();
742 1.38 ad x86_disable_intr();
743 1.38 ad wbinvd();
744 1.38 ad tsc_sync_bp(ci);
745 1.38 ad x86_write_psl(psl);
746 1.2 ad }
747 1.2 ad
748 1.2 ad CPU_START_CLEANUP(ci);
749 1.45 ad cpu_starting = NULL;
750 1.2 ad }
751 1.2 ad
752 1.2 ad void
753 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
754 1.2 ad {
755 1.38 ad int64_t drift;
756 1.38 ad u_long psl;
757 1.2 ad int i;
758 1.2 ad
759 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
760 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
761 1.11 ad i8254_delay(10);
762 1.2 ad }
763 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
764 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
765 1.2 ad #if defined(MPDEBUG) && defined(DDB)
766 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
767 1.2 ad Debugger();
768 1.2 ad #endif
769 1.38 ad } else {
770 1.38 ad /* Synchronize TSC again, check for drift. */
771 1.38 ad drift = ci->ci_data.cpu_cc_skew;
772 1.38 ad psl = x86_read_psl();
773 1.38 ad x86_disable_intr();
774 1.38 ad wbinvd();
775 1.38 ad tsc_sync_bp(ci);
776 1.38 ad x86_write_psl(psl);
777 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
778 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
779 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
780 1.38 ad tsc_sync_drift(drift);
781 1.2 ad }
782 1.2 ad }
783 1.2 ad
784 1.2 ad /*
785 1.117 maxv * The CPU ends up here when it's ready to run.
786 1.2 ad * This is called from code in mptramp.s; at this point, we are running
787 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
788 1.2 ad * this processor will enter the idle loop and start looking for work.
789 1.2 ad */
790 1.2 ad void
791 1.2 ad cpu_hatch(void *v)
792 1.2 ad {
793 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
794 1.65 rmind struct pcb *pcb;
795 1.130 kre int s, i;
796 1.2 ad
797 1.12 jmcneill cpu_init_msrs(ci, true);
798 1.40 ad cpu_probe(ci);
799 1.46 ad
800 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
801 1.134 maxv /* cpu_get_tsc_freq(ci); */
802 1.38 ad
803 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
804 1.38 ad
805 1.38 ad /*
806 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
807 1.38 ad * to try and minimize possible cache effects. Note that interrupts
808 1.38 ad * are off at this point.
809 1.38 ad */
810 1.38 ad wbinvd();
811 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
812 1.38 ad tsc_sync_ap(ci);
813 1.38 ad
814 1.38 ad /*
815 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
816 1.38 ad * in order to make the TSC drift as much as possible. so that
817 1.134 maxv * we can detect it later. If not available, try 'pause'.
818 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
819 1.38 ad */
820 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
821 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
822 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
823 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
824 1.38 ad continue;
825 1.38 ad }
826 1.38 ad x86_mwait(0, 0);
827 1.38 ad } else {
828 1.131 pgoyette /*
829 1.131 pgoyette * XXX The loop repetition count could be a lot higher, but
830 1.131 pgoyette * XXX currently qemu emulator takes a _very_long_time_ to
831 1.131 pgoyette * XXX execute the pause instruction. So for now, use a low
832 1.131 pgoyette * XXX value to allow the cpu to hatch before timing out.
833 1.131 pgoyette */
834 1.131 pgoyette for (i = 50; i != 0; i--) {
835 1.127 pgoyette x86_pause();
836 1.127 pgoyette }
837 1.38 ad }
838 1.6 ad }
839 1.5 ad
840 1.26 cegger /* Because the text may have been patched in x86_patch(). */
841 1.5 ad wbinvd();
842 1.5 ad x86_flush();
843 1.88 rmind tlbflushg();
844 1.5 ad
845 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
846 1.2 ad
847 1.73 jym #ifdef PAE
848 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
849 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
850 1.73 jym l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
851 1.73 jym }
852 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
853 1.73 jym #else
854 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
855 1.73 jym #endif
856 1.73 jym
857 1.65 rmind pcb = lwp_getpcb(curlwp);
858 1.73 jym pcb->pcb_cr3 = rcr3();
859 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
860 1.65 rmind lcr0(pcb->pcb_cr0);
861 1.65 rmind
862 1.2 ad cpu_init_idt();
863 1.8 ad gdt_init_cpu(ci);
864 1.111 joerg #if NLAPIC > 0
865 1.8 ad lapic_enable();
866 1.2 ad lapic_set_lvt();
867 1.8 ad lapic_initclocks();
868 1.111 joerg #endif
869 1.2 ad
870 1.2 ad fpuinit(ci);
871 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
872 1.15 yamt ltr(ci->ci_tss_sel);
873 1.2 ad
874 1.2 ad cpu_init(ci);
875 1.7 ad cpu_get_tsc_freq(ci);
876 1.2 ad
877 1.2 ad s = splhigh();
878 1.124 nonaka lapic_write_tpri(0);
879 1.3 ad x86_enable_intr();
880 1.2 ad splx(s);
881 1.6 ad x86_errata();
882 1.2 ad
883 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
884 1.98 rmind
885 1.98 rmind idle_loop(NULL);
886 1.98 rmind KASSERT(false);
887 1.2 ad }
888 1.101 kiyohara #endif
889 1.2 ad
890 1.2 ad #if defined(DDB)
891 1.2 ad
892 1.2 ad #include <ddb/db_output.h>
893 1.2 ad #include <machine/db_machdep.h>
894 1.2 ad
895 1.2 ad /*
896 1.2 ad * Dump CPU information from ddb.
897 1.2 ad */
898 1.2 ad void
899 1.2 ad cpu_debug_dump(void)
900 1.2 ad {
901 1.2 ad struct cpu_info *ci;
902 1.2 ad CPU_INFO_ITERATOR cii;
903 1.2 ad
904 1.107 christos db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
905 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
906 1.107 christos db_printf("%p %s %ld %x %x %10p %10p\n",
907 1.2 ad ci,
908 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
909 1.2 ad (long)ci->ci_cpuid,
910 1.2 ad ci->ci_flags, ci->ci_ipis,
911 1.107 christos ci->ci_curlwp,
912 1.107 christos ci->ci_fpcurlwp);
913 1.2 ad }
914 1.2 ad }
915 1.2 ad #endif
916 1.2 ad
917 1.101 kiyohara #if NLAPIC > 0
918 1.2 ad static void
919 1.12 jmcneill cpu_copy_trampoline(void)
920 1.2 ad {
921 1.2 ad /*
922 1.2 ad * Copy boot code.
923 1.2 ad */
924 1.2 ad extern u_char cpu_spinup_trampoline[];
925 1.2 ad extern u_char cpu_spinup_trampoline_end[];
926 1.134 maxv
927 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
928 1.12 jmcneill
929 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
930 1.12 jmcneill UVM_KMF_VAONLY);
931 1.12 jmcneill
932 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
933 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
934 1.2 ad pmap_update(pmap_kernel());
935 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
936 1.2 ad cpu_spinup_trampoline,
937 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
938 1.12 jmcneill
939 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
940 1.12 jmcneill pmap_update(pmap_kernel());
941 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
942 1.2 ad }
943 1.101 kiyohara #endif
944 1.2 ad
945 1.101 kiyohara #ifdef MULTIPROCESSOR
946 1.2 ad int
947 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
948 1.2 ad {
949 1.44 ad unsigned short dwordptr[2];
950 1.2 ad int error;
951 1.14 joerg
952 1.14 joerg /*
953 1.14 joerg * Bootstrap code must be addressable in real mode
954 1.14 joerg * and it must be page aligned.
955 1.14 joerg */
956 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
957 1.2 ad
958 1.2 ad /*
959 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
960 1.2 ad */
961 1.2 ad
962 1.2 ad outb(IO_RTC, NVRAM_RESET);
963 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
964 1.2 ad
965 1.2 ad /*
966 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
967 1.2 ad * to the AP startup code ..."
968 1.2 ad */
969 1.2 ad
970 1.2 ad dwordptr[0] = 0;
971 1.14 joerg dwordptr[1] = target >> 4;
972 1.2 ad
973 1.111 joerg #if NLAPIC > 0
974 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
975 1.111 joerg #endif
976 1.2 ad
977 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
978 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
979 1.25 ad return ENODEV;
980 1.25 ad }
981 1.25 ad
982 1.2 ad /*
983 1.51 ad * ... prior to executing the following sequence:". We'll also add in
984 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
985 1.51 ad * disabled. It may not be able to cope with MP coherency.
986 1.2 ad */
987 1.51 ad wbinvd();
988 1.2 ad
989 1.2 ad if (ci->ci_flags & CPUF_AP) {
990 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
991 1.26 cegger if (error != 0) {
992 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
993 1.50 ad __func__);
994 1.2 ad return error;
995 1.25 ad }
996 1.11 ad i8254_delay(10000);
997 1.2 ad
998 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
999 1.26 cegger if (error != 0) {
1000 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1001 1.50 ad __func__);
1002 1.25 ad return error;
1003 1.25 ad }
1004 1.25 ad i8254_delay(200);
1005 1.2 ad
1006 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1007 1.26 cegger if (error != 0) {
1008 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1009 1.50 ad __func__);
1010 1.25 ad return error;
1011 1.2 ad }
1012 1.25 ad i8254_delay(200);
1013 1.2 ad }
1014 1.44 ad
1015 1.2 ad return 0;
1016 1.2 ad }
1017 1.2 ad
1018 1.2 ad void
1019 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1020 1.2 ad {
1021 1.2 ad /*
1022 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1023 1.2 ad */
1024 1.2 ad
1025 1.2 ad outb(IO_RTC, NVRAM_RESET);
1026 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1027 1.2 ad }
1028 1.101 kiyohara #endif
1029 1.2 ad
1030 1.2 ad #ifdef __x86_64__
1031 1.2 ad typedef void (vector)(void);
1032 1.2 ad extern vector Xsyscall, Xsyscall32;
1033 1.70 jym #endif
1034 1.2 ad
1035 1.2 ad void
1036 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1037 1.2 ad {
1038 1.70 jym #ifdef __x86_64__
1039 1.2 ad wrmsr(MSR_STAR,
1040 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1041 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1042 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1043 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1044 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1045 1.2 ad
1046 1.12 jmcneill if (full) {
1047 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1048 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1049 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1050 1.12 jmcneill }
1051 1.70 jym #endif /* __x86_64__ */
1052 1.2 ad
1053 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1054 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1055 1.2 ad }
1056 1.7 ad
1057 1.107 christos void
1058 1.107 christos cpu_offline_md(void)
1059 1.107 christos {
1060 1.107 christos int s;
1061 1.107 christos
1062 1.107 christos s = splhigh();
1063 1.107 christos fpusave_cpu(true);
1064 1.107 christos splx(s);
1065 1.107 christos }
1066 1.107 christos
1067 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1068 1.12 jmcneill static bool
1069 1.96 jruoho cpu_stop(device_t dv)
1070 1.12 jmcneill {
1071 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1072 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1073 1.18 joerg int err;
1074 1.12 jmcneill
1075 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1076 1.93 jruoho
1077 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1078 1.93 jruoho return true;
1079 1.93 jruoho
1080 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1081 1.12 jmcneill return true;
1082 1.12 jmcneill
1083 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1084 1.17 joerg
1085 1.20 jmcneill if (sc->sc_wasonline) {
1086 1.20 jmcneill mutex_enter(&cpu_lock);
1087 1.58 rmind err = cpu_setstate(ci, false);
1088 1.20 jmcneill mutex_exit(&cpu_lock);
1089 1.79 jruoho
1090 1.93 jruoho if (err != 0)
1091 1.20 jmcneill return false;
1092 1.20 jmcneill }
1093 1.17 joerg
1094 1.17 joerg return true;
1095 1.12 jmcneill }
1096 1.12 jmcneill
1097 1.12 jmcneill static bool
1098 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1099 1.96 jruoho {
1100 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1101 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1102 1.96 jruoho
1103 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1104 1.96 jruoho return true;
1105 1.96 jruoho else {
1106 1.96 jruoho cpufreq_suspend(ci);
1107 1.96 jruoho }
1108 1.96 jruoho
1109 1.96 jruoho return cpu_stop(dv);
1110 1.96 jruoho }
1111 1.96 jruoho
1112 1.96 jruoho static bool
1113 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1114 1.12 jmcneill {
1115 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1116 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1117 1.20 jmcneill int err = 0;
1118 1.12 jmcneill
1119 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1120 1.12 jmcneill return true;
1121 1.93 jruoho
1122 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1123 1.93 jruoho goto out;
1124 1.93 jruoho
1125 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1126 1.93 jruoho goto out;
1127 1.12 jmcneill
1128 1.20 jmcneill if (sc->sc_wasonline) {
1129 1.20 jmcneill mutex_enter(&cpu_lock);
1130 1.58 rmind err = cpu_setstate(ci, true);
1131 1.20 jmcneill mutex_exit(&cpu_lock);
1132 1.20 jmcneill }
1133 1.13 joerg
1134 1.93 jruoho out:
1135 1.93 jruoho if (err != 0)
1136 1.93 jruoho return false;
1137 1.93 jruoho
1138 1.93 jruoho cpufreq_resume(ci);
1139 1.93 jruoho
1140 1.93 jruoho return true;
1141 1.12 jmcneill }
1142 1.12 jmcneill
1143 1.79 jruoho static bool
1144 1.79 jruoho cpu_shutdown(device_t dv, int how)
1145 1.79 jruoho {
1146 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1147 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1148 1.90 dyoung
1149 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1150 1.90 dyoung return false;
1151 1.90 dyoung
1152 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1153 1.96 jruoho return true;
1154 1.96 jruoho
1155 1.96 jruoho return cpu_stop(dv);
1156 1.79 jruoho }
1157 1.79 jruoho
1158 1.7 ad void
1159 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1160 1.7 ad {
1161 1.7 ad uint64_t last_tsc;
1162 1.7 ad
1163 1.70 jym if (cpu_hascounter()) {
1164 1.80 bouyer last_tsc = cpu_counter_serializing();
1165 1.7 ad i8254_delay(100000);
1166 1.80 bouyer ci->ci_data.cpu_cc_freq =
1167 1.80 bouyer (cpu_counter_serializing() - last_tsc) * 10;
1168 1.7 ad }
1169 1.7 ad }
1170 1.37 joerg
1171 1.37 joerg void
1172 1.37 joerg x86_cpu_idle_mwait(void)
1173 1.37 joerg {
1174 1.37 joerg struct cpu_info *ci = curcpu();
1175 1.37 joerg
1176 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1177 1.37 joerg
1178 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1179 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1180 1.37 joerg return;
1181 1.37 joerg }
1182 1.37 joerg x86_mwait(0, 0);
1183 1.37 joerg }
1184 1.37 joerg
1185 1.37 joerg void
1186 1.37 joerg x86_cpu_idle_halt(void)
1187 1.37 joerg {
1188 1.37 joerg struct cpu_info *ci = curcpu();
1189 1.37 joerg
1190 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1191 1.37 joerg
1192 1.37 joerg x86_disable_intr();
1193 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1194 1.37 joerg x86_stihlt();
1195 1.37 joerg } else {
1196 1.37 joerg x86_enable_intr();
1197 1.37 joerg }
1198 1.37 joerg }
1199 1.73 jym
1200 1.73 jym /*
1201 1.73 jym * Loads pmap for the current CPU.
1202 1.73 jym */
1203 1.73 jym void
1204 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1205 1.73 jym {
1206 1.73 jym #ifdef PAE
1207 1.99 yamt struct cpu_info *ci = curcpu();
1208 1.116 nat bool interrupts_enabled;
1209 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1210 1.99 yamt int i;
1211 1.73 jym
1212 1.99 yamt /*
1213 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1214 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1215 1.99 yamt * reload cr3.
1216 1.99 yamt */
1217 1.116 nat interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1218 1.116 nat if (interrupts_enabled)
1219 1.116 nat x86_disable_intr();
1220 1.116 nat
1221 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1222 1.73 jym l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1223 1.73 jym }
1224 1.134 maxv
1225 1.116 nat if (interrupts_enabled)
1226 1.116 nat x86_enable_intr();
1227 1.73 jym tlbflush();
1228 1.73 jym #else /* PAE */
1229 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1230 1.73 jym #endif /* PAE */
1231 1.73 jym }
1232 1.91 cherry
1233 1.91 cherry /*
1234 1.91 cherry * Notify all other cpus to halt.
1235 1.91 cherry */
1236 1.91 cherry
1237 1.91 cherry void
1238 1.92 cherry cpu_broadcast_halt(void)
1239 1.91 cherry {
1240 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1241 1.91 cherry }
1242 1.91 cherry
1243 1.91 cherry /*
1244 1.91 cherry * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1245 1.91 cherry */
1246 1.91 cherry
1247 1.91 cherry void
1248 1.91 cherry cpu_kick(struct cpu_info *ci)
1249 1.91 cherry {
1250 1.91 cherry x86_send_ipi(ci, 0);
1251 1.91 cherry }
1252