cpu.c revision 1.137 1 1.137 maxv /* $NetBSD: cpu.c,v 1.137 2017/10/17 06:58:15 maxv Exp $ */
2 1.2 ad
3 1.134 maxv /*
4 1.98 rmind * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.137 maxv __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.137 2017/10/17 06:58:15 maxv Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.101 kiyohara #include "opt_multiprocessor.h"
71 1.2 ad
72 1.2 ad #include "lapic.h"
73 1.2 ad #include "ioapic.h"
74 1.2 ad
75 1.2 ad #include <sys/param.h>
76 1.2 ad #include <sys/proc.h>
77 1.2 ad #include <sys/systm.h>
78 1.2 ad #include <sys/device.h>
79 1.61 cegger #include <sys/kmem.h>
80 1.9 ad #include <sys/cpu.h>
81 1.93 jruoho #include <sys/cpufreq.h>
82 1.98 rmind #include <sys/idle.h>
83 1.9 ad #include <sys/atomic.h>
84 1.35 ad #include <sys/reboot.h>
85 1.2 ad
86 1.78 uebayasi #include <uvm/uvm.h>
87 1.2 ad
88 1.102 pgoyette #include "acpica.h" /* for NACPICA, for mp_verbose */
89 1.102 pgoyette
90 1.2 ad #include <machine/cpufunc.h>
91 1.2 ad #include <machine/cpuvar.h>
92 1.2 ad #include <machine/pmap.h>
93 1.2 ad #include <machine/vmparam.h>
94 1.102 pgoyette #if defined(MULTIPROCESSOR)
95 1.2 ad #include <machine/mpbiosvar.h>
96 1.101 kiyohara #endif
97 1.102 pgoyette #include <machine/mpconfig.h> /* for mp_verbose */
98 1.2 ad #include <machine/pcb.h>
99 1.2 ad #include <machine/specialreg.h>
100 1.2 ad #include <machine/segments.h>
101 1.2 ad #include <machine/gdt.h>
102 1.2 ad #include <machine/mtrr.h>
103 1.2 ad #include <machine/pio.h>
104 1.38 ad #include <machine/cpu_counter.h>
105 1.2 ad
106 1.109 dsl #include <x86/fpu.h>
107 1.109 dsl
108 1.101 kiyohara #if NLAPIC > 0
109 1.2 ad #include <machine/apicvar.h>
110 1.2 ad #include <machine/i82489reg.h>
111 1.2 ad #include <machine/i82489var.h>
112 1.101 kiyohara #endif
113 1.2 ad
114 1.2 ad #include <dev/ic/mc146818reg.h>
115 1.2 ad #include <i386/isa/nvram.h>
116 1.2 ad #include <dev/isa/isareg.h>
117 1.2 ad
118 1.38 ad #include "tsc.h"
119 1.38 ad
120 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
121 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
122 1.87 jruoho static void cpu_defer(device_t);
123 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
124 1.87 jruoho static void cpu_childdetached(device_t, device_t);
125 1.96 jruoho static bool cpu_stop(device_t);
126 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
127 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
128 1.79 jruoho static bool cpu_shutdown(device_t, int);
129 1.12 jmcneill
130 1.2 ad struct cpu_softc {
131 1.23 cube device_t sc_dev; /* device tree glue */
132 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
133 1.20 jmcneill bool sc_wasonline;
134 1.2 ad };
135 1.2 ad
136 1.101 kiyohara #ifdef MULTIPROCESSOR
137 1.120 msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
138 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
139 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
140 1.2 ad mp_cpu_start_cleanup };
141 1.101 kiyohara #endif
142 1.2 ad
143 1.2 ad
144 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
145 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
146 1.2 ad
147 1.2 ad /*
148 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
149 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
150 1.2 ad * point at it.
151 1.2 ad */
152 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 1.2 ad .ci_dev = 0,
154 1.2 ad .ci_self = &cpu_info_primary,
155 1.2 ad .ci_idepth = -1,
156 1.2 ad .ci_curlwp = &lwp0,
157 1.43 ad .ci_curldt = -1,
158 1.2 ad };
159 1.2 ad
160 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
161 1.2 ad
162 1.2 ad #ifdef i386
163 1.134 maxv void cpu_set_tss_gates(struct cpu_info *);
164 1.2 ad #endif
165 1.2 ad
166 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
167 1.12 jmcneill
168 1.122 maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
169 1.117 maxv /* [0] basic features cpuid.1:%edx
170 1.117 maxv * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
171 1.117 maxv * [2] extended features cpuid:80000001:%edx
172 1.117 maxv * [3] extended features cpuid:80000001:%ecx
173 1.117 maxv * [4] VIA padlock features
174 1.117 maxv * [5] structured extended features cpuid.7:%ebx
175 1.117 maxv * [6] structured extended features cpuid.7:%ecx
176 1.117 maxv */
177 1.70 jym
178 1.101 kiyohara #ifdef MULTIPROCESSOR
179 1.12 jmcneill bool x86_mp_online;
180 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
181 1.101 kiyohara #endif
182 1.101 kiyohara #if NLAPIC > 0
183 1.14 joerg static vaddr_t cmos_data_mapping;
184 1.101 kiyohara #endif
185 1.45 ad struct cpu_info *cpu_starting;
186 1.2 ad
187 1.101 kiyohara #ifdef MULTIPROCESSOR
188 1.2 ad void cpu_hatch(void *);
189 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
190 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
191 1.101 kiyohara #endif
192 1.101 kiyohara #if NLAPIC > 0
193 1.136 maxv static void cpu_copy_trampoline(paddr_t);
194 1.101 kiyohara #endif
195 1.2 ad
196 1.2 ad /*
197 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
198 1.2 ad * the local APIC on the boot processor has been mapped.
199 1.2 ad *
200 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
201 1.2 ad */
202 1.101 kiyohara #if NLAPIC > 0
203 1.2 ad void
204 1.9 ad cpu_init_first(void)
205 1.2 ad {
206 1.2 ad
207 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
208 1.14 joerg
209 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
210 1.14 joerg if (cmos_data_mapping == 0)
211 1.14 joerg panic("No KVA for page 0");
212 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
213 1.14 joerg pmap_update(pmap_kernel());
214 1.2 ad }
215 1.101 kiyohara #endif
216 1.2 ad
217 1.87 jruoho static int
218 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
219 1.2 ad {
220 1.2 ad
221 1.2 ad return 1;
222 1.2 ad }
223 1.2 ad
224 1.2 ad static void
225 1.2 ad cpu_vm_init(struct cpu_info *ci)
226 1.2 ad {
227 1.2 ad int ncolors = 2, i;
228 1.2 ad
229 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
230 1.2 ad struct x86_cache_info *cai;
231 1.2 ad int tcolors;
232 1.2 ad
233 1.2 ad cai = &ci->ci_cinfo[i];
234 1.2 ad
235 1.2 ad tcolors = atop(cai->cai_totalsize);
236 1.2 ad switch(cai->cai_associativity) {
237 1.2 ad case 0xff:
238 1.2 ad tcolors = 1; /* fully associative */
239 1.2 ad break;
240 1.2 ad case 0:
241 1.2 ad case 1:
242 1.2 ad break;
243 1.2 ad default:
244 1.2 ad tcolors /= cai->cai_associativity;
245 1.2 ad }
246 1.2 ad ncolors = max(ncolors, tcolors);
247 1.32 tls /*
248 1.32 tls * If the desired number of colors is not a power of
249 1.32 tls * two, it won't be good. Find the greatest power of
250 1.32 tls * two which is an even divisor of the number of colors,
251 1.32 tls * to preserve even coloring of pages.
252 1.32 tls */
253 1.32 tls if (ncolors & (ncolors - 1) ) {
254 1.32 tls int try, picked = 1;
255 1.32 tls for (try = 1; try < ncolors; try *= 2) {
256 1.32 tls if (ncolors % try == 0) picked = try;
257 1.32 tls }
258 1.32 tls if (picked == 1) {
259 1.32 tls panic("desired number of cache colors %d is "
260 1.32 tls " > 1, but not even!", ncolors);
261 1.32 tls }
262 1.32 tls ncolors = picked;
263 1.32 tls }
264 1.2 ad }
265 1.2 ad
266 1.2 ad /*
267 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
268 1.94 mrg * re-color our pages.
269 1.2 ad */
270 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
271 1.2 ad uvm_page_recolor(ncolors);
272 1.98 rmind
273 1.98 rmind pmap_tlb_cpu_init(ci);
274 1.123 maxv #ifndef __HAVE_DIRECT_MAP
275 1.123 maxv pmap_vpage_cpu_init(ci);
276 1.123 maxv #endif
277 1.2 ad }
278 1.2 ad
279 1.87 jruoho static void
280 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
281 1.2 ad {
282 1.23 cube struct cpu_softc *sc = device_private(self);
283 1.2 ad struct cpu_attach_args *caa = aux;
284 1.2 ad struct cpu_info *ci;
285 1.21 ad uintptr_t ptr;
286 1.101 kiyohara #if NLAPIC > 0
287 1.2 ad int cpunum = caa->cpu_number;
288 1.101 kiyohara #endif
289 1.51 ad static bool again;
290 1.2 ad
291 1.23 cube sc->sc_dev = self;
292 1.23 cube
293 1.98 rmind if (ncpu == maxcpus) {
294 1.98 rmind #ifndef _LP64
295 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
296 1.98 rmind #else
297 1.98 rmind aprint_error(": too many CPUs\n");
298 1.98 rmind #endif
299 1.48 ad return;
300 1.48 ad }
301 1.48 ad
302 1.2 ad /*
303 1.2 ad * If we're an Application Processor, allocate a cpu_info
304 1.2 ad * structure, otherwise use the primary's.
305 1.2 ad */
306 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
307 1.36 ad if ((boothowto & RB_MD1) != 0) {
308 1.35 ad aprint_error(": multiprocessor boot disabled\n");
309 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
310 1.56 jmcneill aprint_error_dev(self,
311 1.56 jmcneill "couldn't establish power handler\n");
312 1.35 ad return;
313 1.35 ad }
314 1.2 ad aprint_naive(": Application Processor\n");
315 1.72 rmind ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
316 1.61 cegger KM_SLEEP);
317 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
318 1.43 ad ci->ci_curldt = -1;
319 1.2 ad } else {
320 1.2 ad aprint_naive(": %s Processor\n",
321 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
322 1.2 ad ci = &cpu_info_primary;
323 1.101 kiyohara #if NLAPIC > 0
324 1.2 ad if (cpunum != lapic_cpu_number()) {
325 1.51 ad /* XXX should be done earlier. */
326 1.39 ad uint32_t reg;
327 1.39 ad aprint_verbose("\n");
328 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
329 1.47 ad " instead of at expected %d", lapic_cpu_number(),
330 1.23 cube cpunum);
331 1.125 nonaka reg = lapic_readreg(LAPIC_ID);
332 1.125 nonaka lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
333 1.39 ad (cpunum << LAPIC_ID_SHIFT));
334 1.2 ad }
335 1.47 ad if (cpunum != lapic_cpu_number()) {
336 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
337 1.47 ad }
338 1.101 kiyohara #endif
339 1.2 ad }
340 1.2 ad
341 1.2 ad ci->ci_self = ci;
342 1.2 ad sc->sc_info = ci;
343 1.2 ad ci->ci_dev = self;
344 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
345 1.42 ad ci->ci_cpuid = caa->cpu_number;
346 1.2 ad ci->ci_func = caa->cpu_func;
347 1.112 msaitoh aprint_normal("\n");
348 1.2 ad
349 1.55 ad /* Must be before mi_cpu_attach(). */
350 1.55 ad cpu_vm_init(ci);
351 1.55 ad
352 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
353 1.2 ad int error;
354 1.2 ad
355 1.2 ad error = mi_cpu_attach(ci);
356 1.2 ad if (error != 0) {
357 1.47 ad aprint_error_dev(self,
358 1.30 cegger "mi_cpu_attach failed with %d\n", error);
359 1.2 ad return;
360 1.2 ad }
361 1.15 yamt cpu_init_tss(ci);
362 1.2 ad } else {
363 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
364 1.2 ad }
365 1.2 ad
366 1.2 ad pmap_reference(pmap_kernel());
367 1.2 ad ci->ci_pmap = pmap_kernel();
368 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
369 1.2 ad
370 1.51 ad /*
371 1.51 ad * Boot processor may not be attached first, but the below
372 1.51 ad * must be done to allow booting other processors.
373 1.51 ad */
374 1.51 ad if (!again) {
375 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
376 1.51 ad /* Basic init. */
377 1.2 ad cpu_intr_init(ci);
378 1.40 ad cpu_get_tsc_freq(ci);
379 1.2 ad cpu_init(ci);
380 1.134 maxv #ifdef i386
381 1.2 ad cpu_set_tss_gates(ci);
382 1.134 maxv #endif
383 1.2 ad pmap_cpu_init_late(ci);
384 1.101 kiyohara #if NLAPIC > 0
385 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
386 1.51 ad /* Enable lapic. */
387 1.51 ad lapic_enable();
388 1.51 ad lapic_set_lvt();
389 1.51 ad lapic_calibrate_timer(ci);
390 1.51 ad }
391 1.101 kiyohara #endif
392 1.51 ad /* Make sure DELAY() is initialized. */
393 1.51 ad DELAY(1);
394 1.51 ad again = true;
395 1.51 ad }
396 1.51 ad
397 1.51 ad /* further PCB init done later. */
398 1.51 ad
399 1.51 ad switch (caa->cpu_role) {
400 1.51 ad case CPU_ROLE_SP:
401 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
402 1.51 ad cpu_identify(ci);
403 1.53 ad x86_errata();
404 1.37 joerg x86_cpu_idle_init();
405 1.2 ad break;
406 1.2 ad
407 1.2 ad case CPU_ROLE_BP:
408 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
409 1.40 ad cpu_identify(ci);
410 1.53 ad x86_errata();
411 1.37 joerg x86_cpu_idle_init();
412 1.2 ad break;
413 1.2 ad
414 1.101 kiyohara #ifdef MULTIPROCESSOR
415 1.2 ad case CPU_ROLE_AP:
416 1.2 ad /*
417 1.2 ad * report on an AP
418 1.2 ad */
419 1.2 ad cpu_intr_init(ci);
420 1.2 ad gdt_alloc_cpu(ci);
421 1.134 maxv #ifdef i386
422 1.2 ad cpu_set_tss_gates(ci);
423 1.134 maxv #endif
424 1.2 ad pmap_cpu_init_late(ci);
425 1.2 ad cpu_start_secondary(ci);
426 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
427 1.59 cegger struct cpu_info *tmp;
428 1.59 cegger
429 1.40 ad cpu_identify(ci);
430 1.59 cegger tmp = cpu_info_list;
431 1.59 cegger while (tmp->ci_next)
432 1.59 cegger tmp = tmp->ci_next;
433 1.59 cegger
434 1.59 cegger tmp->ci_next = ci;
435 1.2 ad }
436 1.2 ad break;
437 1.101 kiyohara #endif
438 1.2 ad
439 1.2 ad default:
440 1.2 ad panic("unknown processor type??\n");
441 1.2 ad }
442 1.51 ad
443 1.71 cegger pat_init(ci);
444 1.2 ad
445 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
446 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
447 1.12 jmcneill
448 1.101 kiyohara #ifdef MULTIPROCESSOR
449 1.2 ad if (mp_verbose) {
450 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
451 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
452 1.2 ad
453 1.47 ad aprint_verbose_dev(self,
454 1.28 cegger "idle lwp at %p, idle sp at %p\n",
455 1.28 cegger l,
456 1.2 ad #ifdef i386
457 1.65 rmind (void *)pcb->pcb_esp
458 1.2 ad #else
459 1.65 rmind (void *)pcb->pcb_rsp
460 1.2 ad #endif
461 1.2 ad );
462 1.2 ad }
463 1.101 kiyohara #endif
464 1.81 jmcneill
465 1.89 jruoho /*
466 1.89 jruoho * Postpone the "cpufeaturebus" scan.
467 1.89 jruoho * It is safe to scan the pseudo-bus
468 1.89 jruoho * only after all CPUs have attached.
469 1.89 jruoho */
470 1.87 jruoho (void)config_defer(self, cpu_defer);
471 1.87 jruoho }
472 1.87 jruoho
473 1.87 jruoho static void
474 1.87 jruoho cpu_defer(device_t self)
475 1.87 jruoho {
476 1.81 jmcneill cpu_rescan(self, NULL, NULL);
477 1.81 jmcneill }
478 1.81 jmcneill
479 1.87 jruoho static int
480 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
481 1.81 jmcneill {
482 1.83 jruoho struct cpu_softc *sc = device_private(self);
483 1.81 jmcneill struct cpufeature_attach_args cfaa;
484 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
485 1.81 jmcneill
486 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
487 1.81 jmcneill cfaa.ci = ci;
488 1.81 jmcneill
489 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
490 1.83 jruoho if (ci->ci_frequency == NULL) {
491 1.86 jruoho cfaa.name = "frequency";
492 1.84 jruoho ci->ci_frequency = config_found_ia(self,
493 1.84 jruoho "cpufeaturebus", &cfaa, NULL);
494 1.84 jruoho }
495 1.84 jruoho
496 1.81 jmcneill if (ci->ci_padlock == NULL) {
497 1.81 jmcneill cfaa.name = "padlock";
498 1.81 jmcneill ci->ci_padlock = config_found_ia(self,
499 1.81 jmcneill "cpufeaturebus", &cfaa, NULL);
500 1.81 jmcneill }
501 1.82 jruoho
502 1.86 jruoho if (ci->ci_temperature == NULL) {
503 1.86 jruoho cfaa.name = "temperature";
504 1.86 jruoho ci->ci_temperature = config_found_ia(self,
505 1.85 jruoho "cpufeaturebus", &cfaa, NULL);
506 1.85 jruoho }
507 1.95 jmcneill
508 1.95 jmcneill if (ci->ci_vm == NULL) {
509 1.95 jmcneill cfaa.name = "vm";
510 1.95 jmcneill ci->ci_vm = config_found_ia(self,
511 1.95 jmcneill "cpufeaturebus", &cfaa, NULL);
512 1.95 jmcneill }
513 1.81 jmcneill }
514 1.81 jmcneill
515 1.81 jmcneill return 0;
516 1.81 jmcneill }
517 1.81 jmcneill
518 1.87 jruoho static void
519 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
520 1.81 jmcneill {
521 1.81 jmcneill struct cpu_softc *sc = device_private(self);
522 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
523 1.81 jmcneill
524 1.83 jruoho if (ci->ci_frequency == child)
525 1.83 jruoho ci->ci_frequency = NULL;
526 1.82 jruoho
527 1.81 jmcneill if (ci->ci_padlock == child)
528 1.81 jmcneill ci->ci_padlock = NULL;
529 1.83 jruoho
530 1.86 jruoho if (ci->ci_temperature == child)
531 1.86 jruoho ci->ci_temperature = NULL;
532 1.95 jmcneill
533 1.95 jmcneill if (ci->ci_vm == child)
534 1.95 jmcneill ci->ci_vm = NULL;
535 1.2 ad }
536 1.2 ad
537 1.2 ad /*
538 1.2 ad * Initialize the processor appropriately.
539 1.2 ad */
540 1.2 ad
541 1.2 ad void
542 1.9 ad cpu_init(struct cpu_info *ci)
543 1.2 ad {
544 1.113 christos uint32_t cr4 = 0;
545 1.2 ad
546 1.2 ad lcr0(rcr0() | CR0_WP);
547 1.2 ad
548 1.2 ad /*
549 1.2 ad * On a P6 or above, enable global TLB caching if the
550 1.2 ad * hardware supports it.
551 1.2 ad */
552 1.70 jym if (cpu_feature[0] & CPUID_PGE)
553 1.110 dsl cr4 |= CR4_PGE; /* enable global TLB caching */
554 1.2 ad
555 1.2 ad /*
556 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
557 1.2 ad */
558 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
559 1.110 dsl cr4 |= CR4_OSFXSR;
560 1.2 ad
561 1.2 ad /*
562 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
563 1.2 ad */
564 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
565 1.110 dsl cr4 |= CR4_OSXMMEXCPT;
566 1.2 ad }
567 1.2 ad
568 1.110 dsl /* If xsave is supported, enable it */
569 1.110 dsl if (cpu_feature[1] & CPUID2_XSAVE)
570 1.110 dsl cr4 |= CR4_OSXSAVE;
571 1.110 dsl
572 1.118 maxv /* If SMEP is supported, enable it */
573 1.118 maxv if (cpu_feature[5] & CPUID_SEF_SMEP)
574 1.118 maxv cr4 |= CR4_SMEP;
575 1.118 maxv
576 1.137 maxv #ifdef amd64
577 1.137 maxv /* If SMAP is supported, enable it */
578 1.137 maxv if (cpu_feature[5] & CPUID_SEF_SMAP)
579 1.137 maxv cr4 |= CR4_SMAP;
580 1.137 maxv #endif
581 1.137 maxv
582 1.113 christos if (cr4) {
583 1.113 christos cr4 |= rcr4();
584 1.113 christos lcr4(cr4);
585 1.113 christos }
586 1.110 dsl
587 1.110 dsl /* If xsave is enabled, enable all fpu features */
588 1.110 dsl if (cr4 & CR4_OSXSAVE)
589 1.110 dsl wrxcr(0, x86_xsave_features & XCR0_FPU);
590 1.110 dsl
591 1.2 ad #ifdef MTRR
592 1.2 ad /*
593 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
594 1.2 ad */
595 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
596 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
597 1.2 ad i686_mtrr_init_first();
598 1.2 ad mtrr_init_cpu(ci);
599 1.2 ad }
600 1.2 ad
601 1.2 ad #ifdef i386
602 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
603 1.2 ad /*
604 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
605 1.2 ad */
606 1.106 msaitoh if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
607 1.106 msaitoh if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
608 1.106 msaitoh (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
609 1.106 msaitoh CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
610 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
611 1.2 ad k6_mtrr_init_first();
612 1.2 ad mtrr_init_cpu(ci);
613 1.2 ad }
614 1.2 ad }
615 1.2 ad }
616 1.2 ad #endif /* i386 */
617 1.2 ad #endif /* MTRR */
618 1.2 ad
619 1.38 ad if (ci != &cpu_info_primary) {
620 1.38 ad /* Synchronize TSC again, and check for drift. */
621 1.38 ad wbinvd();
622 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
623 1.38 ad tsc_sync_ap(ci);
624 1.38 ad } else {
625 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
626 1.38 ad }
627 1.2 ad }
628 1.2 ad
629 1.101 kiyohara #ifdef MULTIPROCESSOR
630 1.2 ad void
631 1.12 jmcneill cpu_boot_secondary_processors(void)
632 1.2 ad {
633 1.2 ad struct cpu_info *ci;
634 1.100 chs kcpuset_t *cpus;
635 1.2 ad u_long i;
636 1.2 ad
637 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
638 1.60 ad x86_patch(false);
639 1.5 ad
640 1.100 chs kcpuset_create(&cpus, true);
641 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
642 1.100 chs for (i = 0; i < maxcpus; i++) {
643 1.57 ad ci = cpu_lookup(i);
644 1.2 ad if (ci == NULL)
645 1.2 ad continue;
646 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
647 1.2 ad continue;
648 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
649 1.2 ad continue;
650 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
651 1.2 ad continue;
652 1.2 ad cpu_boot_secondary(ci);
653 1.100 chs kcpuset_set(cpus, cpu_index(ci));
654 1.2 ad }
655 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
656 1.100 chs ;
657 1.100 chs kcpuset_destroy(cpus);
658 1.2 ad
659 1.2 ad x86_mp_online = true;
660 1.38 ad
661 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
662 1.38 ad tsc_tc_init();
663 1.55 ad
664 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
665 1.70 jym vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
666 1.2 ad }
667 1.101 kiyohara #endif
668 1.2 ad
669 1.2 ad static void
670 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
671 1.2 ad {
672 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
673 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
674 1.2 ad
675 1.2 ad pcb->pcb_cr0 = rcr0();
676 1.2 ad }
677 1.2 ad
678 1.2 ad void
679 1.12 jmcneill cpu_init_idle_lwps(void)
680 1.2 ad {
681 1.2 ad struct cpu_info *ci;
682 1.2 ad u_long i;
683 1.2 ad
684 1.54 ad for (i = 0; i < maxcpus; i++) {
685 1.57 ad ci = cpu_lookup(i);
686 1.2 ad if (ci == NULL)
687 1.2 ad continue;
688 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
689 1.2 ad continue;
690 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
691 1.2 ad continue;
692 1.2 ad cpu_init_idle_lwp(ci);
693 1.2 ad }
694 1.2 ad }
695 1.2 ad
696 1.101 kiyohara #ifdef MULTIPROCESSOR
697 1.2 ad void
698 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
699 1.2 ad {
700 1.136 maxv paddr_t mp_pdirpa;
701 1.38 ad u_long psl;
702 1.2 ad int i;
703 1.2 ad
704 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
705 1.136 maxv cpu_copy_trampoline(mp_pdirpa);
706 1.136 maxv
707 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
708 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
709 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
710 1.25 ad return;
711 1.45 ad }
712 1.2 ad
713 1.2 ad /*
714 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
715 1.50 ad * initial gate and allows the AP to start soft initialization.
716 1.2 ad */
717 1.50 ad KASSERT(cpu_starting == NULL);
718 1.50 ad cpu_starting = ci;
719 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
720 1.11 ad i8254_delay(10);
721 1.2 ad }
722 1.38 ad
723 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
724 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
725 1.2 ad #if defined(MPDEBUG) && defined(DDB)
726 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
727 1.2 ad Debugger();
728 1.2 ad #endif
729 1.38 ad } else {
730 1.38 ad /*
731 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
732 1.68 jym * twice to try and minimize possible cache effects. Disable
733 1.68 jym * interrupts to try and rule out any external interference.
734 1.38 ad */
735 1.38 ad psl = x86_read_psl();
736 1.38 ad x86_disable_intr();
737 1.38 ad wbinvd();
738 1.38 ad tsc_sync_bp(ci);
739 1.38 ad x86_write_psl(psl);
740 1.2 ad }
741 1.2 ad
742 1.2 ad CPU_START_CLEANUP(ci);
743 1.45 ad cpu_starting = NULL;
744 1.2 ad }
745 1.2 ad
746 1.2 ad void
747 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
748 1.2 ad {
749 1.38 ad int64_t drift;
750 1.38 ad u_long psl;
751 1.2 ad int i;
752 1.2 ad
753 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
754 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
755 1.11 ad i8254_delay(10);
756 1.2 ad }
757 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
758 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
759 1.2 ad #if defined(MPDEBUG) && defined(DDB)
760 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
761 1.2 ad Debugger();
762 1.2 ad #endif
763 1.38 ad } else {
764 1.38 ad /* Synchronize TSC again, check for drift. */
765 1.38 ad drift = ci->ci_data.cpu_cc_skew;
766 1.38 ad psl = x86_read_psl();
767 1.38 ad x86_disable_intr();
768 1.38 ad wbinvd();
769 1.38 ad tsc_sync_bp(ci);
770 1.38 ad x86_write_psl(psl);
771 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
772 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
773 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
774 1.38 ad tsc_sync_drift(drift);
775 1.2 ad }
776 1.2 ad }
777 1.2 ad
778 1.2 ad /*
779 1.117 maxv * The CPU ends up here when it's ready to run.
780 1.2 ad * This is called from code in mptramp.s; at this point, we are running
781 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
782 1.2 ad * this processor will enter the idle loop and start looking for work.
783 1.2 ad */
784 1.2 ad void
785 1.2 ad cpu_hatch(void *v)
786 1.2 ad {
787 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
788 1.65 rmind struct pcb *pcb;
789 1.130 kre int s, i;
790 1.2 ad
791 1.12 jmcneill cpu_init_msrs(ci, true);
792 1.40 ad cpu_probe(ci);
793 1.46 ad
794 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
795 1.134 maxv /* cpu_get_tsc_freq(ci); */
796 1.38 ad
797 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
798 1.38 ad
799 1.38 ad /*
800 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
801 1.38 ad * to try and minimize possible cache effects. Note that interrupts
802 1.38 ad * are off at this point.
803 1.38 ad */
804 1.38 ad wbinvd();
805 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
806 1.38 ad tsc_sync_ap(ci);
807 1.38 ad
808 1.38 ad /*
809 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
810 1.38 ad * in order to make the TSC drift as much as possible. so that
811 1.134 maxv * we can detect it later. If not available, try 'pause'.
812 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
813 1.38 ad */
814 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
815 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
816 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
817 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
818 1.38 ad continue;
819 1.38 ad }
820 1.38 ad x86_mwait(0, 0);
821 1.38 ad } else {
822 1.131 pgoyette /*
823 1.131 pgoyette * XXX The loop repetition count could be a lot higher, but
824 1.131 pgoyette * XXX currently qemu emulator takes a _very_long_time_ to
825 1.131 pgoyette * XXX execute the pause instruction. So for now, use a low
826 1.131 pgoyette * XXX value to allow the cpu to hatch before timing out.
827 1.131 pgoyette */
828 1.131 pgoyette for (i = 50; i != 0; i--) {
829 1.127 pgoyette x86_pause();
830 1.127 pgoyette }
831 1.38 ad }
832 1.6 ad }
833 1.5 ad
834 1.26 cegger /* Because the text may have been patched in x86_patch(). */
835 1.5 ad wbinvd();
836 1.5 ad x86_flush();
837 1.88 rmind tlbflushg();
838 1.5 ad
839 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
840 1.2 ad
841 1.73 jym #ifdef PAE
842 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
843 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
844 1.73 jym l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
845 1.73 jym }
846 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
847 1.73 jym #else
848 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
849 1.73 jym #endif
850 1.73 jym
851 1.65 rmind pcb = lwp_getpcb(curlwp);
852 1.73 jym pcb->pcb_cr3 = rcr3();
853 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
854 1.65 rmind lcr0(pcb->pcb_cr0);
855 1.65 rmind
856 1.2 ad cpu_init_idt();
857 1.8 ad gdt_init_cpu(ci);
858 1.111 joerg #if NLAPIC > 0
859 1.8 ad lapic_enable();
860 1.2 ad lapic_set_lvt();
861 1.8 ad lapic_initclocks();
862 1.111 joerg #endif
863 1.2 ad
864 1.2 ad fpuinit(ci);
865 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
866 1.15 yamt ltr(ci->ci_tss_sel);
867 1.2 ad
868 1.2 ad cpu_init(ci);
869 1.7 ad cpu_get_tsc_freq(ci);
870 1.2 ad
871 1.2 ad s = splhigh();
872 1.124 nonaka lapic_write_tpri(0);
873 1.3 ad x86_enable_intr();
874 1.2 ad splx(s);
875 1.6 ad x86_errata();
876 1.2 ad
877 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
878 1.98 rmind
879 1.98 rmind idle_loop(NULL);
880 1.98 rmind KASSERT(false);
881 1.2 ad }
882 1.101 kiyohara #endif
883 1.2 ad
884 1.2 ad #if defined(DDB)
885 1.2 ad
886 1.2 ad #include <ddb/db_output.h>
887 1.2 ad #include <machine/db_machdep.h>
888 1.2 ad
889 1.2 ad /*
890 1.2 ad * Dump CPU information from ddb.
891 1.2 ad */
892 1.2 ad void
893 1.2 ad cpu_debug_dump(void)
894 1.2 ad {
895 1.2 ad struct cpu_info *ci;
896 1.2 ad CPU_INFO_ITERATOR cii;
897 1.2 ad
898 1.107 christos db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
899 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
900 1.107 christos db_printf("%p %s %ld %x %x %10p %10p\n",
901 1.2 ad ci,
902 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
903 1.2 ad (long)ci->ci_cpuid,
904 1.2 ad ci->ci_flags, ci->ci_ipis,
905 1.107 christos ci->ci_curlwp,
906 1.107 christos ci->ci_fpcurlwp);
907 1.2 ad }
908 1.2 ad }
909 1.2 ad #endif
910 1.2 ad
911 1.101 kiyohara #if NLAPIC > 0
912 1.2 ad static void
913 1.136 maxv cpu_copy_trampoline(paddr_t pdir_pa)
914 1.2 ad {
915 1.136 maxv extern uint32_t nox_flag;
916 1.2 ad extern u_char cpu_spinup_trampoline[];
917 1.2 ad extern u_char cpu_spinup_trampoline_end[];
918 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
919 1.136 maxv struct {
920 1.136 maxv uint32_t large;
921 1.136 maxv uint32_t nox;
922 1.136 maxv uint32_t pdir;
923 1.136 maxv } smp_data;
924 1.136 maxv CTASSERT(sizeof(smp_data) == 3 * 4);
925 1.136 maxv
926 1.136 maxv smp_data.large = (pmap_largepages != 0);
927 1.136 maxv smp_data.nox = nox_flag;
928 1.136 maxv smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
929 1.12 jmcneill
930 1.136 maxv /* Enter the physical address */
931 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
932 1.12 jmcneill UVM_KMF_VAONLY);
933 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
934 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
935 1.2 ad pmap_update(pmap_kernel());
936 1.136 maxv
937 1.136 maxv /* Copy boot code */
938 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
939 1.2 ad cpu_spinup_trampoline,
940 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
941 1.12 jmcneill
942 1.136 maxv /* Copy smp_data at the end */
943 1.136 maxv memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
944 1.136 maxv &smp_data, sizeof(smp_data));
945 1.136 maxv
946 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
947 1.12 jmcneill pmap_update(pmap_kernel());
948 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
949 1.2 ad }
950 1.101 kiyohara #endif
951 1.2 ad
952 1.101 kiyohara #ifdef MULTIPROCESSOR
953 1.2 ad int
954 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
955 1.2 ad {
956 1.44 ad unsigned short dwordptr[2];
957 1.2 ad int error;
958 1.14 joerg
959 1.14 joerg /*
960 1.14 joerg * Bootstrap code must be addressable in real mode
961 1.14 joerg * and it must be page aligned.
962 1.14 joerg */
963 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
964 1.2 ad
965 1.2 ad /*
966 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
967 1.2 ad */
968 1.2 ad
969 1.2 ad outb(IO_RTC, NVRAM_RESET);
970 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
971 1.2 ad
972 1.2 ad /*
973 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
974 1.2 ad * to the AP startup code ..."
975 1.2 ad */
976 1.2 ad
977 1.2 ad dwordptr[0] = 0;
978 1.14 joerg dwordptr[1] = target >> 4;
979 1.2 ad
980 1.111 joerg #if NLAPIC > 0
981 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
982 1.111 joerg #endif
983 1.2 ad
984 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
985 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
986 1.25 ad return ENODEV;
987 1.25 ad }
988 1.25 ad
989 1.2 ad /*
990 1.51 ad * ... prior to executing the following sequence:". We'll also add in
991 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
992 1.51 ad * disabled. It may not be able to cope with MP coherency.
993 1.2 ad */
994 1.51 ad wbinvd();
995 1.2 ad
996 1.2 ad if (ci->ci_flags & CPUF_AP) {
997 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
998 1.26 cegger if (error != 0) {
999 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1000 1.50 ad __func__);
1001 1.2 ad return error;
1002 1.25 ad }
1003 1.11 ad i8254_delay(10000);
1004 1.2 ad
1005 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1006 1.26 cegger if (error != 0) {
1007 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1008 1.50 ad __func__);
1009 1.25 ad return error;
1010 1.25 ad }
1011 1.25 ad i8254_delay(200);
1012 1.2 ad
1013 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1014 1.26 cegger if (error != 0) {
1015 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1016 1.50 ad __func__);
1017 1.25 ad return error;
1018 1.2 ad }
1019 1.25 ad i8254_delay(200);
1020 1.2 ad }
1021 1.44 ad
1022 1.2 ad return 0;
1023 1.2 ad }
1024 1.2 ad
1025 1.2 ad void
1026 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1027 1.2 ad {
1028 1.2 ad /*
1029 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1030 1.2 ad */
1031 1.2 ad
1032 1.2 ad outb(IO_RTC, NVRAM_RESET);
1033 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1034 1.2 ad }
1035 1.101 kiyohara #endif
1036 1.2 ad
1037 1.2 ad #ifdef __x86_64__
1038 1.2 ad typedef void (vector)(void);
1039 1.2 ad extern vector Xsyscall, Xsyscall32;
1040 1.70 jym #endif
1041 1.2 ad
1042 1.2 ad void
1043 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1044 1.2 ad {
1045 1.70 jym #ifdef __x86_64__
1046 1.2 ad wrmsr(MSR_STAR,
1047 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1048 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1049 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1050 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1051 1.137 maxv wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_AC);
1052 1.2 ad
1053 1.12 jmcneill if (full) {
1054 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1055 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1056 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1057 1.12 jmcneill }
1058 1.70 jym #endif /* __x86_64__ */
1059 1.2 ad
1060 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1061 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1062 1.2 ad }
1063 1.7 ad
1064 1.107 christos void
1065 1.107 christos cpu_offline_md(void)
1066 1.107 christos {
1067 1.107 christos int s;
1068 1.107 christos
1069 1.107 christos s = splhigh();
1070 1.107 christos fpusave_cpu(true);
1071 1.107 christos splx(s);
1072 1.107 christos }
1073 1.107 christos
1074 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1075 1.12 jmcneill static bool
1076 1.96 jruoho cpu_stop(device_t dv)
1077 1.12 jmcneill {
1078 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1079 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1080 1.18 joerg int err;
1081 1.12 jmcneill
1082 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1083 1.93 jruoho
1084 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1085 1.93 jruoho return true;
1086 1.93 jruoho
1087 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1088 1.12 jmcneill return true;
1089 1.12 jmcneill
1090 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1091 1.17 joerg
1092 1.20 jmcneill if (sc->sc_wasonline) {
1093 1.20 jmcneill mutex_enter(&cpu_lock);
1094 1.58 rmind err = cpu_setstate(ci, false);
1095 1.20 jmcneill mutex_exit(&cpu_lock);
1096 1.79 jruoho
1097 1.93 jruoho if (err != 0)
1098 1.20 jmcneill return false;
1099 1.20 jmcneill }
1100 1.17 joerg
1101 1.17 joerg return true;
1102 1.12 jmcneill }
1103 1.12 jmcneill
1104 1.12 jmcneill static bool
1105 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1106 1.96 jruoho {
1107 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1108 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1109 1.96 jruoho
1110 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1111 1.96 jruoho return true;
1112 1.96 jruoho else {
1113 1.96 jruoho cpufreq_suspend(ci);
1114 1.96 jruoho }
1115 1.96 jruoho
1116 1.96 jruoho return cpu_stop(dv);
1117 1.96 jruoho }
1118 1.96 jruoho
1119 1.96 jruoho static bool
1120 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1121 1.12 jmcneill {
1122 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1123 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1124 1.20 jmcneill int err = 0;
1125 1.12 jmcneill
1126 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1127 1.12 jmcneill return true;
1128 1.93 jruoho
1129 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1130 1.93 jruoho goto out;
1131 1.93 jruoho
1132 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1133 1.93 jruoho goto out;
1134 1.12 jmcneill
1135 1.20 jmcneill if (sc->sc_wasonline) {
1136 1.20 jmcneill mutex_enter(&cpu_lock);
1137 1.58 rmind err = cpu_setstate(ci, true);
1138 1.20 jmcneill mutex_exit(&cpu_lock);
1139 1.20 jmcneill }
1140 1.13 joerg
1141 1.93 jruoho out:
1142 1.93 jruoho if (err != 0)
1143 1.93 jruoho return false;
1144 1.93 jruoho
1145 1.93 jruoho cpufreq_resume(ci);
1146 1.93 jruoho
1147 1.93 jruoho return true;
1148 1.12 jmcneill }
1149 1.12 jmcneill
1150 1.79 jruoho static bool
1151 1.79 jruoho cpu_shutdown(device_t dv, int how)
1152 1.79 jruoho {
1153 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1154 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1155 1.90 dyoung
1156 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1157 1.90 dyoung return false;
1158 1.90 dyoung
1159 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1160 1.96 jruoho return true;
1161 1.96 jruoho
1162 1.96 jruoho return cpu_stop(dv);
1163 1.79 jruoho }
1164 1.79 jruoho
1165 1.7 ad void
1166 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1167 1.7 ad {
1168 1.7 ad uint64_t last_tsc;
1169 1.7 ad
1170 1.70 jym if (cpu_hascounter()) {
1171 1.80 bouyer last_tsc = cpu_counter_serializing();
1172 1.7 ad i8254_delay(100000);
1173 1.80 bouyer ci->ci_data.cpu_cc_freq =
1174 1.80 bouyer (cpu_counter_serializing() - last_tsc) * 10;
1175 1.7 ad }
1176 1.7 ad }
1177 1.37 joerg
1178 1.37 joerg void
1179 1.37 joerg x86_cpu_idle_mwait(void)
1180 1.37 joerg {
1181 1.37 joerg struct cpu_info *ci = curcpu();
1182 1.37 joerg
1183 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1184 1.37 joerg
1185 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1186 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1187 1.37 joerg return;
1188 1.37 joerg }
1189 1.37 joerg x86_mwait(0, 0);
1190 1.37 joerg }
1191 1.37 joerg
1192 1.37 joerg void
1193 1.37 joerg x86_cpu_idle_halt(void)
1194 1.37 joerg {
1195 1.37 joerg struct cpu_info *ci = curcpu();
1196 1.37 joerg
1197 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1198 1.37 joerg
1199 1.37 joerg x86_disable_intr();
1200 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1201 1.37 joerg x86_stihlt();
1202 1.37 joerg } else {
1203 1.37 joerg x86_enable_intr();
1204 1.37 joerg }
1205 1.37 joerg }
1206 1.73 jym
1207 1.73 jym /*
1208 1.73 jym * Loads pmap for the current CPU.
1209 1.73 jym */
1210 1.73 jym void
1211 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1212 1.73 jym {
1213 1.73 jym #ifdef PAE
1214 1.99 yamt struct cpu_info *ci = curcpu();
1215 1.116 nat bool interrupts_enabled;
1216 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1217 1.99 yamt int i;
1218 1.73 jym
1219 1.99 yamt /*
1220 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1221 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1222 1.99 yamt * reload cr3.
1223 1.99 yamt */
1224 1.116 nat interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1225 1.116 nat if (interrupts_enabled)
1226 1.116 nat x86_disable_intr();
1227 1.116 nat
1228 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1229 1.73 jym l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1230 1.73 jym }
1231 1.134 maxv
1232 1.116 nat if (interrupts_enabled)
1233 1.116 nat x86_enable_intr();
1234 1.73 jym tlbflush();
1235 1.73 jym #else /* PAE */
1236 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1237 1.73 jym #endif /* PAE */
1238 1.73 jym }
1239 1.91 cherry
1240 1.91 cherry /*
1241 1.91 cherry * Notify all other cpus to halt.
1242 1.91 cherry */
1243 1.91 cherry
1244 1.91 cherry void
1245 1.92 cherry cpu_broadcast_halt(void)
1246 1.91 cherry {
1247 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1248 1.91 cherry }
1249 1.91 cherry
1250 1.91 cherry /*
1251 1.91 cherry * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1252 1.91 cherry */
1253 1.91 cherry
1254 1.91 cherry void
1255 1.91 cherry cpu_kick(struct cpu_info *ci)
1256 1.91 cherry {
1257 1.91 cherry x86_send_ipi(ci, 0);
1258 1.91 cherry }
1259