cpu.c revision 1.143 1 1.143 maxv /* $NetBSD: cpu.c,v 1.143 2018/01/07 10:16:13 maxv Exp $ */
2 1.2 ad
3 1.134 maxv /*
4 1.98 rmind * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.143 maxv __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.143 2018/01/07 10:16:13 maxv Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.101 kiyohara #include "opt_multiprocessor.h"
71 1.2 ad
72 1.2 ad #include "lapic.h"
73 1.2 ad #include "ioapic.h"
74 1.2 ad
75 1.2 ad #include <sys/param.h>
76 1.2 ad #include <sys/proc.h>
77 1.2 ad #include <sys/systm.h>
78 1.2 ad #include <sys/device.h>
79 1.9 ad #include <sys/cpu.h>
80 1.93 jruoho #include <sys/cpufreq.h>
81 1.98 rmind #include <sys/idle.h>
82 1.9 ad #include <sys/atomic.h>
83 1.35 ad #include <sys/reboot.h>
84 1.2 ad
85 1.78 uebayasi #include <uvm/uvm.h>
86 1.2 ad
87 1.102 pgoyette #include "acpica.h" /* for NACPICA, for mp_verbose */
88 1.102 pgoyette
89 1.2 ad #include <machine/cpufunc.h>
90 1.2 ad #include <machine/cpuvar.h>
91 1.2 ad #include <machine/pmap.h>
92 1.2 ad #include <machine/vmparam.h>
93 1.102 pgoyette #if defined(MULTIPROCESSOR)
94 1.2 ad #include <machine/mpbiosvar.h>
95 1.101 kiyohara #endif
96 1.102 pgoyette #include <machine/mpconfig.h> /* for mp_verbose */
97 1.2 ad #include <machine/pcb.h>
98 1.2 ad #include <machine/specialreg.h>
99 1.2 ad #include <machine/segments.h>
100 1.2 ad #include <machine/gdt.h>
101 1.2 ad #include <machine/mtrr.h>
102 1.2 ad #include <machine/pio.h>
103 1.38 ad #include <machine/cpu_counter.h>
104 1.2 ad
105 1.109 dsl #include <x86/fpu.h>
106 1.109 dsl
107 1.101 kiyohara #if NLAPIC > 0
108 1.2 ad #include <machine/apicvar.h>
109 1.2 ad #include <machine/i82489reg.h>
110 1.2 ad #include <machine/i82489var.h>
111 1.101 kiyohara #endif
112 1.2 ad
113 1.2 ad #include <dev/ic/mc146818reg.h>
114 1.2 ad #include <i386/isa/nvram.h>
115 1.2 ad #include <dev/isa/isareg.h>
116 1.2 ad
117 1.38 ad #include "tsc.h"
118 1.38 ad
119 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
120 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
121 1.87 jruoho static void cpu_defer(device_t);
122 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
123 1.87 jruoho static void cpu_childdetached(device_t, device_t);
124 1.96 jruoho static bool cpu_stop(device_t);
125 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
126 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
127 1.79 jruoho static bool cpu_shutdown(device_t, int);
128 1.12 jmcneill
129 1.2 ad struct cpu_softc {
130 1.23 cube device_t sc_dev; /* device tree glue */
131 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
132 1.20 jmcneill bool sc_wasonline;
133 1.2 ad };
134 1.2 ad
135 1.101 kiyohara #ifdef MULTIPROCESSOR
136 1.120 msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
137 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
138 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 1.2 ad mp_cpu_start_cleanup };
140 1.101 kiyohara #endif
141 1.2 ad
142 1.2 ad
143 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
144 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
145 1.2 ad
146 1.2 ad /*
147 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
148 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
149 1.2 ad * point at it.
150 1.2 ad */
151 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
152 1.2 ad .ci_dev = 0,
153 1.2 ad .ci_self = &cpu_info_primary,
154 1.2 ad .ci_idepth = -1,
155 1.2 ad .ci_curlwp = &lwp0,
156 1.43 ad .ci_curldt = -1,
157 1.2 ad };
158 1.2 ad
159 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
160 1.2 ad
161 1.2 ad #ifdef i386
162 1.134 maxv void cpu_set_tss_gates(struct cpu_info *);
163 1.2 ad #endif
164 1.2 ad
165 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
166 1.12 jmcneill
167 1.122 maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
168 1.117 maxv /* [0] basic features cpuid.1:%edx
169 1.117 maxv * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
170 1.117 maxv * [2] extended features cpuid:80000001:%edx
171 1.117 maxv * [3] extended features cpuid:80000001:%ecx
172 1.117 maxv * [4] VIA padlock features
173 1.117 maxv * [5] structured extended features cpuid.7:%ebx
174 1.117 maxv * [6] structured extended features cpuid.7:%ecx
175 1.117 maxv */
176 1.70 jym
177 1.101 kiyohara #ifdef MULTIPROCESSOR
178 1.12 jmcneill bool x86_mp_online;
179 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
180 1.101 kiyohara #endif
181 1.101 kiyohara #if NLAPIC > 0
182 1.14 joerg static vaddr_t cmos_data_mapping;
183 1.101 kiyohara #endif
184 1.45 ad struct cpu_info *cpu_starting;
185 1.2 ad
186 1.101 kiyohara #ifdef MULTIPROCESSOR
187 1.2 ad void cpu_hatch(void *);
188 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
189 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
190 1.101 kiyohara #endif
191 1.101 kiyohara #if NLAPIC > 0
192 1.136 maxv static void cpu_copy_trampoline(paddr_t);
193 1.101 kiyohara #endif
194 1.2 ad
195 1.2 ad /*
196 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
197 1.2 ad * the local APIC on the boot processor has been mapped.
198 1.2 ad *
199 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
200 1.2 ad */
201 1.101 kiyohara #if NLAPIC > 0
202 1.2 ad void
203 1.9 ad cpu_init_first(void)
204 1.2 ad {
205 1.2 ad
206 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
207 1.14 joerg
208 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
209 1.14 joerg if (cmos_data_mapping == 0)
210 1.14 joerg panic("No KVA for page 0");
211 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
212 1.14 joerg pmap_update(pmap_kernel());
213 1.2 ad }
214 1.101 kiyohara #endif
215 1.2 ad
216 1.87 jruoho static int
217 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
218 1.2 ad {
219 1.2 ad
220 1.2 ad return 1;
221 1.2 ad }
222 1.2 ad
223 1.142 maxv #ifdef __HAVE_PCPU_AREA
224 1.142 maxv void
225 1.142 maxv cpu_pcpuarea_init(struct cpu_info *ci)
226 1.142 maxv {
227 1.142 maxv struct vm_page *pg;
228 1.142 maxv size_t i, npages;
229 1.142 maxv vaddr_t base, va;
230 1.142 maxv paddr_t pa;
231 1.142 maxv
232 1.142 maxv CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
233 1.142 maxv
234 1.142 maxv npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
235 1.142 maxv base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
236 1.142 maxv
237 1.142 maxv for (i = 0; i < npages; i++) {
238 1.142 maxv pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
239 1.142 maxv if (pg == NULL) {
240 1.142 maxv panic("failed to allocate pcpu PA");
241 1.142 maxv }
242 1.142 maxv
243 1.142 maxv va = base + i * PAGE_SIZE;
244 1.142 maxv pa = VM_PAGE_TO_PHYS(pg);
245 1.142 maxv
246 1.142 maxv pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
247 1.142 maxv }
248 1.142 maxv
249 1.142 maxv pmap_update(pmap_kernel());
250 1.142 maxv }
251 1.142 maxv #endif
252 1.142 maxv
253 1.2 ad static void
254 1.2 ad cpu_vm_init(struct cpu_info *ci)
255 1.2 ad {
256 1.2 ad int ncolors = 2, i;
257 1.2 ad
258 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
259 1.2 ad struct x86_cache_info *cai;
260 1.2 ad int tcolors;
261 1.2 ad
262 1.2 ad cai = &ci->ci_cinfo[i];
263 1.2 ad
264 1.2 ad tcolors = atop(cai->cai_totalsize);
265 1.2 ad switch(cai->cai_associativity) {
266 1.2 ad case 0xff:
267 1.2 ad tcolors = 1; /* fully associative */
268 1.2 ad break;
269 1.2 ad case 0:
270 1.2 ad case 1:
271 1.2 ad break;
272 1.2 ad default:
273 1.2 ad tcolors /= cai->cai_associativity;
274 1.2 ad }
275 1.2 ad ncolors = max(ncolors, tcolors);
276 1.32 tls /*
277 1.32 tls * If the desired number of colors is not a power of
278 1.32 tls * two, it won't be good. Find the greatest power of
279 1.32 tls * two which is an even divisor of the number of colors,
280 1.32 tls * to preserve even coloring of pages.
281 1.32 tls */
282 1.32 tls if (ncolors & (ncolors - 1) ) {
283 1.32 tls int try, picked = 1;
284 1.32 tls for (try = 1; try < ncolors; try *= 2) {
285 1.32 tls if (ncolors % try == 0) picked = try;
286 1.32 tls }
287 1.32 tls if (picked == 1) {
288 1.32 tls panic("desired number of cache colors %d is "
289 1.32 tls " > 1, but not even!", ncolors);
290 1.32 tls }
291 1.32 tls ncolors = picked;
292 1.32 tls }
293 1.2 ad }
294 1.2 ad
295 1.2 ad /*
296 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
297 1.94 mrg * re-color our pages.
298 1.2 ad */
299 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
300 1.2 ad uvm_page_recolor(ncolors);
301 1.98 rmind
302 1.98 rmind pmap_tlb_cpu_init(ci);
303 1.123 maxv #ifndef __HAVE_DIRECT_MAP
304 1.123 maxv pmap_vpage_cpu_init(ci);
305 1.123 maxv #endif
306 1.2 ad }
307 1.2 ad
308 1.87 jruoho static void
309 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
310 1.2 ad {
311 1.23 cube struct cpu_softc *sc = device_private(self);
312 1.2 ad struct cpu_attach_args *caa = aux;
313 1.2 ad struct cpu_info *ci;
314 1.21 ad uintptr_t ptr;
315 1.101 kiyohara #if NLAPIC > 0
316 1.2 ad int cpunum = caa->cpu_number;
317 1.101 kiyohara #endif
318 1.51 ad static bool again;
319 1.2 ad
320 1.23 cube sc->sc_dev = self;
321 1.23 cube
322 1.98 rmind if (ncpu == maxcpus) {
323 1.98 rmind #ifndef _LP64
324 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
325 1.98 rmind #else
326 1.98 rmind aprint_error(": too many CPUs\n");
327 1.98 rmind #endif
328 1.48 ad return;
329 1.48 ad }
330 1.48 ad
331 1.2 ad /*
332 1.2 ad * If we're an Application Processor, allocate a cpu_info
333 1.2 ad * structure, otherwise use the primary's.
334 1.2 ad */
335 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
336 1.36 ad if ((boothowto & RB_MD1) != 0) {
337 1.35 ad aprint_error(": multiprocessor boot disabled\n");
338 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
339 1.56 jmcneill aprint_error_dev(self,
340 1.56 jmcneill "couldn't establish power handler\n");
341 1.35 ad return;
342 1.35 ad }
343 1.2 ad aprint_naive(": Application Processor\n");
344 1.143 maxv ptr = (uintptr_t)uvm_km_alloc(kernel_map,
345 1.143 maxv sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
346 1.143 maxv UVM_KMF_WIRED|UVM_KMF_ZERO);
347 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
348 1.43 ad ci->ci_curldt = -1;
349 1.2 ad } else {
350 1.2 ad aprint_naive(": %s Processor\n",
351 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
352 1.2 ad ci = &cpu_info_primary;
353 1.101 kiyohara #if NLAPIC > 0
354 1.2 ad if (cpunum != lapic_cpu_number()) {
355 1.51 ad /* XXX should be done earlier. */
356 1.39 ad uint32_t reg;
357 1.39 ad aprint_verbose("\n");
358 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
359 1.47 ad " instead of at expected %d", lapic_cpu_number(),
360 1.23 cube cpunum);
361 1.125 nonaka reg = lapic_readreg(LAPIC_ID);
362 1.125 nonaka lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
363 1.39 ad (cpunum << LAPIC_ID_SHIFT));
364 1.2 ad }
365 1.47 ad if (cpunum != lapic_cpu_number()) {
366 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
367 1.47 ad }
368 1.101 kiyohara #endif
369 1.2 ad }
370 1.2 ad
371 1.2 ad ci->ci_self = ci;
372 1.2 ad sc->sc_info = ci;
373 1.2 ad ci->ci_dev = self;
374 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
375 1.42 ad ci->ci_cpuid = caa->cpu_number;
376 1.2 ad ci->ci_func = caa->cpu_func;
377 1.112 msaitoh aprint_normal("\n");
378 1.2 ad
379 1.55 ad /* Must be before mi_cpu_attach(). */
380 1.55 ad cpu_vm_init(ci);
381 1.55 ad
382 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
383 1.2 ad int error;
384 1.2 ad
385 1.2 ad error = mi_cpu_attach(ci);
386 1.2 ad if (error != 0) {
387 1.47 ad aprint_error_dev(self,
388 1.30 cegger "mi_cpu_attach failed with %d\n", error);
389 1.2 ad return;
390 1.2 ad }
391 1.142 maxv #ifdef __HAVE_PCPU_AREA
392 1.142 maxv cpu_pcpuarea_init(ci);
393 1.142 maxv #endif
394 1.15 yamt cpu_init_tss(ci);
395 1.2 ad } else {
396 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
397 1.2 ad }
398 1.2 ad
399 1.2 ad pmap_reference(pmap_kernel());
400 1.2 ad ci->ci_pmap = pmap_kernel();
401 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
402 1.2 ad
403 1.51 ad /*
404 1.51 ad * Boot processor may not be attached first, but the below
405 1.51 ad * must be done to allow booting other processors.
406 1.51 ad */
407 1.51 ad if (!again) {
408 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
409 1.51 ad /* Basic init. */
410 1.2 ad cpu_intr_init(ci);
411 1.40 ad cpu_get_tsc_freq(ci);
412 1.2 ad cpu_init(ci);
413 1.134 maxv #ifdef i386
414 1.2 ad cpu_set_tss_gates(ci);
415 1.134 maxv #endif
416 1.2 ad pmap_cpu_init_late(ci);
417 1.101 kiyohara #if NLAPIC > 0
418 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
419 1.51 ad /* Enable lapic. */
420 1.51 ad lapic_enable();
421 1.51 ad lapic_set_lvt();
422 1.51 ad lapic_calibrate_timer(ci);
423 1.51 ad }
424 1.101 kiyohara #endif
425 1.51 ad /* Make sure DELAY() is initialized. */
426 1.51 ad DELAY(1);
427 1.51 ad again = true;
428 1.51 ad }
429 1.51 ad
430 1.51 ad /* further PCB init done later. */
431 1.51 ad
432 1.51 ad switch (caa->cpu_role) {
433 1.51 ad case CPU_ROLE_SP:
434 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
435 1.51 ad cpu_identify(ci);
436 1.53 ad x86_errata();
437 1.37 joerg x86_cpu_idle_init();
438 1.2 ad break;
439 1.2 ad
440 1.2 ad case CPU_ROLE_BP:
441 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
442 1.40 ad cpu_identify(ci);
443 1.53 ad x86_errata();
444 1.37 joerg x86_cpu_idle_init();
445 1.2 ad break;
446 1.2 ad
447 1.101 kiyohara #ifdef MULTIPROCESSOR
448 1.2 ad case CPU_ROLE_AP:
449 1.2 ad /*
450 1.2 ad * report on an AP
451 1.2 ad */
452 1.2 ad cpu_intr_init(ci);
453 1.2 ad gdt_alloc_cpu(ci);
454 1.134 maxv #ifdef i386
455 1.2 ad cpu_set_tss_gates(ci);
456 1.134 maxv #endif
457 1.2 ad pmap_cpu_init_late(ci);
458 1.2 ad cpu_start_secondary(ci);
459 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
460 1.59 cegger struct cpu_info *tmp;
461 1.59 cegger
462 1.40 ad cpu_identify(ci);
463 1.59 cegger tmp = cpu_info_list;
464 1.59 cegger while (tmp->ci_next)
465 1.59 cegger tmp = tmp->ci_next;
466 1.59 cegger
467 1.59 cegger tmp->ci_next = ci;
468 1.2 ad }
469 1.2 ad break;
470 1.101 kiyohara #endif
471 1.2 ad
472 1.2 ad default:
473 1.2 ad panic("unknown processor type??\n");
474 1.2 ad }
475 1.51 ad
476 1.71 cegger pat_init(ci);
477 1.2 ad
478 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
479 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
480 1.12 jmcneill
481 1.101 kiyohara #ifdef MULTIPROCESSOR
482 1.2 ad if (mp_verbose) {
483 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
484 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
485 1.2 ad
486 1.47 ad aprint_verbose_dev(self,
487 1.28 cegger "idle lwp at %p, idle sp at %p\n",
488 1.28 cegger l,
489 1.2 ad #ifdef i386
490 1.65 rmind (void *)pcb->pcb_esp
491 1.2 ad #else
492 1.65 rmind (void *)pcb->pcb_rsp
493 1.2 ad #endif
494 1.2 ad );
495 1.2 ad }
496 1.101 kiyohara #endif
497 1.81 jmcneill
498 1.89 jruoho /*
499 1.89 jruoho * Postpone the "cpufeaturebus" scan.
500 1.89 jruoho * It is safe to scan the pseudo-bus
501 1.89 jruoho * only after all CPUs have attached.
502 1.89 jruoho */
503 1.87 jruoho (void)config_defer(self, cpu_defer);
504 1.87 jruoho }
505 1.87 jruoho
506 1.87 jruoho static void
507 1.87 jruoho cpu_defer(device_t self)
508 1.87 jruoho {
509 1.81 jmcneill cpu_rescan(self, NULL, NULL);
510 1.81 jmcneill }
511 1.81 jmcneill
512 1.87 jruoho static int
513 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
514 1.81 jmcneill {
515 1.83 jruoho struct cpu_softc *sc = device_private(self);
516 1.81 jmcneill struct cpufeature_attach_args cfaa;
517 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
518 1.81 jmcneill
519 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
520 1.81 jmcneill cfaa.ci = ci;
521 1.81 jmcneill
522 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
523 1.83 jruoho if (ci->ci_frequency == NULL) {
524 1.86 jruoho cfaa.name = "frequency";
525 1.84 jruoho ci->ci_frequency = config_found_ia(self,
526 1.84 jruoho "cpufeaturebus", &cfaa, NULL);
527 1.84 jruoho }
528 1.84 jruoho
529 1.81 jmcneill if (ci->ci_padlock == NULL) {
530 1.81 jmcneill cfaa.name = "padlock";
531 1.81 jmcneill ci->ci_padlock = config_found_ia(self,
532 1.81 jmcneill "cpufeaturebus", &cfaa, NULL);
533 1.81 jmcneill }
534 1.82 jruoho
535 1.86 jruoho if (ci->ci_temperature == NULL) {
536 1.86 jruoho cfaa.name = "temperature";
537 1.86 jruoho ci->ci_temperature = config_found_ia(self,
538 1.85 jruoho "cpufeaturebus", &cfaa, NULL);
539 1.85 jruoho }
540 1.95 jmcneill
541 1.95 jmcneill if (ci->ci_vm == NULL) {
542 1.95 jmcneill cfaa.name = "vm";
543 1.95 jmcneill ci->ci_vm = config_found_ia(self,
544 1.95 jmcneill "cpufeaturebus", &cfaa, NULL);
545 1.95 jmcneill }
546 1.81 jmcneill }
547 1.81 jmcneill
548 1.81 jmcneill return 0;
549 1.81 jmcneill }
550 1.81 jmcneill
551 1.87 jruoho static void
552 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
553 1.81 jmcneill {
554 1.81 jmcneill struct cpu_softc *sc = device_private(self);
555 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
556 1.81 jmcneill
557 1.83 jruoho if (ci->ci_frequency == child)
558 1.83 jruoho ci->ci_frequency = NULL;
559 1.82 jruoho
560 1.81 jmcneill if (ci->ci_padlock == child)
561 1.81 jmcneill ci->ci_padlock = NULL;
562 1.83 jruoho
563 1.86 jruoho if (ci->ci_temperature == child)
564 1.86 jruoho ci->ci_temperature = NULL;
565 1.95 jmcneill
566 1.95 jmcneill if (ci->ci_vm == child)
567 1.95 jmcneill ci->ci_vm = NULL;
568 1.2 ad }
569 1.2 ad
570 1.2 ad /*
571 1.2 ad * Initialize the processor appropriately.
572 1.2 ad */
573 1.2 ad
574 1.2 ad void
575 1.9 ad cpu_init(struct cpu_info *ci)
576 1.2 ad {
577 1.141 maxv extern int x86_fpu_save;
578 1.113 christos uint32_t cr4 = 0;
579 1.2 ad
580 1.2 ad lcr0(rcr0() | CR0_WP);
581 1.2 ad
582 1.2 ad /*
583 1.2 ad * On a P6 or above, enable global TLB caching if the
584 1.2 ad * hardware supports it.
585 1.2 ad */
586 1.70 jym if (cpu_feature[0] & CPUID_PGE)
587 1.110 dsl cr4 |= CR4_PGE; /* enable global TLB caching */
588 1.2 ad
589 1.2 ad /*
590 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
591 1.2 ad */
592 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
593 1.110 dsl cr4 |= CR4_OSFXSR;
594 1.2 ad
595 1.2 ad /*
596 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
597 1.2 ad */
598 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
599 1.110 dsl cr4 |= CR4_OSXMMEXCPT;
600 1.2 ad }
601 1.2 ad
602 1.110 dsl /* If xsave is supported, enable it */
603 1.110 dsl if (cpu_feature[1] & CPUID2_XSAVE)
604 1.110 dsl cr4 |= CR4_OSXSAVE;
605 1.110 dsl
606 1.118 maxv /* If SMEP is supported, enable it */
607 1.118 maxv if (cpu_feature[5] & CPUID_SEF_SMEP)
608 1.118 maxv cr4 |= CR4_SMEP;
609 1.118 maxv
610 1.137 maxv #ifdef amd64
611 1.137 maxv /* If SMAP is supported, enable it */
612 1.137 maxv if (cpu_feature[5] & CPUID_SEF_SMAP)
613 1.137 maxv cr4 |= CR4_SMAP;
614 1.137 maxv #endif
615 1.137 maxv
616 1.113 christos if (cr4) {
617 1.113 christos cr4 |= rcr4();
618 1.113 christos lcr4(cr4);
619 1.113 christos }
620 1.110 dsl
621 1.141 maxv if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
622 1.141 maxv fpuinit_mxcsr_mask();
623 1.141 maxv }
624 1.141 maxv
625 1.110 dsl /* If xsave is enabled, enable all fpu features */
626 1.110 dsl if (cr4 & CR4_OSXSAVE)
627 1.110 dsl wrxcr(0, x86_xsave_features & XCR0_FPU);
628 1.110 dsl
629 1.2 ad #ifdef MTRR
630 1.2 ad /*
631 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
632 1.2 ad */
633 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
634 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
635 1.2 ad i686_mtrr_init_first();
636 1.2 ad mtrr_init_cpu(ci);
637 1.2 ad }
638 1.2 ad
639 1.2 ad #ifdef i386
640 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
641 1.2 ad /*
642 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
643 1.2 ad */
644 1.106 msaitoh if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
645 1.106 msaitoh if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
646 1.106 msaitoh (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
647 1.106 msaitoh CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
648 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
649 1.2 ad k6_mtrr_init_first();
650 1.2 ad mtrr_init_cpu(ci);
651 1.2 ad }
652 1.2 ad }
653 1.2 ad }
654 1.2 ad #endif /* i386 */
655 1.2 ad #endif /* MTRR */
656 1.2 ad
657 1.38 ad if (ci != &cpu_info_primary) {
658 1.38 ad /* Synchronize TSC again, and check for drift. */
659 1.38 ad wbinvd();
660 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
661 1.38 ad tsc_sync_ap(ci);
662 1.38 ad } else {
663 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
664 1.38 ad }
665 1.2 ad }
666 1.2 ad
667 1.101 kiyohara #ifdef MULTIPROCESSOR
668 1.2 ad void
669 1.12 jmcneill cpu_boot_secondary_processors(void)
670 1.2 ad {
671 1.2 ad struct cpu_info *ci;
672 1.100 chs kcpuset_t *cpus;
673 1.2 ad u_long i;
674 1.2 ad
675 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
676 1.60 ad x86_patch(false);
677 1.5 ad
678 1.100 chs kcpuset_create(&cpus, true);
679 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
680 1.100 chs for (i = 0; i < maxcpus; i++) {
681 1.57 ad ci = cpu_lookup(i);
682 1.2 ad if (ci == NULL)
683 1.2 ad continue;
684 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
685 1.2 ad continue;
686 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
687 1.2 ad continue;
688 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
689 1.2 ad continue;
690 1.2 ad cpu_boot_secondary(ci);
691 1.100 chs kcpuset_set(cpus, cpu_index(ci));
692 1.2 ad }
693 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
694 1.100 chs ;
695 1.100 chs kcpuset_destroy(cpus);
696 1.2 ad
697 1.2 ad x86_mp_online = true;
698 1.38 ad
699 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
700 1.38 ad tsc_tc_init();
701 1.55 ad
702 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
703 1.70 jym vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
704 1.2 ad }
705 1.101 kiyohara #endif
706 1.2 ad
707 1.2 ad static void
708 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
709 1.2 ad {
710 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
711 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
712 1.2 ad
713 1.2 ad pcb->pcb_cr0 = rcr0();
714 1.2 ad }
715 1.2 ad
716 1.2 ad void
717 1.12 jmcneill cpu_init_idle_lwps(void)
718 1.2 ad {
719 1.2 ad struct cpu_info *ci;
720 1.2 ad u_long i;
721 1.2 ad
722 1.54 ad for (i = 0; i < maxcpus; i++) {
723 1.57 ad ci = cpu_lookup(i);
724 1.2 ad if (ci == NULL)
725 1.2 ad continue;
726 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
727 1.2 ad continue;
728 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
729 1.2 ad continue;
730 1.2 ad cpu_init_idle_lwp(ci);
731 1.2 ad }
732 1.2 ad }
733 1.2 ad
734 1.101 kiyohara #ifdef MULTIPROCESSOR
735 1.2 ad void
736 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
737 1.2 ad {
738 1.136 maxv paddr_t mp_pdirpa;
739 1.38 ad u_long psl;
740 1.2 ad int i;
741 1.2 ad
742 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
743 1.136 maxv cpu_copy_trampoline(mp_pdirpa);
744 1.136 maxv
745 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
746 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
747 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
748 1.25 ad return;
749 1.45 ad }
750 1.2 ad
751 1.2 ad /*
752 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
753 1.50 ad * initial gate and allows the AP to start soft initialization.
754 1.2 ad */
755 1.50 ad KASSERT(cpu_starting == NULL);
756 1.50 ad cpu_starting = ci;
757 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
758 1.11 ad i8254_delay(10);
759 1.2 ad }
760 1.38 ad
761 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
762 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
763 1.2 ad #if defined(MPDEBUG) && defined(DDB)
764 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
765 1.2 ad Debugger();
766 1.2 ad #endif
767 1.38 ad } else {
768 1.38 ad /*
769 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
770 1.68 jym * twice to try and minimize possible cache effects. Disable
771 1.68 jym * interrupts to try and rule out any external interference.
772 1.38 ad */
773 1.38 ad psl = x86_read_psl();
774 1.38 ad x86_disable_intr();
775 1.38 ad wbinvd();
776 1.38 ad tsc_sync_bp(ci);
777 1.38 ad x86_write_psl(psl);
778 1.2 ad }
779 1.2 ad
780 1.2 ad CPU_START_CLEANUP(ci);
781 1.45 ad cpu_starting = NULL;
782 1.2 ad }
783 1.2 ad
784 1.2 ad void
785 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
786 1.2 ad {
787 1.38 ad int64_t drift;
788 1.38 ad u_long psl;
789 1.2 ad int i;
790 1.2 ad
791 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
792 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
793 1.11 ad i8254_delay(10);
794 1.2 ad }
795 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
796 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
797 1.2 ad #if defined(MPDEBUG) && defined(DDB)
798 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
799 1.2 ad Debugger();
800 1.2 ad #endif
801 1.38 ad } else {
802 1.38 ad /* Synchronize TSC again, check for drift. */
803 1.38 ad drift = ci->ci_data.cpu_cc_skew;
804 1.38 ad psl = x86_read_psl();
805 1.38 ad x86_disable_intr();
806 1.38 ad wbinvd();
807 1.38 ad tsc_sync_bp(ci);
808 1.38 ad x86_write_psl(psl);
809 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
810 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
811 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
812 1.38 ad tsc_sync_drift(drift);
813 1.2 ad }
814 1.2 ad }
815 1.2 ad
816 1.2 ad /*
817 1.117 maxv * The CPU ends up here when it's ready to run.
818 1.2 ad * This is called from code in mptramp.s; at this point, we are running
819 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
820 1.2 ad * this processor will enter the idle loop and start looking for work.
821 1.2 ad */
822 1.2 ad void
823 1.2 ad cpu_hatch(void *v)
824 1.2 ad {
825 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
826 1.65 rmind struct pcb *pcb;
827 1.130 kre int s, i;
828 1.2 ad
829 1.12 jmcneill cpu_init_msrs(ci, true);
830 1.40 ad cpu_probe(ci);
831 1.46 ad
832 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
833 1.134 maxv /* cpu_get_tsc_freq(ci); */
834 1.38 ad
835 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
836 1.38 ad
837 1.38 ad /*
838 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
839 1.38 ad * to try and minimize possible cache effects. Note that interrupts
840 1.38 ad * are off at this point.
841 1.38 ad */
842 1.38 ad wbinvd();
843 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
844 1.38 ad tsc_sync_ap(ci);
845 1.38 ad
846 1.38 ad /*
847 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
848 1.38 ad * in order to make the TSC drift as much as possible. so that
849 1.134 maxv * we can detect it later. If not available, try 'pause'.
850 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
851 1.38 ad */
852 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
853 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
854 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
855 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
856 1.38 ad continue;
857 1.38 ad }
858 1.38 ad x86_mwait(0, 0);
859 1.38 ad } else {
860 1.131 pgoyette /*
861 1.131 pgoyette * XXX The loop repetition count could be a lot higher, but
862 1.131 pgoyette * XXX currently qemu emulator takes a _very_long_time_ to
863 1.131 pgoyette * XXX execute the pause instruction. So for now, use a low
864 1.131 pgoyette * XXX value to allow the cpu to hatch before timing out.
865 1.131 pgoyette */
866 1.131 pgoyette for (i = 50; i != 0; i--) {
867 1.127 pgoyette x86_pause();
868 1.127 pgoyette }
869 1.38 ad }
870 1.6 ad }
871 1.5 ad
872 1.26 cegger /* Because the text may have been patched in x86_patch(). */
873 1.5 ad wbinvd();
874 1.5 ad x86_flush();
875 1.88 rmind tlbflushg();
876 1.5 ad
877 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
878 1.2 ad
879 1.73 jym #ifdef PAE
880 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
881 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
882 1.73 jym l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
883 1.73 jym }
884 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
885 1.73 jym #else
886 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
887 1.73 jym #endif
888 1.73 jym
889 1.65 rmind pcb = lwp_getpcb(curlwp);
890 1.73 jym pcb->pcb_cr3 = rcr3();
891 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
892 1.65 rmind lcr0(pcb->pcb_cr0);
893 1.65 rmind
894 1.2 ad cpu_init_idt();
895 1.8 ad gdt_init_cpu(ci);
896 1.111 joerg #if NLAPIC > 0
897 1.8 ad lapic_enable();
898 1.2 ad lapic_set_lvt();
899 1.8 ad lapic_initclocks();
900 1.111 joerg #endif
901 1.2 ad
902 1.2 ad fpuinit(ci);
903 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
904 1.15 yamt ltr(ci->ci_tss_sel);
905 1.2 ad
906 1.2 ad cpu_init(ci);
907 1.7 ad cpu_get_tsc_freq(ci);
908 1.2 ad
909 1.2 ad s = splhigh();
910 1.124 nonaka lapic_write_tpri(0);
911 1.3 ad x86_enable_intr();
912 1.2 ad splx(s);
913 1.6 ad x86_errata();
914 1.2 ad
915 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
916 1.98 rmind
917 1.98 rmind idle_loop(NULL);
918 1.98 rmind KASSERT(false);
919 1.2 ad }
920 1.101 kiyohara #endif
921 1.2 ad
922 1.2 ad #if defined(DDB)
923 1.2 ad
924 1.2 ad #include <ddb/db_output.h>
925 1.2 ad #include <machine/db_machdep.h>
926 1.2 ad
927 1.2 ad /*
928 1.2 ad * Dump CPU information from ddb.
929 1.2 ad */
930 1.2 ad void
931 1.2 ad cpu_debug_dump(void)
932 1.2 ad {
933 1.2 ad struct cpu_info *ci;
934 1.2 ad CPU_INFO_ITERATOR cii;
935 1.2 ad
936 1.107 christos db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
937 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
938 1.107 christos db_printf("%p %s %ld %x %x %10p %10p\n",
939 1.2 ad ci,
940 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
941 1.2 ad (long)ci->ci_cpuid,
942 1.2 ad ci->ci_flags, ci->ci_ipis,
943 1.107 christos ci->ci_curlwp,
944 1.107 christos ci->ci_fpcurlwp);
945 1.2 ad }
946 1.2 ad }
947 1.2 ad #endif
948 1.2 ad
949 1.101 kiyohara #if NLAPIC > 0
950 1.2 ad static void
951 1.136 maxv cpu_copy_trampoline(paddr_t pdir_pa)
952 1.2 ad {
953 1.136 maxv extern uint32_t nox_flag;
954 1.2 ad extern u_char cpu_spinup_trampoline[];
955 1.2 ad extern u_char cpu_spinup_trampoline_end[];
956 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
957 1.136 maxv struct {
958 1.136 maxv uint32_t large;
959 1.136 maxv uint32_t nox;
960 1.136 maxv uint32_t pdir;
961 1.136 maxv } smp_data;
962 1.136 maxv CTASSERT(sizeof(smp_data) == 3 * 4);
963 1.136 maxv
964 1.136 maxv smp_data.large = (pmap_largepages != 0);
965 1.136 maxv smp_data.nox = nox_flag;
966 1.136 maxv smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
967 1.12 jmcneill
968 1.136 maxv /* Enter the physical address */
969 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
970 1.12 jmcneill UVM_KMF_VAONLY);
971 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
972 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
973 1.2 ad pmap_update(pmap_kernel());
974 1.136 maxv
975 1.136 maxv /* Copy boot code */
976 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
977 1.2 ad cpu_spinup_trampoline,
978 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
979 1.12 jmcneill
980 1.136 maxv /* Copy smp_data at the end */
981 1.136 maxv memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
982 1.136 maxv &smp_data, sizeof(smp_data));
983 1.136 maxv
984 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
985 1.12 jmcneill pmap_update(pmap_kernel());
986 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
987 1.2 ad }
988 1.101 kiyohara #endif
989 1.2 ad
990 1.101 kiyohara #ifdef MULTIPROCESSOR
991 1.2 ad int
992 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
993 1.2 ad {
994 1.44 ad unsigned short dwordptr[2];
995 1.2 ad int error;
996 1.14 joerg
997 1.14 joerg /*
998 1.14 joerg * Bootstrap code must be addressable in real mode
999 1.14 joerg * and it must be page aligned.
1000 1.14 joerg */
1001 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1002 1.2 ad
1003 1.2 ad /*
1004 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1005 1.2 ad */
1006 1.2 ad
1007 1.2 ad outb(IO_RTC, NVRAM_RESET);
1008 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
1009 1.2 ad
1010 1.2 ad /*
1011 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
1012 1.2 ad * to the AP startup code ..."
1013 1.2 ad */
1014 1.2 ad
1015 1.2 ad dwordptr[0] = 0;
1016 1.14 joerg dwordptr[1] = target >> 4;
1017 1.2 ad
1018 1.111 joerg #if NLAPIC > 0
1019 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1020 1.111 joerg #endif
1021 1.2 ad
1022 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
1023 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
1024 1.25 ad return ENODEV;
1025 1.25 ad }
1026 1.25 ad
1027 1.2 ad /*
1028 1.51 ad * ... prior to executing the following sequence:". We'll also add in
1029 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
1030 1.51 ad * disabled. It may not be able to cope with MP coherency.
1031 1.2 ad */
1032 1.51 ad wbinvd();
1033 1.2 ad
1034 1.2 ad if (ci->ci_flags & CPUF_AP) {
1035 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
1036 1.26 cegger if (error != 0) {
1037 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1038 1.50 ad __func__);
1039 1.2 ad return error;
1040 1.25 ad }
1041 1.11 ad i8254_delay(10000);
1042 1.2 ad
1043 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1044 1.26 cegger if (error != 0) {
1045 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1046 1.50 ad __func__);
1047 1.25 ad return error;
1048 1.25 ad }
1049 1.25 ad i8254_delay(200);
1050 1.2 ad
1051 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1052 1.26 cegger if (error != 0) {
1053 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1054 1.50 ad __func__);
1055 1.25 ad return error;
1056 1.2 ad }
1057 1.25 ad i8254_delay(200);
1058 1.2 ad }
1059 1.44 ad
1060 1.2 ad return 0;
1061 1.2 ad }
1062 1.2 ad
1063 1.2 ad void
1064 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1065 1.2 ad {
1066 1.2 ad /*
1067 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1068 1.2 ad */
1069 1.2 ad
1070 1.2 ad outb(IO_RTC, NVRAM_RESET);
1071 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1072 1.2 ad }
1073 1.101 kiyohara #endif
1074 1.2 ad
1075 1.2 ad #ifdef __x86_64__
1076 1.2 ad typedef void (vector)(void);
1077 1.2 ad extern vector Xsyscall, Xsyscall32;
1078 1.70 jym #endif
1079 1.2 ad
1080 1.2 ad void
1081 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1082 1.2 ad {
1083 1.70 jym #ifdef __x86_64__
1084 1.2 ad wrmsr(MSR_STAR,
1085 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1086 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1087 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1088 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1089 1.138 maxv wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1090 1.2 ad
1091 1.12 jmcneill if (full) {
1092 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1093 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1094 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1095 1.12 jmcneill }
1096 1.70 jym #endif /* __x86_64__ */
1097 1.2 ad
1098 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1099 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1100 1.2 ad }
1101 1.7 ad
1102 1.107 christos void
1103 1.107 christos cpu_offline_md(void)
1104 1.107 christos {
1105 1.107 christos int s;
1106 1.107 christos
1107 1.107 christos s = splhigh();
1108 1.107 christos fpusave_cpu(true);
1109 1.107 christos splx(s);
1110 1.107 christos }
1111 1.107 christos
1112 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1113 1.12 jmcneill static bool
1114 1.96 jruoho cpu_stop(device_t dv)
1115 1.12 jmcneill {
1116 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1117 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1118 1.18 joerg int err;
1119 1.12 jmcneill
1120 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1121 1.93 jruoho
1122 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1123 1.93 jruoho return true;
1124 1.93 jruoho
1125 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1126 1.12 jmcneill return true;
1127 1.12 jmcneill
1128 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1129 1.17 joerg
1130 1.20 jmcneill if (sc->sc_wasonline) {
1131 1.20 jmcneill mutex_enter(&cpu_lock);
1132 1.58 rmind err = cpu_setstate(ci, false);
1133 1.20 jmcneill mutex_exit(&cpu_lock);
1134 1.79 jruoho
1135 1.93 jruoho if (err != 0)
1136 1.20 jmcneill return false;
1137 1.20 jmcneill }
1138 1.17 joerg
1139 1.17 joerg return true;
1140 1.12 jmcneill }
1141 1.12 jmcneill
1142 1.12 jmcneill static bool
1143 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1144 1.96 jruoho {
1145 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1146 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1147 1.96 jruoho
1148 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1149 1.96 jruoho return true;
1150 1.96 jruoho else {
1151 1.96 jruoho cpufreq_suspend(ci);
1152 1.96 jruoho }
1153 1.96 jruoho
1154 1.96 jruoho return cpu_stop(dv);
1155 1.96 jruoho }
1156 1.96 jruoho
1157 1.96 jruoho static bool
1158 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1159 1.12 jmcneill {
1160 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1161 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1162 1.20 jmcneill int err = 0;
1163 1.12 jmcneill
1164 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1165 1.12 jmcneill return true;
1166 1.93 jruoho
1167 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1168 1.93 jruoho goto out;
1169 1.93 jruoho
1170 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1171 1.93 jruoho goto out;
1172 1.12 jmcneill
1173 1.20 jmcneill if (sc->sc_wasonline) {
1174 1.20 jmcneill mutex_enter(&cpu_lock);
1175 1.58 rmind err = cpu_setstate(ci, true);
1176 1.20 jmcneill mutex_exit(&cpu_lock);
1177 1.20 jmcneill }
1178 1.13 joerg
1179 1.93 jruoho out:
1180 1.93 jruoho if (err != 0)
1181 1.93 jruoho return false;
1182 1.93 jruoho
1183 1.93 jruoho cpufreq_resume(ci);
1184 1.93 jruoho
1185 1.93 jruoho return true;
1186 1.12 jmcneill }
1187 1.12 jmcneill
1188 1.79 jruoho static bool
1189 1.79 jruoho cpu_shutdown(device_t dv, int how)
1190 1.79 jruoho {
1191 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1192 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1193 1.90 dyoung
1194 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1195 1.90 dyoung return false;
1196 1.90 dyoung
1197 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1198 1.96 jruoho return true;
1199 1.96 jruoho
1200 1.96 jruoho return cpu_stop(dv);
1201 1.79 jruoho }
1202 1.79 jruoho
1203 1.7 ad void
1204 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1205 1.7 ad {
1206 1.7 ad uint64_t last_tsc;
1207 1.7 ad
1208 1.70 jym if (cpu_hascounter()) {
1209 1.80 bouyer last_tsc = cpu_counter_serializing();
1210 1.7 ad i8254_delay(100000);
1211 1.80 bouyer ci->ci_data.cpu_cc_freq =
1212 1.80 bouyer (cpu_counter_serializing() - last_tsc) * 10;
1213 1.7 ad }
1214 1.7 ad }
1215 1.37 joerg
1216 1.37 joerg void
1217 1.37 joerg x86_cpu_idle_mwait(void)
1218 1.37 joerg {
1219 1.37 joerg struct cpu_info *ci = curcpu();
1220 1.37 joerg
1221 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1222 1.37 joerg
1223 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1224 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1225 1.37 joerg return;
1226 1.37 joerg }
1227 1.37 joerg x86_mwait(0, 0);
1228 1.37 joerg }
1229 1.37 joerg
1230 1.37 joerg void
1231 1.37 joerg x86_cpu_idle_halt(void)
1232 1.37 joerg {
1233 1.37 joerg struct cpu_info *ci = curcpu();
1234 1.37 joerg
1235 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1236 1.37 joerg
1237 1.37 joerg x86_disable_intr();
1238 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1239 1.37 joerg x86_stihlt();
1240 1.37 joerg } else {
1241 1.37 joerg x86_enable_intr();
1242 1.37 joerg }
1243 1.37 joerg }
1244 1.73 jym
1245 1.73 jym /*
1246 1.73 jym * Loads pmap for the current CPU.
1247 1.73 jym */
1248 1.73 jym void
1249 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1250 1.73 jym {
1251 1.73 jym #ifdef PAE
1252 1.99 yamt struct cpu_info *ci = curcpu();
1253 1.116 nat bool interrupts_enabled;
1254 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1255 1.99 yamt int i;
1256 1.73 jym
1257 1.99 yamt /*
1258 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1259 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1260 1.99 yamt * reload cr3.
1261 1.99 yamt */
1262 1.116 nat interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1263 1.116 nat if (interrupts_enabled)
1264 1.116 nat x86_disable_intr();
1265 1.116 nat
1266 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1267 1.73 jym l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1268 1.73 jym }
1269 1.134 maxv
1270 1.116 nat if (interrupts_enabled)
1271 1.116 nat x86_enable_intr();
1272 1.73 jym tlbflush();
1273 1.73 jym #else /* PAE */
1274 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1275 1.73 jym #endif /* PAE */
1276 1.73 jym }
1277 1.91 cherry
1278 1.91 cherry /*
1279 1.91 cherry * Notify all other cpus to halt.
1280 1.91 cherry */
1281 1.91 cherry
1282 1.91 cherry void
1283 1.92 cherry cpu_broadcast_halt(void)
1284 1.91 cherry {
1285 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1286 1.91 cherry }
1287 1.91 cherry
1288 1.91 cherry /*
1289 1.91 cherry * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1290 1.91 cherry */
1291 1.91 cherry
1292 1.91 cherry void
1293 1.91 cherry cpu_kick(struct cpu_info *ci)
1294 1.91 cherry {
1295 1.91 cherry x86_send_ipi(ci, 0);
1296 1.91 cherry }
1297