Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.134
      1  1.133      maxv /*	$NetBSD: cpu.c,v 1.134 2017/08/27 09:32:12 maxv Exp $	*/
      2    1.2        ad 
      3  1.134      maxv /*
      4   1.98     rmind  * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
      5    1.2        ad  * All rights reserved.
      6    1.2        ad  *
      7    1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.11        ad  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9    1.2        ad  *
     10    1.2        ad  * Redistribution and use in source and binary forms, with or without
     11    1.2        ad  * modification, are permitted provided that the following conditions
     12    1.2        ad  * are met:
     13    1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14    1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15    1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17    1.2        ad  *    documentation and/or other materials provided with the distribution.
     18    1.2        ad  *
     19    1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30    1.2        ad  */
     31    1.2        ad 
     32    1.2        ad /*
     33    1.2        ad  * Copyright (c) 1999 Stefan Grefen
     34    1.2        ad  *
     35    1.2        ad  * Redistribution and use in source and binary forms, with or without
     36    1.2        ad  * modification, are permitted provided that the following conditions
     37    1.2        ad  * are met:
     38    1.2        ad  * 1. Redistributions of source code must retain the above copyright
     39    1.2        ad  *    notice, this list of conditions and the following disclaimer.
     40    1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     41    1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     42    1.2        ad  *    documentation and/or other materials provided with the distribution.
     43    1.2        ad  * 3. All advertising materials mentioning features or use of this software
     44    1.2        ad  *    must display the following acknowledgement:
     45    1.2        ad  *      This product includes software developed by the NetBSD
     46    1.2        ad  *      Foundation, Inc. and its contributors.
     47    1.2        ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48    1.2        ad  *    contributors may be used to endorse or promote products derived
     49    1.2        ad  *    from this software without specific prior written permission.
     50    1.2        ad  *
     51    1.2        ad  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52    1.2        ad  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53    1.2        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54    1.2        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55    1.2        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56    1.2        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57    1.2        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58    1.2        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59    1.2        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60    1.2        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61    1.2        ad  * SUCH DAMAGE.
     62    1.2        ad  */
     63    1.2        ad 
     64    1.2        ad #include <sys/cdefs.h>
     65  1.133      maxv __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.134 2017/08/27 09:32:12 maxv Exp $");
     66    1.2        ad 
     67    1.2        ad #include "opt_ddb.h"
     68    1.2        ad #include "opt_mpbios.h"		/* for MPDEBUG */
     69    1.2        ad #include "opt_mtrr.h"
     70  1.101  kiyohara #include "opt_multiprocessor.h"
     71    1.2        ad 
     72    1.2        ad #include "lapic.h"
     73    1.2        ad #include "ioapic.h"
     74    1.2        ad 
     75    1.2        ad #include <sys/param.h>
     76    1.2        ad #include <sys/proc.h>
     77    1.2        ad #include <sys/systm.h>
     78    1.2        ad #include <sys/device.h>
     79   1.61    cegger #include <sys/kmem.h>
     80    1.9        ad #include <sys/cpu.h>
     81   1.93    jruoho #include <sys/cpufreq.h>
     82   1.98     rmind #include <sys/idle.h>
     83    1.9        ad #include <sys/atomic.h>
     84   1.35        ad #include <sys/reboot.h>
     85    1.2        ad 
     86   1.78  uebayasi #include <uvm/uvm.h>
     87    1.2        ad 
     88  1.102  pgoyette #include "acpica.h"		/* for NACPICA, for mp_verbose */
     89  1.102  pgoyette 
     90    1.2        ad #include <machine/cpufunc.h>
     91    1.2        ad #include <machine/cpuvar.h>
     92    1.2        ad #include <machine/pmap.h>
     93    1.2        ad #include <machine/vmparam.h>
     94  1.102  pgoyette #if defined(MULTIPROCESSOR)
     95    1.2        ad #include <machine/mpbiosvar.h>
     96  1.101  kiyohara #endif
     97  1.102  pgoyette #include <machine/mpconfig.h>		/* for mp_verbose */
     98    1.2        ad #include <machine/pcb.h>
     99    1.2        ad #include <machine/specialreg.h>
    100    1.2        ad #include <machine/segments.h>
    101    1.2        ad #include <machine/gdt.h>
    102    1.2        ad #include <machine/mtrr.h>
    103    1.2        ad #include <machine/pio.h>
    104   1.38        ad #include <machine/cpu_counter.h>
    105    1.2        ad 
    106  1.109       dsl #include <x86/fpu.h>
    107  1.109       dsl 
    108    1.2        ad #ifdef i386
    109    1.2        ad #include <machine/tlog.h>
    110    1.2        ad #endif
    111    1.2        ad 
    112  1.101  kiyohara #if NLAPIC > 0
    113    1.2        ad #include <machine/apicvar.h>
    114    1.2        ad #include <machine/i82489reg.h>
    115    1.2        ad #include <machine/i82489var.h>
    116  1.101  kiyohara #endif
    117    1.2        ad 
    118    1.2        ad #include <dev/ic/mc146818reg.h>
    119    1.2        ad #include <i386/isa/nvram.h>
    120    1.2        ad #include <dev/isa/isareg.h>
    121    1.2        ad 
    122   1.38        ad #include "tsc.h"
    123   1.38        ad 
    124   1.87    jruoho static int	cpu_match(device_t, cfdata_t, void *);
    125   1.87    jruoho static void	cpu_attach(device_t, device_t, void *);
    126   1.87    jruoho static void	cpu_defer(device_t);
    127   1.87    jruoho static int	cpu_rescan(device_t, const char *, const int *);
    128   1.87    jruoho static void	cpu_childdetached(device_t, device_t);
    129   1.96    jruoho static bool	cpu_stop(device_t);
    130   1.69    dyoung static bool	cpu_suspend(device_t, const pmf_qual_t *);
    131   1.69    dyoung static bool	cpu_resume(device_t, const pmf_qual_t *);
    132   1.79    jruoho static bool	cpu_shutdown(device_t, int);
    133   1.12  jmcneill 
    134    1.2        ad struct cpu_softc {
    135   1.23      cube 	device_t sc_dev;		/* device tree glue */
    136    1.2        ad 	struct cpu_info *sc_info;	/* pointer to CPU info */
    137   1.20  jmcneill 	bool sc_wasonline;
    138    1.2        ad };
    139    1.2        ad 
    140  1.101  kiyohara #ifdef MULTIPROCESSOR
    141  1.120   msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
    142    1.2        ad void mp_cpu_start_cleanup(struct cpu_info *);
    143    1.2        ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    144    1.2        ad 					    mp_cpu_start_cleanup };
    145  1.101  kiyohara #endif
    146    1.2        ad 
    147    1.2        ad 
    148   1.81  jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    149   1.81  jmcneill     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    150    1.2        ad 
    151    1.2        ad /*
    152    1.2        ad  * Statically-allocated CPU info for the primary CPU (or the only
    153    1.2        ad  * CPU, on uniprocessors).  The CPU info list is initialized to
    154    1.2        ad  * point at it.
    155    1.2        ad  */
    156    1.2        ad #ifdef TRAPLOG
    157    1.2        ad struct tlog tlog_primary;
    158    1.2        ad #endif
    159   1.21        ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    160    1.2        ad 	.ci_dev = 0,
    161    1.2        ad 	.ci_self = &cpu_info_primary,
    162    1.2        ad 	.ci_idepth = -1,
    163    1.2        ad 	.ci_curlwp = &lwp0,
    164   1.43        ad 	.ci_curldt = -1,
    165    1.2        ad #ifdef TRAPLOG
    166    1.2        ad 	.ci_tlog_base = &tlog_primary,
    167  1.134      maxv #endif
    168    1.2        ad };
    169    1.2        ad 
    170    1.2        ad struct cpu_info *cpu_info_list = &cpu_info_primary;
    171    1.2        ad 
    172    1.2        ad #ifdef i386
    173  1.134      maxv void		cpu_set_tss_gates(struct cpu_info *);
    174    1.2        ad #endif
    175    1.2        ad 
    176   1.12  jmcneill static void	cpu_init_idle_lwp(struct cpu_info *);
    177   1.12  jmcneill 
    178  1.122      maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
    179  1.117      maxv 			/* [0] basic features cpuid.1:%edx
    180  1.117      maxv 			 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
    181  1.117      maxv 			 * [2] extended features cpuid:80000001:%edx
    182  1.117      maxv 			 * [3] extended features cpuid:80000001:%ecx
    183  1.117      maxv 			 * [4] VIA padlock features
    184  1.117      maxv 			 * [5] structured extended features cpuid.7:%ebx
    185  1.117      maxv 			 * [6] structured extended features cpuid.7:%ecx
    186  1.117      maxv 			 */
    187   1.70       jym 
    188  1.101  kiyohara #ifdef MULTIPROCESSOR
    189   1.12  jmcneill bool x86_mp_online;
    190   1.12  jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    191  1.101  kiyohara #endif
    192  1.101  kiyohara #if NLAPIC > 0
    193   1.14     joerg static vaddr_t cmos_data_mapping;
    194  1.101  kiyohara #endif
    195   1.45        ad struct cpu_info *cpu_starting;
    196    1.2        ad 
    197  1.101  kiyohara #ifdef MULTIPROCESSOR
    198    1.2        ad void    	cpu_hatch(void *);
    199    1.2        ad static void    	cpu_boot_secondary(struct cpu_info *ci);
    200    1.2        ad static void    	cpu_start_secondary(struct cpu_info *ci);
    201  1.101  kiyohara #endif
    202  1.101  kiyohara #if NLAPIC > 0
    203    1.2        ad static void	cpu_copy_trampoline(void);
    204  1.101  kiyohara #endif
    205    1.2        ad 
    206    1.2        ad /*
    207    1.2        ad  * Runs once per boot once multiprocessor goo has been detected and
    208    1.2        ad  * the local APIC on the boot processor has been mapped.
    209    1.2        ad  *
    210    1.2        ad  * Called from lapic_boot_init() (from mpbios_scan()).
    211    1.2        ad  */
    212  1.101  kiyohara #if NLAPIC > 0
    213    1.2        ad void
    214    1.9        ad cpu_init_first(void)
    215    1.2        ad {
    216    1.2        ad 
    217   1.45        ad 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    218    1.2        ad 	cpu_copy_trampoline();
    219   1.14     joerg 
    220   1.14     joerg 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    221   1.14     joerg 	if (cmos_data_mapping == 0)
    222   1.14     joerg 		panic("No KVA for page 0");
    223   1.64    cegger 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    224   1.14     joerg 	pmap_update(pmap_kernel());
    225    1.2        ad }
    226  1.101  kiyohara #endif
    227    1.2        ad 
    228   1.87    jruoho static int
    229   1.23      cube cpu_match(device_t parent, cfdata_t match, void *aux)
    230    1.2        ad {
    231    1.2        ad 
    232    1.2        ad 	return 1;
    233    1.2        ad }
    234    1.2        ad 
    235    1.2        ad static void
    236    1.2        ad cpu_vm_init(struct cpu_info *ci)
    237    1.2        ad {
    238    1.2        ad 	int ncolors = 2, i;
    239    1.2        ad 
    240    1.2        ad 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    241    1.2        ad 		struct x86_cache_info *cai;
    242    1.2        ad 		int tcolors;
    243    1.2        ad 
    244    1.2        ad 		cai = &ci->ci_cinfo[i];
    245    1.2        ad 
    246    1.2        ad 		tcolors = atop(cai->cai_totalsize);
    247    1.2        ad 		switch(cai->cai_associativity) {
    248    1.2        ad 		case 0xff:
    249    1.2        ad 			tcolors = 1; /* fully associative */
    250    1.2        ad 			break;
    251    1.2        ad 		case 0:
    252    1.2        ad 		case 1:
    253    1.2        ad 			break;
    254    1.2        ad 		default:
    255    1.2        ad 			tcolors /= cai->cai_associativity;
    256    1.2        ad 		}
    257    1.2        ad 		ncolors = max(ncolors, tcolors);
    258   1.32       tls 		/*
    259   1.32       tls 		 * If the desired number of colors is not a power of
    260   1.32       tls 		 * two, it won't be good.  Find the greatest power of
    261   1.32       tls 		 * two which is an even divisor of the number of colors,
    262   1.32       tls 		 * to preserve even coloring of pages.
    263   1.32       tls 		 */
    264   1.32       tls 		if (ncolors & (ncolors - 1) ) {
    265   1.32       tls 			int try, picked = 1;
    266   1.32       tls 			for (try = 1; try < ncolors; try *= 2) {
    267   1.32       tls 				if (ncolors % try == 0) picked = try;
    268   1.32       tls 			}
    269   1.32       tls 			if (picked == 1) {
    270   1.32       tls 				panic("desired number of cache colors %d is "
    271   1.32       tls 			      	" > 1, but not even!", ncolors);
    272   1.32       tls 			}
    273   1.32       tls 			ncolors = picked;
    274   1.32       tls 		}
    275    1.2        ad 	}
    276    1.2        ad 
    277    1.2        ad 	/*
    278   1.94       mrg 	 * Knowing the size of the largest cache on this CPU, potentially
    279   1.94       mrg 	 * re-color our pages.
    280    1.2        ad 	 */
    281   1.52        ad 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    282    1.2        ad 	uvm_page_recolor(ncolors);
    283   1.98     rmind 
    284   1.98     rmind 	pmap_tlb_cpu_init(ci);
    285  1.123      maxv #ifndef __HAVE_DIRECT_MAP
    286  1.123      maxv 	pmap_vpage_cpu_init(ci);
    287  1.123      maxv #endif
    288    1.2        ad }
    289    1.2        ad 
    290   1.87    jruoho static void
    291   1.23      cube cpu_attach(device_t parent, device_t self, void *aux)
    292    1.2        ad {
    293   1.23      cube 	struct cpu_softc *sc = device_private(self);
    294    1.2        ad 	struct cpu_attach_args *caa = aux;
    295    1.2        ad 	struct cpu_info *ci;
    296   1.21        ad 	uintptr_t ptr;
    297  1.101  kiyohara #if NLAPIC > 0
    298    1.2        ad 	int cpunum = caa->cpu_number;
    299  1.101  kiyohara #endif
    300   1.51        ad 	static bool again;
    301    1.2        ad 
    302   1.23      cube 	sc->sc_dev = self;
    303   1.23      cube 
    304   1.98     rmind 	if (ncpu == maxcpus) {
    305   1.98     rmind #ifndef _LP64
    306   1.98     rmind 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    307   1.98     rmind #else
    308   1.98     rmind 		aprint_error(": too many CPUs\n");
    309   1.98     rmind #endif
    310   1.48        ad 		return;
    311   1.48        ad 	}
    312   1.48        ad 
    313    1.2        ad 	/*
    314    1.2        ad 	 * If we're an Application Processor, allocate a cpu_info
    315    1.2        ad 	 * structure, otherwise use the primary's.
    316    1.2        ad 	 */
    317    1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    318   1.36        ad 		if ((boothowto & RB_MD1) != 0) {
    319   1.35        ad 			aprint_error(": multiprocessor boot disabled\n");
    320   1.56  jmcneill 			if (!pmf_device_register(self, NULL, NULL))
    321   1.56  jmcneill 				aprint_error_dev(self,
    322   1.56  jmcneill 				    "couldn't establish power handler\n");
    323   1.35        ad 			return;
    324   1.35        ad 		}
    325    1.2        ad 		aprint_naive(": Application Processor\n");
    326   1.72     rmind 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    327   1.61    cegger 		    KM_SLEEP);
    328   1.67       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    329   1.43        ad 		ci->ci_curldt = -1;
    330    1.2        ad #ifdef TRAPLOG
    331   1.61    cegger 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    332    1.2        ad #endif
    333    1.2        ad 	} else {
    334    1.2        ad 		aprint_naive(": %s Processor\n",
    335    1.2        ad 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    336    1.2        ad 		ci = &cpu_info_primary;
    337  1.101  kiyohara #if NLAPIC > 0
    338    1.2        ad 		if (cpunum != lapic_cpu_number()) {
    339   1.51        ad 			/* XXX should be done earlier. */
    340   1.39        ad 			uint32_t reg;
    341   1.39        ad 			aprint_verbose("\n");
    342   1.47        ad 			aprint_verbose_dev(self, "running CPU at apic %d"
    343   1.47        ad 			    " instead of at expected %d", lapic_cpu_number(),
    344   1.23      cube 			    cpunum);
    345  1.125    nonaka 			reg = lapic_readreg(LAPIC_ID);
    346  1.125    nonaka 			lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    347   1.39        ad 			    (cpunum << LAPIC_ID_SHIFT));
    348    1.2        ad 		}
    349   1.47        ad 		if (cpunum != lapic_cpu_number()) {
    350   1.47        ad 			aprint_error_dev(self, "unable to reset apic id\n");
    351   1.47        ad 		}
    352  1.101  kiyohara #endif
    353    1.2        ad 	}
    354    1.2        ad 
    355    1.2        ad 	ci->ci_self = ci;
    356    1.2        ad 	sc->sc_info = ci;
    357    1.2        ad 	ci->ci_dev = self;
    358   1.74    jruoho 	ci->ci_acpiid = caa->cpu_id;
    359   1.42        ad 	ci->ci_cpuid = caa->cpu_number;
    360    1.2        ad 	ci->ci_func = caa->cpu_func;
    361  1.112   msaitoh 	aprint_normal("\n");
    362    1.2        ad 
    363   1.55        ad 	/* Must be before mi_cpu_attach(). */
    364   1.55        ad 	cpu_vm_init(ci);
    365   1.55        ad 
    366    1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    367    1.2        ad 		int error;
    368    1.2        ad 
    369    1.2        ad 		error = mi_cpu_attach(ci);
    370    1.2        ad 		if (error != 0) {
    371   1.47        ad 			aprint_error_dev(self,
    372   1.30    cegger 			    "mi_cpu_attach failed with %d\n", error);
    373    1.2        ad 			return;
    374    1.2        ad 		}
    375   1.15      yamt 		cpu_init_tss(ci);
    376    1.2        ad 	} else {
    377    1.2        ad 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    378    1.2        ad 	}
    379    1.2        ad 
    380    1.2        ad 	pmap_reference(pmap_kernel());
    381    1.2        ad 	ci->ci_pmap = pmap_kernel();
    382    1.2        ad 	ci->ci_tlbstate = TLBSTATE_STALE;
    383    1.2        ad 
    384   1.51        ad 	/*
    385   1.51        ad 	 * Boot processor may not be attached first, but the below
    386   1.51        ad 	 * must be done to allow booting other processors.
    387   1.51        ad 	 */
    388   1.51        ad 	if (!again) {
    389   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    390   1.51        ad 		/* Basic init. */
    391    1.2        ad 		cpu_intr_init(ci);
    392   1.40        ad 		cpu_get_tsc_freq(ci);
    393    1.2        ad 		cpu_init(ci);
    394  1.134      maxv #ifdef i386
    395    1.2        ad 		cpu_set_tss_gates(ci);
    396  1.134      maxv #endif
    397    1.2        ad 		pmap_cpu_init_late(ci);
    398  1.101  kiyohara #if NLAPIC > 0
    399   1.51        ad 		if (caa->cpu_role != CPU_ROLE_SP) {
    400   1.51        ad 			/* Enable lapic. */
    401   1.51        ad 			lapic_enable();
    402   1.51        ad 			lapic_set_lvt();
    403   1.51        ad 			lapic_calibrate_timer(ci);
    404   1.51        ad 		}
    405  1.101  kiyohara #endif
    406   1.51        ad 		/* Make sure DELAY() is initialized. */
    407   1.51        ad 		DELAY(1);
    408   1.51        ad 		again = true;
    409   1.51        ad 	}
    410   1.51        ad 
    411   1.51        ad 	/* further PCB init done later. */
    412   1.51        ad 
    413   1.51        ad 	switch (caa->cpu_role) {
    414   1.51        ad 	case CPU_ROLE_SP:
    415   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    416   1.51        ad 		cpu_identify(ci);
    417   1.53        ad 		x86_errata();
    418   1.37     joerg 		x86_cpu_idle_init();
    419    1.2        ad 		break;
    420    1.2        ad 
    421    1.2        ad 	case CPU_ROLE_BP:
    422   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    423   1.40        ad 		cpu_identify(ci);
    424   1.53        ad 		x86_errata();
    425   1.37     joerg 		x86_cpu_idle_init();
    426    1.2        ad 		break;
    427    1.2        ad 
    428  1.101  kiyohara #ifdef MULTIPROCESSOR
    429    1.2        ad 	case CPU_ROLE_AP:
    430    1.2        ad 		/*
    431    1.2        ad 		 * report on an AP
    432    1.2        ad 		 */
    433    1.2        ad 		cpu_intr_init(ci);
    434    1.2        ad 		gdt_alloc_cpu(ci);
    435  1.134      maxv #ifdef i386
    436    1.2        ad 		cpu_set_tss_gates(ci);
    437  1.134      maxv #endif
    438    1.2        ad 		pmap_cpu_init_late(ci);
    439    1.2        ad 		cpu_start_secondary(ci);
    440    1.2        ad 		if (ci->ci_flags & CPUF_PRESENT) {
    441   1.59    cegger 			struct cpu_info *tmp;
    442   1.59    cegger 
    443   1.40        ad 			cpu_identify(ci);
    444   1.59    cegger 			tmp = cpu_info_list;
    445   1.59    cegger 			while (tmp->ci_next)
    446   1.59    cegger 				tmp = tmp->ci_next;
    447   1.59    cegger 
    448   1.59    cegger 			tmp->ci_next = ci;
    449    1.2        ad 		}
    450    1.2        ad 		break;
    451  1.101  kiyohara #endif
    452    1.2        ad 
    453    1.2        ad 	default:
    454    1.2        ad 		panic("unknown processor type??\n");
    455    1.2        ad 	}
    456   1.51        ad 
    457   1.71    cegger 	pat_init(ci);
    458    1.2        ad 
    459   1.79    jruoho 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    460   1.12  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    461   1.12  jmcneill 
    462  1.101  kiyohara #ifdef MULTIPROCESSOR
    463    1.2        ad 	if (mp_verbose) {
    464    1.2        ad 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    465   1.65     rmind 		struct pcb *pcb = lwp_getpcb(l);
    466    1.2        ad 
    467   1.47        ad 		aprint_verbose_dev(self,
    468   1.28    cegger 		    "idle lwp at %p, idle sp at %p\n",
    469   1.28    cegger 		    l,
    470    1.2        ad #ifdef i386
    471   1.65     rmind 		    (void *)pcb->pcb_esp
    472    1.2        ad #else
    473   1.65     rmind 		    (void *)pcb->pcb_rsp
    474    1.2        ad #endif
    475    1.2        ad 		);
    476    1.2        ad 	}
    477  1.101  kiyohara #endif
    478   1.81  jmcneill 
    479   1.89    jruoho 	/*
    480   1.89    jruoho 	 * Postpone the "cpufeaturebus" scan.
    481   1.89    jruoho 	 * It is safe to scan the pseudo-bus
    482   1.89    jruoho 	 * only after all CPUs have attached.
    483   1.89    jruoho 	 */
    484   1.87    jruoho 	(void)config_defer(self, cpu_defer);
    485   1.87    jruoho }
    486   1.87    jruoho 
    487   1.87    jruoho static void
    488   1.87    jruoho cpu_defer(device_t self)
    489   1.87    jruoho {
    490   1.81  jmcneill 	cpu_rescan(self, NULL, NULL);
    491   1.81  jmcneill }
    492   1.81  jmcneill 
    493   1.87    jruoho static int
    494   1.81  jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
    495   1.81  jmcneill {
    496   1.83    jruoho 	struct cpu_softc *sc = device_private(self);
    497   1.81  jmcneill 	struct cpufeature_attach_args cfaa;
    498   1.81  jmcneill 	struct cpu_info *ci = sc->sc_info;
    499   1.81  jmcneill 
    500   1.81  jmcneill 	memset(&cfaa, 0, sizeof(cfaa));
    501   1.81  jmcneill 	cfaa.ci = ci;
    502   1.81  jmcneill 
    503   1.81  jmcneill 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    504   1.83    jruoho 		if (ci->ci_frequency == NULL) {
    505   1.86    jruoho 			cfaa.name = "frequency";
    506   1.84    jruoho 			ci->ci_frequency = config_found_ia(self,
    507   1.84    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    508   1.84    jruoho 		}
    509   1.84    jruoho 
    510   1.81  jmcneill 		if (ci->ci_padlock == NULL) {
    511   1.81  jmcneill 			cfaa.name = "padlock";
    512   1.81  jmcneill 			ci->ci_padlock = config_found_ia(self,
    513   1.81  jmcneill 			    "cpufeaturebus", &cfaa, NULL);
    514   1.81  jmcneill 		}
    515   1.82    jruoho 
    516   1.86    jruoho 		if (ci->ci_temperature == NULL) {
    517   1.86    jruoho 			cfaa.name = "temperature";
    518   1.86    jruoho 			ci->ci_temperature = config_found_ia(self,
    519   1.85    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    520   1.85    jruoho 		}
    521   1.95  jmcneill 
    522   1.95  jmcneill 		if (ci->ci_vm == NULL) {
    523   1.95  jmcneill 			cfaa.name = "vm";
    524   1.95  jmcneill 			ci->ci_vm = config_found_ia(self,
    525   1.95  jmcneill 			    "cpufeaturebus", &cfaa, NULL);
    526   1.95  jmcneill 		}
    527   1.81  jmcneill 	}
    528   1.81  jmcneill 
    529   1.81  jmcneill 	return 0;
    530   1.81  jmcneill }
    531   1.81  jmcneill 
    532   1.87    jruoho static void
    533   1.81  jmcneill cpu_childdetached(device_t self, device_t child)
    534   1.81  jmcneill {
    535   1.81  jmcneill 	struct cpu_softc *sc = device_private(self);
    536   1.81  jmcneill 	struct cpu_info *ci = sc->sc_info;
    537   1.81  jmcneill 
    538   1.83    jruoho 	if (ci->ci_frequency == child)
    539   1.83    jruoho 		ci->ci_frequency = NULL;
    540   1.82    jruoho 
    541   1.81  jmcneill 	if (ci->ci_padlock == child)
    542   1.81  jmcneill 		ci->ci_padlock = NULL;
    543   1.83    jruoho 
    544   1.86    jruoho 	if (ci->ci_temperature == child)
    545   1.86    jruoho 		ci->ci_temperature = NULL;
    546   1.95  jmcneill 
    547   1.95  jmcneill 	if (ci->ci_vm == child)
    548   1.95  jmcneill 		ci->ci_vm = NULL;
    549    1.2        ad }
    550    1.2        ad 
    551    1.2        ad /*
    552    1.2        ad  * Initialize the processor appropriately.
    553    1.2        ad  */
    554    1.2        ad 
    555    1.2        ad void
    556    1.9        ad cpu_init(struct cpu_info *ci)
    557    1.2        ad {
    558  1.113  christos 	uint32_t cr4 = 0;
    559    1.2        ad 
    560    1.2        ad 	lcr0(rcr0() | CR0_WP);
    561    1.2        ad 
    562    1.2        ad 	/*
    563    1.2        ad 	 * On a P6 or above, enable global TLB caching if the
    564    1.2        ad 	 * hardware supports it.
    565    1.2        ad 	 */
    566   1.70       jym 	if (cpu_feature[0] & CPUID_PGE)
    567  1.110       dsl 		cr4 |= CR4_PGE;	/* enable global TLB caching */
    568    1.2        ad 
    569    1.2        ad 	/*
    570    1.2        ad 	 * If we have FXSAVE/FXRESTOR, use them.
    571    1.2        ad 	 */
    572   1.70       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    573  1.110       dsl 		cr4 |= CR4_OSFXSR;
    574    1.2        ad 
    575    1.2        ad 		/*
    576    1.2        ad 		 * If we have SSE/SSE2, enable XMM exceptions.
    577    1.2        ad 		 */
    578   1.70       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    579  1.110       dsl 			cr4 |= CR4_OSXMMEXCPT;
    580    1.2        ad 	}
    581    1.2        ad 
    582  1.110       dsl 	/* If xsave is supported, enable it */
    583  1.110       dsl 	if (cpu_feature[1] & CPUID2_XSAVE)
    584  1.110       dsl 		cr4 |= CR4_OSXSAVE;
    585  1.110       dsl 
    586  1.118      maxv 	/* If SMEP is supported, enable it */
    587  1.118      maxv 	if (cpu_feature[5] & CPUID_SEF_SMEP)
    588  1.118      maxv 		cr4 |= CR4_SMEP;
    589  1.118      maxv 
    590  1.113  christos 	if (cr4) {
    591  1.113  christos 		cr4 |= rcr4();
    592  1.113  christos 		lcr4(cr4);
    593  1.113  christos 	}
    594  1.110       dsl 
    595  1.110       dsl 	/* If xsave is enabled, enable all fpu features */
    596  1.110       dsl 	if (cr4 & CR4_OSXSAVE)
    597  1.110       dsl 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    598  1.110       dsl 
    599    1.2        ad #ifdef MTRR
    600    1.2        ad 	/*
    601    1.2        ad 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    602    1.2        ad 	 */
    603   1.70       jym 	if (cpu_feature[0] & CPUID_MTRR) {
    604    1.2        ad 		if ((ci->ci_flags & CPUF_AP) == 0)
    605    1.2        ad 			i686_mtrr_init_first();
    606    1.2        ad 		mtrr_init_cpu(ci);
    607    1.2        ad 	}
    608    1.2        ad 
    609    1.2        ad #ifdef i386
    610    1.2        ad 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    611    1.2        ad 		/*
    612    1.2        ad 		 * Must be a K6-2 Step >= 7 or a K6-III.
    613    1.2        ad 		 */
    614  1.106   msaitoh 		if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
    615  1.106   msaitoh 			if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
    616  1.106   msaitoh 			    (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
    617  1.106   msaitoh 			     CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
    618    1.2        ad 				mtrr_funcs = &k6_mtrr_funcs;
    619    1.2        ad 				k6_mtrr_init_first();
    620    1.2        ad 				mtrr_init_cpu(ci);
    621    1.2        ad 			}
    622    1.2        ad 		}
    623    1.2        ad 	}
    624    1.2        ad #endif	/* i386 */
    625    1.2        ad #endif /* MTRR */
    626    1.2        ad 
    627   1.38        ad 	if (ci != &cpu_info_primary) {
    628   1.38        ad 		/* Synchronize TSC again, and check for drift. */
    629   1.38        ad 		wbinvd();
    630   1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    631   1.38        ad 		tsc_sync_ap(ci);
    632   1.38        ad 	} else {
    633   1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    634   1.38        ad 	}
    635    1.2        ad }
    636    1.2        ad 
    637  1.101  kiyohara #ifdef MULTIPROCESSOR
    638    1.2        ad void
    639   1.12  jmcneill cpu_boot_secondary_processors(void)
    640    1.2        ad {
    641    1.2        ad 	struct cpu_info *ci;
    642  1.100       chs 	kcpuset_t *cpus;
    643    1.2        ad 	u_long i;
    644    1.2        ad 
    645    1.5        ad 	/* Now that we know the number of CPUs, patch the text segment. */
    646   1.60        ad 	x86_patch(false);
    647    1.5        ad 
    648  1.100       chs 	kcpuset_create(&cpus, true);
    649  1.100       chs 	kcpuset_set(cpus, cpu_index(curcpu()));
    650  1.100       chs 	for (i = 0; i < maxcpus; i++) {
    651   1.57        ad 		ci = cpu_lookup(i);
    652    1.2        ad 		if (ci == NULL)
    653    1.2        ad 			continue;
    654    1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    655    1.2        ad 			continue;
    656    1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    657    1.2        ad 			continue;
    658    1.2        ad 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    659    1.2        ad 			continue;
    660    1.2        ad 		cpu_boot_secondary(ci);
    661  1.100       chs 		kcpuset_set(cpus, cpu_index(ci));
    662    1.2        ad 	}
    663  1.100       chs 	while (!kcpuset_match(cpus, kcpuset_running))
    664  1.100       chs 		;
    665  1.100       chs 	kcpuset_destroy(cpus);
    666    1.2        ad 
    667    1.2        ad 	x86_mp_online = true;
    668   1.38        ad 
    669   1.38        ad 	/* Now that we know about the TSC, attach the timecounter. */
    670   1.38        ad 	tsc_tc_init();
    671   1.55        ad 
    672   1.55        ad 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    673   1.70       jym 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
    674    1.2        ad }
    675  1.101  kiyohara #endif
    676    1.2        ad 
    677    1.2        ad static void
    678    1.2        ad cpu_init_idle_lwp(struct cpu_info *ci)
    679    1.2        ad {
    680    1.2        ad 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    681   1.65     rmind 	struct pcb *pcb = lwp_getpcb(l);
    682    1.2        ad 
    683    1.2        ad 	pcb->pcb_cr0 = rcr0();
    684    1.2        ad }
    685    1.2        ad 
    686    1.2        ad void
    687   1.12  jmcneill cpu_init_idle_lwps(void)
    688    1.2        ad {
    689    1.2        ad 	struct cpu_info *ci;
    690    1.2        ad 	u_long i;
    691    1.2        ad 
    692   1.54        ad 	for (i = 0; i < maxcpus; i++) {
    693   1.57        ad 		ci = cpu_lookup(i);
    694    1.2        ad 		if (ci == NULL)
    695    1.2        ad 			continue;
    696    1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    697    1.2        ad 			continue;
    698    1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    699    1.2        ad 			continue;
    700    1.2        ad 		cpu_init_idle_lwp(ci);
    701    1.2        ad 	}
    702    1.2        ad }
    703    1.2        ad 
    704  1.101  kiyohara #ifdef MULTIPROCESSOR
    705    1.2        ad void
    706   1.12  jmcneill cpu_start_secondary(struct cpu_info *ci)
    707    1.2        ad {
    708   1.38        ad 	extern paddr_t mp_pdirpa;
    709   1.38        ad 	u_long psl;
    710    1.2        ad 	int i;
    711    1.2        ad 
    712   1.12  jmcneill 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    713    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    714    1.2        ad 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    715   1.45        ad 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    716   1.25        ad 		return;
    717   1.45        ad 	}
    718    1.2        ad 
    719    1.2        ad 	/*
    720   1.50        ad 	 * Wait for it to become ready.   Setting cpu_starting opens the
    721   1.50        ad 	 * initial gate and allows the AP to start soft initialization.
    722    1.2        ad 	 */
    723   1.50        ad 	KASSERT(cpu_starting == NULL);
    724   1.50        ad 	cpu_starting = ci;
    725   1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    726   1.11        ad 		i8254_delay(10);
    727    1.2        ad 	}
    728   1.38        ad 
    729    1.9        ad 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    730   1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    731    1.2        ad #if defined(MPDEBUG) && defined(DDB)
    732    1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    733    1.2        ad 		Debugger();
    734    1.2        ad #endif
    735   1.38        ad 	} else {
    736   1.38        ad 		/*
    737   1.68       jym 		 * Synchronize time stamp counters. Invalidate cache and do
    738   1.68       jym 		 * twice to try and minimize possible cache effects. Disable
    739   1.68       jym 		 * interrupts to try and rule out any external interference.
    740   1.38        ad 		 */
    741   1.38        ad 		psl = x86_read_psl();
    742   1.38        ad 		x86_disable_intr();
    743   1.38        ad 		wbinvd();
    744   1.38        ad 		tsc_sync_bp(ci);
    745   1.38        ad 		x86_write_psl(psl);
    746    1.2        ad 	}
    747    1.2        ad 
    748    1.2        ad 	CPU_START_CLEANUP(ci);
    749   1.45        ad 	cpu_starting = NULL;
    750    1.2        ad }
    751    1.2        ad 
    752    1.2        ad void
    753   1.12  jmcneill cpu_boot_secondary(struct cpu_info *ci)
    754    1.2        ad {
    755   1.38        ad 	int64_t drift;
    756   1.38        ad 	u_long psl;
    757    1.2        ad 	int i;
    758    1.2        ad 
    759    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    760   1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    761   1.11        ad 		i8254_delay(10);
    762    1.2        ad 	}
    763    1.9        ad 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    764   1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    765    1.2        ad #if defined(MPDEBUG) && defined(DDB)
    766    1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    767    1.2        ad 		Debugger();
    768    1.2        ad #endif
    769   1.38        ad 	} else {
    770   1.38        ad 		/* Synchronize TSC again, check for drift. */
    771   1.38        ad 		drift = ci->ci_data.cpu_cc_skew;
    772   1.38        ad 		psl = x86_read_psl();
    773   1.38        ad 		x86_disable_intr();
    774   1.38        ad 		wbinvd();
    775   1.38        ad 		tsc_sync_bp(ci);
    776   1.38        ad 		x86_write_psl(psl);
    777   1.38        ad 		drift -= ci->ci_data.cpu_cc_skew;
    778   1.38        ad 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    779   1.38        ad 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    780   1.38        ad 		tsc_sync_drift(drift);
    781    1.2        ad 	}
    782    1.2        ad }
    783    1.2        ad 
    784    1.2        ad /*
    785  1.117      maxv  * The CPU ends up here when it's ready to run.
    786    1.2        ad  * This is called from code in mptramp.s; at this point, we are running
    787    1.2        ad  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    788    1.2        ad  * this processor will enter the idle loop and start looking for work.
    789    1.2        ad  */
    790    1.2        ad void
    791    1.2        ad cpu_hatch(void *v)
    792    1.2        ad {
    793    1.2        ad 	struct cpu_info *ci = (struct cpu_info *)v;
    794   1.65     rmind 	struct pcb *pcb;
    795  1.130       kre 	int s, i;
    796    1.2        ad 
    797   1.12  jmcneill 	cpu_init_msrs(ci, true);
    798   1.40        ad 	cpu_probe(ci);
    799   1.46        ad 
    800   1.46        ad 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    801  1.134      maxv 	/* cpu_get_tsc_freq(ci); */
    802   1.38        ad 
    803    1.8        ad 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    804   1.38        ad 
    805   1.38        ad 	/*
    806   1.38        ad 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    807   1.38        ad 	 * to try and minimize possible cache effects.  Note that interrupts
    808   1.38        ad 	 * are off at this point.
    809   1.38        ad 	 */
    810   1.38        ad 	wbinvd();
    811    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    812   1.38        ad 	tsc_sync_ap(ci);
    813   1.38        ad 
    814   1.38        ad 	/*
    815   1.38        ad 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    816   1.38        ad 	 * in order to make the TSC drift as much as possible. so that
    817  1.134      maxv 	 * we can detect it later.  If not available, try 'pause'.
    818   1.38        ad 	 * We'd like to use 'hlt', but we have interrupts off.
    819   1.38        ad 	 */
    820    1.6        ad 	while ((ci->ci_flags & CPUF_GO) == 0) {
    821   1.70       jym 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    822   1.38        ad 			x86_monitor(&ci->ci_flags, 0, 0);
    823   1.38        ad 			if ((ci->ci_flags & CPUF_GO) != 0) {
    824   1.38        ad 				continue;
    825   1.38        ad 			}
    826   1.38        ad 			x86_mwait(0, 0);
    827   1.38        ad 		} else {
    828  1.131  pgoyette 	/*
    829  1.131  pgoyette 	 * XXX The loop repetition count could be a lot higher, but
    830  1.131  pgoyette 	 * XXX currently qemu emulator takes a _very_long_time_ to
    831  1.131  pgoyette 	 * XXX execute the pause instruction.  So for now, use a low
    832  1.131  pgoyette 	 * XXX value to allow the cpu to hatch before timing out.
    833  1.131  pgoyette 	 */
    834  1.131  pgoyette 			for (i = 50; i != 0; i--) {
    835  1.127  pgoyette 				x86_pause();
    836  1.127  pgoyette 			}
    837   1.38        ad 		}
    838    1.6        ad 	}
    839    1.5        ad 
    840   1.26    cegger 	/* Because the text may have been patched in x86_patch(). */
    841    1.5        ad 	wbinvd();
    842    1.5        ad 	x86_flush();
    843   1.88     rmind 	tlbflushg();
    844    1.5        ad 
    845    1.8        ad 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    846    1.2        ad 
    847   1.73       jym #ifdef PAE
    848   1.73       jym 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    849   1.73       jym 	for (i = 0 ; i < PDP_SIZE; i++) {
    850   1.73       jym 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
    851   1.73       jym 	}
    852   1.73       jym 	lcr3(ci->ci_pae_l3_pdirpa);
    853   1.73       jym #else
    854   1.73       jym 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    855   1.73       jym #endif
    856   1.73       jym 
    857   1.65     rmind 	pcb = lwp_getpcb(curlwp);
    858   1.73       jym 	pcb->pcb_cr3 = rcr3();
    859   1.65     rmind 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    860   1.65     rmind 	lcr0(pcb->pcb_cr0);
    861   1.65     rmind 
    862    1.2        ad 	cpu_init_idt();
    863    1.8        ad 	gdt_init_cpu(ci);
    864  1.111     joerg #if NLAPIC > 0
    865    1.8        ad 	lapic_enable();
    866    1.2        ad 	lapic_set_lvt();
    867    1.8        ad 	lapic_initclocks();
    868  1.111     joerg #endif
    869    1.2        ad 
    870    1.2        ad 	fpuinit(ci);
    871    1.2        ad 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    872   1.15      yamt 	ltr(ci->ci_tss_sel);
    873    1.2        ad 
    874    1.2        ad 	cpu_init(ci);
    875    1.7        ad 	cpu_get_tsc_freq(ci);
    876    1.2        ad 
    877    1.2        ad 	s = splhigh();
    878  1.124    nonaka 	lapic_write_tpri(0);
    879    1.3        ad 	x86_enable_intr();
    880    1.2        ad 	splx(s);
    881    1.6        ad 	x86_errata();
    882    1.2        ad 
    883   1.42        ad 	aprint_debug_dev(ci->ci_dev, "running\n");
    884   1.98     rmind 
    885   1.98     rmind 	idle_loop(NULL);
    886   1.98     rmind 	KASSERT(false);
    887    1.2        ad }
    888  1.101  kiyohara #endif
    889    1.2        ad 
    890    1.2        ad #if defined(DDB)
    891    1.2        ad 
    892    1.2        ad #include <ddb/db_output.h>
    893    1.2        ad #include <machine/db_machdep.h>
    894    1.2        ad 
    895    1.2        ad /*
    896    1.2        ad  * Dump CPU information from ddb.
    897    1.2        ad  */
    898    1.2        ad void
    899    1.2        ad cpu_debug_dump(void)
    900    1.2        ad {
    901    1.2        ad 	struct cpu_info *ci;
    902    1.2        ad 	CPU_INFO_ITERATOR cii;
    903    1.2        ad 
    904  1.107  christos 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    905    1.2        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    906  1.107  christos 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    907    1.2        ad 		    ci,
    908   1.27    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    909    1.2        ad 		    (long)ci->ci_cpuid,
    910    1.2        ad 		    ci->ci_flags, ci->ci_ipis,
    911  1.107  christos 		    ci->ci_curlwp,
    912  1.107  christos 		    ci->ci_fpcurlwp);
    913    1.2        ad 	}
    914    1.2        ad }
    915    1.2        ad #endif
    916    1.2        ad 
    917  1.101  kiyohara #if NLAPIC > 0
    918    1.2        ad static void
    919   1.12  jmcneill cpu_copy_trampoline(void)
    920    1.2        ad {
    921    1.2        ad 	/*
    922    1.2        ad 	 * Copy boot code.
    923    1.2        ad 	 */
    924    1.2        ad 	extern u_char cpu_spinup_trampoline[];
    925    1.2        ad 	extern u_char cpu_spinup_trampoline_end[];
    926  1.134      maxv 
    927   1.12  jmcneill 	vaddr_t mp_trampoline_vaddr;
    928   1.12  jmcneill 
    929   1.12  jmcneill 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    930   1.12  jmcneill 	    UVM_KMF_VAONLY);
    931   1.12  jmcneill 
    932   1.12  jmcneill 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    933   1.64    cegger 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    934    1.2        ad 	pmap_update(pmap_kernel());
    935   1.12  jmcneill 	memcpy((void *)mp_trampoline_vaddr,
    936    1.2        ad 	    cpu_spinup_trampoline,
    937   1.26    cegger 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    938   1.12  jmcneill 
    939   1.12  jmcneill 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    940   1.12  jmcneill 	pmap_update(pmap_kernel());
    941   1.12  jmcneill 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    942    1.2        ad }
    943  1.101  kiyohara #endif
    944    1.2        ad 
    945  1.101  kiyohara #ifdef MULTIPROCESSOR
    946    1.2        ad int
    947   1.14     joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
    948    1.2        ad {
    949   1.44        ad 	unsigned short dwordptr[2];
    950    1.2        ad 	int error;
    951   1.14     joerg 
    952   1.14     joerg 	/*
    953   1.14     joerg 	 * Bootstrap code must be addressable in real mode
    954   1.14     joerg 	 * and it must be page aligned.
    955   1.14     joerg 	 */
    956   1.14     joerg 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    957    1.2        ad 
    958    1.2        ad 	/*
    959    1.2        ad 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    960    1.2        ad 	 */
    961    1.2        ad 
    962    1.2        ad 	outb(IO_RTC, NVRAM_RESET);
    963    1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    964    1.2        ad 
    965    1.2        ad 	/*
    966    1.2        ad 	 * "and the warm reset vector (DWORD based at 40:67) to point
    967    1.2        ad 	 * to the AP startup code ..."
    968    1.2        ad 	 */
    969    1.2        ad 
    970    1.2        ad 	dwordptr[0] = 0;
    971   1.14     joerg 	dwordptr[1] = target >> 4;
    972    1.2        ad 
    973  1.111     joerg #if NLAPIC > 0
    974   1.25        ad 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    975  1.111     joerg #endif
    976    1.2        ad 
    977   1.70       jym 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
    978   1.25        ad 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
    979   1.25        ad 		return ENODEV;
    980   1.25        ad 	}
    981   1.25        ad 
    982    1.2        ad 	/*
    983   1.51        ad 	 * ... prior to executing the following sequence:".  We'll also add in
    984   1.51        ad 	 * local cache flush, in case the BIOS has left the AP with its cache
    985   1.51        ad 	 * disabled.  It may not be able to cope with MP coherency.
    986    1.2        ad 	 */
    987   1.51        ad 	wbinvd();
    988    1.2        ad 
    989    1.2        ad 	if (ci->ci_flags & CPUF_AP) {
    990   1.42        ad 		error = x86_ipi_init(ci->ci_cpuid);
    991   1.26    cegger 		if (error != 0) {
    992   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    993   1.50        ad 			    __func__);
    994    1.2        ad 			return error;
    995   1.25        ad 		}
    996   1.11        ad 		i8254_delay(10000);
    997    1.2        ad 
    998   1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    999   1.26    cegger 		if (error != 0) {
   1000   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1001   1.50        ad 			    __func__);
   1002   1.25        ad 			return error;
   1003   1.25        ad 		}
   1004   1.25        ad 		i8254_delay(200);
   1005    1.2        ad 
   1006   1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1007   1.26    cegger 		if (error != 0) {
   1008   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1009   1.50        ad 			    __func__);
   1010   1.25        ad 			return error;
   1011    1.2        ad 		}
   1012   1.25        ad 		i8254_delay(200);
   1013    1.2        ad 	}
   1014   1.44        ad 
   1015    1.2        ad 	return 0;
   1016    1.2        ad }
   1017    1.2        ad 
   1018    1.2        ad void
   1019    1.2        ad mp_cpu_start_cleanup(struct cpu_info *ci)
   1020    1.2        ad {
   1021    1.2        ad 	/*
   1022    1.2        ad 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1023    1.2        ad 	 */
   1024    1.2        ad 
   1025    1.2        ad 	outb(IO_RTC, NVRAM_RESET);
   1026    1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1027    1.2        ad }
   1028  1.101  kiyohara #endif
   1029    1.2        ad 
   1030    1.2        ad #ifdef __x86_64__
   1031    1.2        ad typedef void (vector)(void);
   1032    1.2        ad extern vector Xsyscall, Xsyscall32;
   1033   1.70       jym #endif
   1034    1.2        ad 
   1035    1.2        ad void
   1036   1.12  jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
   1037    1.2        ad {
   1038   1.70       jym #ifdef __x86_64__
   1039    1.2        ad 	wrmsr(MSR_STAR,
   1040    1.2        ad 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1041    1.2        ad 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1042    1.2        ad 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1043    1.2        ad 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1044    1.2        ad 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
   1045    1.2        ad 
   1046   1.12  jmcneill 	if (full) {
   1047   1.12  jmcneill 		wrmsr(MSR_FSBASE, 0);
   1048   1.27    cegger 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1049   1.12  jmcneill 		wrmsr(MSR_KERNELGSBASE, 0);
   1050   1.12  jmcneill 	}
   1051   1.70       jym #endif	/* __x86_64__ */
   1052    1.2        ad 
   1053   1.70       jym 	if (cpu_feature[2] & CPUID_NOX)
   1054    1.2        ad 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1055    1.2        ad }
   1056    1.7        ad 
   1057  1.107  christos void
   1058  1.107  christos cpu_offline_md(void)
   1059  1.107  christos {
   1060  1.107  christos 	int s;
   1061  1.107  christos 
   1062  1.107  christos 	s = splhigh();
   1063  1.107  christos 	fpusave_cpu(true);
   1064  1.107  christos 	splx(s);
   1065  1.107  christos }
   1066  1.107  christos 
   1067   1.12  jmcneill /* XXX joerg restructure and restart CPUs individually */
   1068   1.12  jmcneill static bool
   1069   1.96    jruoho cpu_stop(device_t dv)
   1070   1.12  jmcneill {
   1071   1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1072   1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1073   1.18     joerg 	int err;
   1074   1.12  jmcneill 
   1075   1.96    jruoho 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1076   1.93    jruoho 
   1077   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1078   1.93    jruoho 		return true;
   1079   1.93    jruoho 
   1080   1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1081   1.12  jmcneill 		return true;
   1082   1.12  jmcneill 
   1083   1.20  jmcneill 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1084   1.17     joerg 
   1085   1.20  jmcneill 	if (sc->sc_wasonline) {
   1086   1.20  jmcneill 		mutex_enter(&cpu_lock);
   1087   1.58     rmind 		err = cpu_setstate(ci, false);
   1088   1.20  jmcneill 		mutex_exit(&cpu_lock);
   1089   1.79    jruoho 
   1090   1.93    jruoho 		if (err != 0)
   1091   1.20  jmcneill 			return false;
   1092   1.20  jmcneill 	}
   1093   1.17     joerg 
   1094   1.17     joerg 	return true;
   1095   1.12  jmcneill }
   1096   1.12  jmcneill 
   1097   1.12  jmcneill static bool
   1098   1.96    jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1099   1.96    jruoho {
   1100   1.96    jruoho 	struct cpu_softc *sc = device_private(dv);
   1101   1.96    jruoho 	struct cpu_info *ci = sc->sc_info;
   1102   1.96    jruoho 
   1103   1.96    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1104   1.96    jruoho 		return true;
   1105   1.96    jruoho 	else {
   1106   1.96    jruoho 		cpufreq_suspend(ci);
   1107   1.96    jruoho 	}
   1108   1.96    jruoho 
   1109   1.96    jruoho 	return cpu_stop(dv);
   1110   1.96    jruoho }
   1111   1.96    jruoho 
   1112   1.96    jruoho static bool
   1113   1.69    dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
   1114   1.12  jmcneill {
   1115   1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1116   1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1117   1.20  jmcneill 	int err = 0;
   1118   1.12  jmcneill 
   1119   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1120   1.12  jmcneill 		return true;
   1121   1.93    jruoho 
   1122   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1123   1.93    jruoho 		goto out;
   1124   1.93    jruoho 
   1125   1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1126   1.93    jruoho 		goto out;
   1127   1.12  jmcneill 
   1128   1.20  jmcneill 	if (sc->sc_wasonline) {
   1129   1.20  jmcneill 		mutex_enter(&cpu_lock);
   1130   1.58     rmind 		err = cpu_setstate(ci, true);
   1131   1.20  jmcneill 		mutex_exit(&cpu_lock);
   1132   1.20  jmcneill 	}
   1133   1.13     joerg 
   1134   1.93    jruoho out:
   1135   1.93    jruoho 	if (err != 0)
   1136   1.93    jruoho 		return false;
   1137   1.93    jruoho 
   1138   1.93    jruoho 	cpufreq_resume(ci);
   1139   1.93    jruoho 
   1140   1.93    jruoho 	return true;
   1141   1.12  jmcneill }
   1142   1.12  jmcneill 
   1143   1.79    jruoho static bool
   1144   1.79    jruoho cpu_shutdown(device_t dv, int how)
   1145   1.79    jruoho {
   1146   1.90    dyoung 	struct cpu_softc *sc = device_private(dv);
   1147   1.90    dyoung 	struct cpu_info *ci = sc->sc_info;
   1148   1.90    dyoung 
   1149   1.96    jruoho 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1150   1.90    dyoung 		return false;
   1151   1.90    dyoung 
   1152   1.96    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1153   1.96    jruoho 		return true;
   1154   1.96    jruoho 
   1155   1.96    jruoho 	return cpu_stop(dv);
   1156   1.79    jruoho }
   1157   1.79    jruoho 
   1158    1.7        ad void
   1159    1.7        ad cpu_get_tsc_freq(struct cpu_info *ci)
   1160    1.7        ad {
   1161    1.7        ad 	uint64_t last_tsc;
   1162    1.7        ad 
   1163   1.70       jym 	if (cpu_hascounter()) {
   1164   1.80    bouyer 		last_tsc = cpu_counter_serializing();
   1165    1.7        ad 		i8254_delay(100000);
   1166   1.80    bouyer 		ci->ci_data.cpu_cc_freq =
   1167   1.80    bouyer 		    (cpu_counter_serializing() - last_tsc) * 10;
   1168    1.7        ad 	}
   1169    1.7        ad }
   1170   1.37     joerg 
   1171   1.37     joerg void
   1172   1.37     joerg x86_cpu_idle_mwait(void)
   1173   1.37     joerg {
   1174   1.37     joerg 	struct cpu_info *ci = curcpu();
   1175   1.37     joerg 
   1176   1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1177   1.37     joerg 
   1178   1.37     joerg 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1179   1.37     joerg 	if (__predict_false(ci->ci_want_resched)) {
   1180   1.37     joerg 		return;
   1181   1.37     joerg 	}
   1182   1.37     joerg 	x86_mwait(0, 0);
   1183   1.37     joerg }
   1184   1.37     joerg 
   1185   1.37     joerg void
   1186   1.37     joerg x86_cpu_idle_halt(void)
   1187   1.37     joerg {
   1188   1.37     joerg 	struct cpu_info *ci = curcpu();
   1189   1.37     joerg 
   1190   1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1191   1.37     joerg 
   1192   1.37     joerg 	x86_disable_intr();
   1193   1.37     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1194   1.37     joerg 		x86_stihlt();
   1195   1.37     joerg 	} else {
   1196   1.37     joerg 		x86_enable_intr();
   1197   1.37     joerg 	}
   1198   1.37     joerg }
   1199   1.73       jym 
   1200   1.73       jym /*
   1201   1.73       jym  * Loads pmap for the current CPU.
   1202   1.73       jym  */
   1203   1.73       jym void
   1204   1.97    bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1205   1.73       jym {
   1206   1.73       jym #ifdef PAE
   1207   1.99      yamt 	struct cpu_info *ci = curcpu();
   1208  1.116       nat 	bool interrupts_enabled;
   1209   1.99      yamt 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1210   1.99      yamt 	int i;
   1211   1.73       jym 
   1212   1.99      yamt 	/*
   1213   1.99      yamt 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1214   1.99      yamt 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1215   1.99      yamt 	 * reload cr3.
   1216   1.99      yamt 	 */
   1217  1.116       nat 	interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
   1218  1.116       nat 	if (interrupts_enabled)
   1219  1.116       nat 		x86_disable_intr();
   1220  1.116       nat 
   1221   1.73       jym 	for (i = 0 ; i < PDP_SIZE; i++) {
   1222   1.73       jym 		l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
   1223   1.73       jym 	}
   1224  1.134      maxv 
   1225  1.116       nat 	if (interrupts_enabled)
   1226  1.116       nat 		x86_enable_intr();
   1227   1.73       jym 	tlbflush();
   1228   1.73       jym #else /* PAE */
   1229   1.73       jym 	lcr3(pmap_pdirpa(pmap, 0));
   1230   1.73       jym #endif /* PAE */
   1231   1.73       jym }
   1232   1.91    cherry 
   1233   1.91    cherry /*
   1234   1.91    cherry  * Notify all other cpus to halt.
   1235   1.91    cherry  */
   1236   1.91    cherry 
   1237   1.91    cherry void
   1238   1.92    cherry cpu_broadcast_halt(void)
   1239   1.91    cherry {
   1240   1.91    cherry 	x86_broadcast_ipi(X86_IPI_HALT);
   1241   1.91    cherry }
   1242   1.91    cherry 
   1243   1.91    cherry /*
   1244   1.91    cherry  * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
   1245   1.91    cherry  */
   1246   1.91    cherry 
   1247   1.91    cherry void
   1248   1.91    cherry cpu_kick(struct cpu_info *ci)
   1249   1.91    cherry {
   1250   1.91    cherry 	x86_send_ipi(ci, 0);
   1251   1.91    cherry }
   1252