cpu.c revision 1.144 1 1.144 maxv /* $NetBSD: cpu.c,v 1.144 2018/01/07 16:10:16 maxv Exp $ */
2 1.2 ad
3 1.134 maxv /*
4 1.98 rmind * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.144 maxv __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.144 2018/01/07 16:10:16 maxv Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.101 kiyohara #include "opt_multiprocessor.h"
71 1.144 maxv #include "opt_svs.h"
72 1.2 ad
73 1.2 ad #include "lapic.h"
74 1.2 ad #include "ioapic.h"
75 1.2 ad
76 1.2 ad #include <sys/param.h>
77 1.2 ad #include <sys/proc.h>
78 1.2 ad #include <sys/systm.h>
79 1.2 ad #include <sys/device.h>
80 1.9 ad #include <sys/cpu.h>
81 1.93 jruoho #include <sys/cpufreq.h>
82 1.98 rmind #include <sys/idle.h>
83 1.9 ad #include <sys/atomic.h>
84 1.35 ad #include <sys/reboot.h>
85 1.2 ad
86 1.78 uebayasi #include <uvm/uvm.h>
87 1.2 ad
88 1.102 pgoyette #include "acpica.h" /* for NACPICA, for mp_verbose */
89 1.102 pgoyette
90 1.2 ad #include <machine/cpufunc.h>
91 1.2 ad #include <machine/cpuvar.h>
92 1.2 ad #include <machine/pmap.h>
93 1.2 ad #include <machine/vmparam.h>
94 1.102 pgoyette #if defined(MULTIPROCESSOR)
95 1.2 ad #include <machine/mpbiosvar.h>
96 1.101 kiyohara #endif
97 1.102 pgoyette #include <machine/mpconfig.h> /* for mp_verbose */
98 1.2 ad #include <machine/pcb.h>
99 1.2 ad #include <machine/specialreg.h>
100 1.2 ad #include <machine/segments.h>
101 1.2 ad #include <machine/gdt.h>
102 1.2 ad #include <machine/mtrr.h>
103 1.2 ad #include <machine/pio.h>
104 1.38 ad #include <machine/cpu_counter.h>
105 1.2 ad
106 1.109 dsl #include <x86/fpu.h>
107 1.109 dsl
108 1.101 kiyohara #if NLAPIC > 0
109 1.2 ad #include <machine/apicvar.h>
110 1.2 ad #include <machine/i82489reg.h>
111 1.2 ad #include <machine/i82489var.h>
112 1.101 kiyohara #endif
113 1.2 ad
114 1.2 ad #include <dev/ic/mc146818reg.h>
115 1.2 ad #include <i386/isa/nvram.h>
116 1.2 ad #include <dev/isa/isareg.h>
117 1.2 ad
118 1.38 ad #include "tsc.h"
119 1.38 ad
120 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
121 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
122 1.87 jruoho static void cpu_defer(device_t);
123 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
124 1.87 jruoho static void cpu_childdetached(device_t, device_t);
125 1.96 jruoho static bool cpu_stop(device_t);
126 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
127 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
128 1.79 jruoho static bool cpu_shutdown(device_t, int);
129 1.12 jmcneill
130 1.2 ad struct cpu_softc {
131 1.23 cube device_t sc_dev; /* device tree glue */
132 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
133 1.20 jmcneill bool sc_wasonline;
134 1.2 ad };
135 1.2 ad
136 1.101 kiyohara #ifdef MULTIPROCESSOR
137 1.120 msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
138 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
139 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
140 1.2 ad mp_cpu_start_cleanup };
141 1.101 kiyohara #endif
142 1.2 ad
143 1.2 ad
144 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
145 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
146 1.2 ad
147 1.2 ad /*
148 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
149 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
150 1.2 ad * point at it.
151 1.2 ad */
152 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 1.2 ad .ci_dev = 0,
154 1.2 ad .ci_self = &cpu_info_primary,
155 1.2 ad .ci_idepth = -1,
156 1.2 ad .ci_curlwp = &lwp0,
157 1.43 ad .ci_curldt = -1,
158 1.2 ad };
159 1.2 ad
160 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
161 1.2 ad
162 1.2 ad #ifdef i386
163 1.134 maxv void cpu_set_tss_gates(struct cpu_info *);
164 1.2 ad #endif
165 1.2 ad
166 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
167 1.12 jmcneill
168 1.122 maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
169 1.117 maxv /* [0] basic features cpuid.1:%edx
170 1.117 maxv * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
171 1.117 maxv * [2] extended features cpuid:80000001:%edx
172 1.117 maxv * [3] extended features cpuid:80000001:%ecx
173 1.117 maxv * [4] VIA padlock features
174 1.117 maxv * [5] structured extended features cpuid.7:%ebx
175 1.117 maxv * [6] structured extended features cpuid.7:%ecx
176 1.117 maxv */
177 1.70 jym
178 1.101 kiyohara #ifdef MULTIPROCESSOR
179 1.12 jmcneill bool x86_mp_online;
180 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
181 1.101 kiyohara #endif
182 1.101 kiyohara #if NLAPIC > 0
183 1.14 joerg static vaddr_t cmos_data_mapping;
184 1.101 kiyohara #endif
185 1.45 ad struct cpu_info *cpu_starting;
186 1.2 ad
187 1.101 kiyohara #ifdef MULTIPROCESSOR
188 1.2 ad void cpu_hatch(void *);
189 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
190 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
191 1.101 kiyohara #endif
192 1.101 kiyohara #if NLAPIC > 0
193 1.136 maxv static void cpu_copy_trampoline(paddr_t);
194 1.101 kiyohara #endif
195 1.2 ad
196 1.2 ad /*
197 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
198 1.2 ad * the local APIC on the boot processor has been mapped.
199 1.2 ad *
200 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
201 1.2 ad */
202 1.101 kiyohara #if NLAPIC > 0
203 1.2 ad void
204 1.9 ad cpu_init_first(void)
205 1.2 ad {
206 1.2 ad
207 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
208 1.14 joerg
209 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
210 1.14 joerg if (cmos_data_mapping == 0)
211 1.14 joerg panic("No KVA for page 0");
212 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
213 1.14 joerg pmap_update(pmap_kernel());
214 1.2 ad }
215 1.101 kiyohara #endif
216 1.2 ad
217 1.87 jruoho static int
218 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
219 1.2 ad {
220 1.2 ad
221 1.2 ad return 1;
222 1.2 ad }
223 1.2 ad
224 1.142 maxv #ifdef __HAVE_PCPU_AREA
225 1.142 maxv void
226 1.142 maxv cpu_pcpuarea_init(struct cpu_info *ci)
227 1.142 maxv {
228 1.142 maxv struct vm_page *pg;
229 1.142 maxv size_t i, npages;
230 1.142 maxv vaddr_t base, va;
231 1.142 maxv paddr_t pa;
232 1.142 maxv
233 1.142 maxv CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
234 1.142 maxv
235 1.142 maxv npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
236 1.142 maxv base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
237 1.142 maxv
238 1.142 maxv for (i = 0; i < npages; i++) {
239 1.142 maxv pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
240 1.142 maxv if (pg == NULL) {
241 1.142 maxv panic("failed to allocate pcpu PA");
242 1.142 maxv }
243 1.142 maxv
244 1.142 maxv va = base + i * PAGE_SIZE;
245 1.142 maxv pa = VM_PAGE_TO_PHYS(pg);
246 1.142 maxv
247 1.142 maxv pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
248 1.142 maxv }
249 1.142 maxv
250 1.142 maxv pmap_update(pmap_kernel());
251 1.142 maxv }
252 1.142 maxv #endif
253 1.142 maxv
254 1.2 ad static void
255 1.2 ad cpu_vm_init(struct cpu_info *ci)
256 1.2 ad {
257 1.2 ad int ncolors = 2, i;
258 1.2 ad
259 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
260 1.2 ad struct x86_cache_info *cai;
261 1.2 ad int tcolors;
262 1.2 ad
263 1.2 ad cai = &ci->ci_cinfo[i];
264 1.2 ad
265 1.2 ad tcolors = atop(cai->cai_totalsize);
266 1.2 ad switch(cai->cai_associativity) {
267 1.2 ad case 0xff:
268 1.2 ad tcolors = 1; /* fully associative */
269 1.2 ad break;
270 1.2 ad case 0:
271 1.2 ad case 1:
272 1.2 ad break;
273 1.2 ad default:
274 1.2 ad tcolors /= cai->cai_associativity;
275 1.2 ad }
276 1.2 ad ncolors = max(ncolors, tcolors);
277 1.32 tls /*
278 1.32 tls * If the desired number of colors is not a power of
279 1.32 tls * two, it won't be good. Find the greatest power of
280 1.32 tls * two which is an even divisor of the number of colors,
281 1.32 tls * to preserve even coloring of pages.
282 1.32 tls */
283 1.32 tls if (ncolors & (ncolors - 1) ) {
284 1.32 tls int try, picked = 1;
285 1.32 tls for (try = 1; try < ncolors; try *= 2) {
286 1.32 tls if (ncolors % try == 0) picked = try;
287 1.32 tls }
288 1.32 tls if (picked == 1) {
289 1.32 tls panic("desired number of cache colors %d is "
290 1.32 tls " > 1, but not even!", ncolors);
291 1.32 tls }
292 1.32 tls ncolors = picked;
293 1.32 tls }
294 1.2 ad }
295 1.2 ad
296 1.2 ad /*
297 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
298 1.94 mrg * re-color our pages.
299 1.2 ad */
300 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
301 1.2 ad uvm_page_recolor(ncolors);
302 1.98 rmind
303 1.98 rmind pmap_tlb_cpu_init(ci);
304 1.123 maxv #ifndef __HAVE_DIRECT_MAP
305 1.123 maxv pmap_vpage_cpu_init(ci);
306 1.123 maxv #endif
307 1.2 ad }
308 1.2 ad
309 1.87 jruoho static void
310 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
311 1.2 ad {
312 1.23 cube struct cpu_softc *sc = device_private(self);
313 1.2 ad struct cpu_attach_args *caa = aux;
314 1.2 ad struct cpu_info *ci;
315 1.21 ad uintptr_t ptr;
316 1.101 kiyohara #if NLAPIC > 0
317 1.2 ad int cpunum = caa->cpu_number;
318 1.101 kiyohara #endif
319 1.51 ad static bool again;
320 1.2 ad
321 1.23 cube sc->sc_dev = self;
322 1.23 cube
323 1.98 rmind if (ncpu == maxcpus) {
324 1.98 rmind #ifndef _LP64
325 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
326 1.98 rmind #else
327 1.98 rmind aprint_error(": too many CPUs\n");
328 1.98 rmind #endif
329 1.48 ad return;
330 1.48 ad }
331 1.48 ad
332 1.2 ad /*
333 1.2 ad * If we're an Application Processor, allocate a cpu_info
334 1.2 ad * structure, otherwise use the primary's.
335 1.2 ad */
336 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
337 1.36 ad if ((boothowto & RB_MD1) != 0) {
338 1.35 ad aprint_error(": multiprocessor boot disabled\n");
339 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
340 1.56 jmcneill aprint_error_dev(self,
341 1.56 jmcneill "couldn't establish power handler\n");
342 1.35 ad return;
343 1.35 ad }
344 1.2 ad aprint_naive(": Application Processor\n");
345 1.143 maxv ptr = (uintptr_t)uvm_km_alloc(kernel_map,
346 1.143 maxv sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
347 1.143 maxv UVM_KMF_WIRED|UVM_KMF_ZERO);
348 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
349 1.43 ad ci->ci_curldt = -1;
350 1.2 ad } else {
351 1.2 ad aprint_naive(": %s Processor\n",
352 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
353 1.2 ad ci = &cpu_info_primary;
354 1.101 kiyohara #if NLAPIC > 0
355 1.2 ad if (cpunum != lapic_cpu_number()) {
356 1.51 ad /* XXX should be done earlier. */
357 1.39 ad uint32_t reg;
358 1.39 ad aprint_verbose("\n");
359 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
360 1.47 ad " instead of at expected %d", lapic_cpu_number(),
361 1.23 cube cpunum);
362 1.125 nonaka reg = lapic_readreg(LAPIC_ID);
363 1.125 nonaka lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
364 1.39 ad (cpunum << LAPIC_ID_SHIFT));
365 1.2 ad }
366 1.47 ad if (cpunum != lapic_cpu_number()) {
367 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
368 1.47 ad }
369 1.101 kiyohara #endif
370 1.2 ad }
371 1.2 ad
372 1.2 ad ci->ci_self = ci;
373 1.2 ad sc->sc_info = ci;
374 1.2 ad ci->ci_dev = self;
375 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
376 1.42 ad ci->ci_cpuid = caa->cpu_number;
377 1.2 ad ci->ci_func = caa->cpu_func;
378 1.112 msaitoh aprint_normal("\n");
379 1.2 ad
380 1.55 ad /* Must be before mi_cpu_attach(). */
381 1.55 ad cpu_vm_init(ci);
382 1.55 ad
383 1.144 maxv #ifdef SVS
384 1.144 maxv cpu_svs_init(ci);
385 1.144 maxv #endif
386 1.144 maxv
387 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
388 1.2 ad int error;
389 1.2 ad
390 1.2 ad error = mi_cpu_attach(ci);
391 1.2 ad if (error != 0) {
392 1.47 ad aprint_error_dev(self,
393 1.30 cegger "mi_cpu_attach failed with %d\n", error);
394 1.2 ad return;
395 1.2 ad }
396 1.142 maxv #ifdef __HAVE_PCPU_AREA
397 1.142 maxv cpu_pcpuarea_init(ci);
398 1.142 maxv #endif
399 1.15 yamt cpu_init_tss(ci);
400 1.2 ad } else {
401 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
402 1.2 ad }
403 1.2 ad
404 1.2 ad pmap_reference(pmap_kernel());
405 1.2 ad ci->ci_pmap = pmap_kernel();
406 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
407 1.2 ad
408 1.51 ad /*
409 1.51 ad * Boot processor may not be attached first, but the below
410 1.51 ad * must be done to allow booting other processors.
411 1.51 ad */
412 1.51 ad if (!again) {
413 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
414 1.51 ad /* Basic init. */
415 1.2 ad cpu_intr_init(ci);
416 1.40 ad cpu_get_tsc_freq(ci);
417 1.2 ad cpu_init(ci);
418 1.134 maxv #ifdef i386
419 1.2 ad cpu_set_tss_gates(ci);
420 1.134 maxv #endif
421 1.2 ad pmap_cpu_init_late(ci);
422 1.101 kiyohara #if NLAPIC > 0
423 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
424 1.51 ad /* Enable lapic. */
425 1.51 ad lapic_enable();
426 1.51 ad lapic_set_lvt();
427 1.51 ad lapic_calibrate_timer(ci);
428 1.51 ad }
429 1.101 kiyohara #endif
430 1.51 ad /* Make sure DELAY() is initialized. */
431 1.51 ad DELAY(1);
432 1.51 ad again = true;
433 1.51 ad }
434 1.51 ad
435 1.51 ad /* further PCB init done later. */
436 1.51 ad
437 1.51 ad switch (caa->cpu_role) {
438 1.51 ad case CPU_ROLE_SP:
439 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
440 1.51 ad cpu_identify(ci);
441 1.53 ad x86_errata();
442 1.37 joerg x86_cpu_idle_init();
443 1.2 ad break;
444 1.2 ad
445 1.2 ad case CPU_ROLE_BP:
446 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
447 1.40 ad cpu_identify(ci);
448 1.53 ad x86_errata();
449 1.37 joerg x86_cpu_idle_init();
450 1.2 ad break;
451 1.2 ad
452 1.101 kiyohara #ifdef MULTIPROCESSOR
453 1.2 ad case CPU_ROLE_AP:
454 1.2 ad /*
455 1.2 ad * report on an AP
456 1.2 ad */
457 1.2 ad cpu_intr_init(ci);
458 1.2 ad gdt_alloc_cpu(ci);
459 1.134 maxv #ifdef i386
460 1.2 ad cpu_set_tss_gates(ci);
461 1.134 maxv #endif
462 1.2 ad pmap_cpu_init_late(ci);
463 1.2 ad cpu_start_secondary(ci);
464 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
465 1.59 cegger struct cpu_info *tmp;
466 1.59 cegger
467 1.40 ad cpu_identify(ci);
468 1.59 cegger tmp = cpu_info_list;
469 1.59 cegger while (tmp->ci_next)
470 1.59 cegger tmp = tmp->ci_next;
471 1.59 cegger
472 1.59 cegger tmp->ci_next = ci;
473 1.2 ad }
474 1.2 ad break;
475 1.101 kiyohara #endif
476 1.2 ad
477 1.2 ad default:
478 1.2 ad panic("unknown processor type??\n");
479 1.2 ad }
480 1.51 ad
481 1.71 cegger pat_init(ci);
482 1.2 ad
483 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
484 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
485 1.12 jmcneill
486 1.101 kiyohara #ifdef MULTIPROCESSOR
487 1.2 ad if (mp_verbose) {
488 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
489 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
490 1.2 ad
491 1.47 ad aprint_verbose_dev(self,
492 1.28 cegger "idle lwp at %p, idle sp at %p\n",
493 1.28 cegger l,
494 1.2 ad #ifdef i386
495 1.65 rmind (void *)pcb->pcb_esp
496 1.2 ad #else
497 1.65 rmind (void *)pcb->pcb_rsp
498 1.2 ad #endif
499 1.2 ad );
500 1.2 ad }
501 1.101 kiyohara #endif
502 1.81 jmcneill
503 1.89 jruoho /*
504 1.89 jruoho * Postpone the "cpufeaturebus" scan.
505 1.89 jruoho * It is safe to scan the pseudo-bus
506 1.89 jruoho * only after all CPUs have attached.
507 1.89 jruoho */
508 1.87 jruoho (void)config_defer(self, cpu_defer);
509 1.87 jruoho }
510 1.87 jruoho
511 1.87 jruoho static void
512 1.87 jruoho cpu_defer(device_t self)
513 1.87 jruoho {
514 1.81 jmcneill cpu_rescan(self, NULL, NULL);
515 1.81 jmcneill }
516 1.81 jmcneill
517 1.87 jruoho static int
518 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
519 1.81 jmcneill {
520 1.83 jruoho struct cpu_softc *sc = device_private(self);
521 1.81 jmcneill struct cpufeature_attach_args cfaa;
522 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
523 1.81 jmcneill
524 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
525 1.81 jmcneill cfaa.ci = ci;
526 1.81 jmcneill
527 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
528 1.83 jruoho if (ci->ci_frequency == NULL) {
529 1.86 jruoho cfaa.name = "frequency";
530 1.84 jruoho ci->ci_frequency = config_found_ia(self,
531 1.84 jruoho "cpufeaturebus", &cfaa, NULL);
532 1.84 jruoho }
533 1.84 jruoho
534 1.81 jmcneill if (ci->ci_padlock == NULL) {
535 1.81 jmcneill cfaa.name = "padlock";
536 1.81 jmcneill ci->ci_padlock = config_found_ia(self,
537 1.81 jmcneill "cpufeaturebus", &cfaa, NULL);
538 1.81 jmcneill }
539 1.82 jruoho
540 1.86 jruoho if (ci->ci_temperature == NULL) {
541 1.86 jruoho cfaa.name = "temperature";
542 1.86 jruoho ci->ci_temperature = config_found_ia(self,
543 1.85 jruoho "cpufeaturebus", &cfaa, NULL);
544 1.85 jruoho }
545 1.95 jmcneill
546 1.95 jmcneill if (ci->ci_vm == NULL) {
547 1.95 jmcneill cfaa.name = "vm";
548 1.95 jmcneill ci->ci_vm = config_found_ia(self,
549 1.95 jmcneill "cpufeaturebus", &cfaa, NULL);
550 1.95 jmcneill }
551 1.81 jmcneill }
552 1.81 jmcneill
553 1.81 jmcneill return 0;
554 1.81 jmcneill }
555 1.81 jmcneill
556 1.87 jruoho static void
557 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
558 1.81 jmcneill {
559 1.81 jmcneill struct cpu_softc *sc = device_private(self);
560 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
561 1.81 jmcneill
562 1.83 jruoho if (ci->ci_frequency == child)
563 1.83 jruoho ci->ci_frequency = NULL;
564 1.82 jruoho
565 1.81 jmcneill if (ci->ci_padlock == child)
566 1.81 jmcneill ci->ci_padlock = NULL;
567 1.83 jruoho
568 1.86 jruoho if (ci->ci_temperature == child)
569 1.86 jruoho ci->ci_temperature = NULL;
570 1.95 jmcneill
571 1.95 jmcneill if (ci->ci_vm == child)
572 1.95 jmcneill ci->ci_vm = NULL;
573 1.2 ad }
574 1.2 ad
575 1.2 ad /*
576 1.2 ad * Initialize the processor appropriately.
577 1.2 ad */
578 1.2 ad
579 1.2 ad void
580 1.9 ad cpu_init(struct cpu_info *ci)
581 1.2 ad {
582 1.141 maxv extern int x86_fpu_save;
583 1.113 christos uint32_t cr4 = 0;
584 1.2 ad
585 1.2 ad lcr0(rcr0() | CR0_WP);
586 1.2 ad
587 1.2 ad /*
588 1.2 ad * On a P6 or above, enable global TLB caching if the
589 1.2 ad * hardware supports it.
590 1.2 ad */
591 1.70 jym if (cpu_feature[0] & CPUID_PGE)
592 1.110 dsl cr4 |= CR4_PGE; /* enable global TLB caching */
593 1.2 ad
594 1.2 ad /*
595 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
596 1.2 ad */
597 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
598 1.110 dsl cr4 |= CR4_OSFXSR;
599 1.2 ad
600 1.2 ad /*
601 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
602 1.2 ad */
603 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
604 1.110 dsl cr4 |= CR4_OSXMMEXCPT;
605 1.2 ad }
606 1.2 ad
607 1.110 dsl /* If xsave is supported, enable it */
608 1.110 dsl if (cpu_feature[1] & CPUID2_XSAVE)
609 1.110 dsl cr4 |= CR4_OSXSAVE;
610 1.110 dsl
611 1.118 maxv /* If SMEP is supported, enable it */
612 1.118 maxv if (cpu_feature[5] & CPUID_SEF_SMEP)
613 1.118 maxv cr4 |= CR4_SMEP;
614 1.118 maxv
615 1.137 maxv #ifdef amd64
616 1.137 maxv /* If SMAP is supported, enable it */
617 1.137 maxv if (cpu_feature[5] & CPUID_SEF_SMAP)
618 1.137 maxv cr4 |= CR4_SMAP;
619 1.137 maxv #endif
620 1.137 maxv
621 1.113 christos if (cr4) {
622 1.113 christos cr4 |= rcr4();
623 1.113 christos lcr4(cr4);
624 1.113 christos }
625 1.110 dsl
626 1.141 maxv if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
627 1.141 maxv fpuinit_mxcsr_mask();
628 1.141 maxv }
629 1.141 maxv
630 1.110 dsl /* If xsave is enabled, enable all fpu features */
631 1.110 dsl if (cr4 & CR4_OSXSAVE)
632 1.110 dsl wrxcr(0, x86_xsave_features & XCR0_FPU);
633 1.110 dsl
634 1.2 ad #ifdef MTRR
635 1.2 ad /*
636 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
637 1.2 ad */
638 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
639 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
640 1.2 ad i686_mtrr_init_first();
641 1.2 ad mtrr_init_cpu(ci);
642 1.2 ad }
643 1.2 ad
644 1.2 ad #ifdef i386
645 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
646 1.2 ad /*
647 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
648 1.2 ad */
649 1.106 msaitoh if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
650 1.106 msaitoh if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
651 1.106 msaitoh (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
652 1.106 msaitoh CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
653 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
654 1.2 ad k6_mtrr_init_first();
655 1.2 ad mtrr_init_cpu(ci);
656 1.2 ad }
657 1.2 ad }
658 1.2 ad }
659 1.2 ad #endif /* i386 */
660 1.2 ad #endif /* MTRR */
661 1.2 ad
662 1.38 ad if (ci != &cpu_info_primary) {
663 1.38 ad /* Synchronize TSC again, and check for drift. */
664 1.38 ad wbinvd();
665 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
666 1.38 ad tsc_sync_ap(ci);
667 1.38 ad } else {
668 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
669 1.38 ad }
670 1.2 ad }
671 1.2 ad
672 1.101 kiyohara #ifdef MULTIPROCESSOR
673 1.2 ad void
674 1.12 jmcneill cpu_boot_secondary_processors(void)
675 1.2 ad {
676 1.2 ad struct cpu_info *ci;
677 1.100 chs kcpuset_t *cpus;
678 1.2 ad u_long i;
679 1.2 ad
680 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
681 1.60 ad x86_patch(false);
682 1.5 ad
683 1.100 chs kcpuset_create(&cpus, true);
684 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
685 1.100 chs for (i = 0; i < maxcpus; i++) {
686 1.57 ad ci = cpu_lookup(i);
687 1.2 ad if (ci == NULL)
688 1.2 ad continue;
689 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
690 1.2 ad continue;
691 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
692 1.2 ad continue;
693 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
694 1.2 ad continue;
695 1.2 ad cpu_boot_secondary(ci);
696 1.100 chs kcpuset_set(cpus, cpu_index(ci));
697 1.2 ad }
698 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
699 1.100 chs ;
700 1.100 chs kcpuset_destroy(cpus);
701 1.2 ad
702 1.2 ad x86_mp_online = true;
703 1.38 ad
704 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
705 1.38 ad tsc_tc_init();
706 1.55 ad
707 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
708 1.70 jym vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
709 1.2 ad }
710 1.101 kiyohara #endif
711 1.2 ad
712 1.2 ad static void
713 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
714 1.2 ad {
715 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
716 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
717 1.2 ad
718 1.2 ad pcb->pcb_cr0 = rcr0();
719 1.2 ad }
720 1.2 ad
721 1.2 ad void
722 1.12 jmcneill cpu_init_idle_lwps(void)
723 1.2 ad {
724 1.2 ad struct cpu_info *ci;
725 1.2 ad u_long i;
726 1.2 ad
727 1.54 ad for (i = 0; i < maxcpus; i++) {
728 1.57 ad ci = cpu_lookup(i);
729 1.2 ad if (ci == NULL)
730 1.2 ad continue;
731 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
732 1.2 ad continue;
733 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
734 1.2 ad continue;
735 1.2 ad cpu_init_idle_lwp(ci);
736 1.2 ad }
737 1.2 ad }
738 1.2 ad
739 1.101 kiyohara #ifdef MULTIPROCESSOR
740 1.2 ad void
741 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
742 1.2 ad {
743 1.136 maxv paddr_t mp_pdirpa;
744 1.38 ad u_long psl;
745 1.2 ad int i;
746 1.2 ad
747 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
748 1.136 maxv cpu_copy_trampoline(mp_pdirpa);
749 1.136 maxv
750 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
751 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
752 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
753 1.25 ad return;
754 1.45 ad }
755 1.2 ad
756 1.2 ad /*
757 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
758 1.50 ad * initial gate and allows the AP to start soft initialization.
759 1.2 ad */
760 1.50 ad KASSERT(cpu_starting == NULL);
761 1.50 ad cpu_starting = ci;
762 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
763 1.11 ad i8254_delay(10);
764 1.2 ad }
765 1.38 ad
766 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
767 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
768 1.2 ad #if defined(MPDEBUG) && defined(DDB)
769 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
770 1.2 ad Debugger();
771 1.2 ad #endif
772 1.38 ad } else {
773 1.38 ad /*
774 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
775 1.68 jym * twice to try and minimize possible cache effects. Disable
776 1.68 jym * interrupts to try and rule out any external interference.
777 1.38 ad */
778 1.38 ad psl = x86_read_psl();
779 1.38 ad x86_disable_intr();
780 1.38 ad wbinvd();
781 1.38 ad tsc_sync_bp(ci);
782 1.38 ad x86_write_psl(psl);
783 1.2 ad }
784 1.2 ad
785 1.2 ad CPU_START_CLEANUP(ci);
786 1.45 ad cpu_starting = NULL;
787 1.2 ad }
788 1.2 ad
789 1.2 ad void
790 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
791 1.2 ad {
792 1.38 ad int64_t drift;
793 1.38 ad u_long psl;
794 1.2 ad int i;
795 1.2 ad
796 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
797 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
798 1.11 ad i8254_delay(10);
799 1.2 ad }
800 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
801 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
802 1.2 ad #if defined(MPDEBUG) && defined(DDB)
803 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
804 1.2 ad Debugger();
805 1.2 ad #endif
806 1.38 ad } else {
807 1.38 ad /* Synchronize TSC again, check for drift. */
808 1.38 ad drift = ci->ci_data.cpu_cc_skew;
809 1.38 ad psl = x86_read_psl();
810 1.38 ad x86_disable_intr();
811 1.38 ad wbinvd();
812 1.38 ad tsc_sync_bp(ci);
813 1.38 ad x86_write_psl(psl);
814 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
815 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
816 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
817 1.38 ad tsc_sync_drift(drift);
818 1.2 ad }
819 1.2 ad }
820 1.2 ad
821 1.2 ad /*
822 1.117 maxv * The CPU ends up here when it's ready to run.
823 1.2 ad * This is called from code in mptramp.s; at this point, we are running
824 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
825 1.2 ad * this processor will enter the idle loop and start looking for work.
826 1.2 ad */
827 1.2 ad void
828 1.2 ad cpu_hatch(void *v)
829 1.2 ad {
830 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
831 1.65 rmind struct pcb *pcb;
832 1.130 kre int s, i;
833 1.2 ad
834 1.12 jmcneill cpu_init_msrs(ci, true);
835 1.40 ad cpu_probe(ci);
836 1.46 ad
837 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
838 1.134 maxv /* cpu_get_tsc_freq(ci); */
839 1.38 ad
840 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
841 1.38 ad
842 1.38 ad /*
843 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
844 1.38 ad * to try and minimize possible cache effects. Note that interrupts
845 1.38 ad * are off at this point.
846 1.38 ad */
847 1.38 ad wbinvd();
848 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
849 1.38 ad tsc_sync_ap(ci);
850 1.38 ad
851 1.38 ad /*
852 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
853 1.38 ad * in order to make the TSC drift as much as possible. so that
854 1.134 maxv * we can detect it later. If not available, try 'pause'.
855 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
856 1.38 ad */
857 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
858 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
859 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
860 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
861 1.38 ad continue;
862 1.38 ad }
863 1.38 ad x86_mwait(0, 0);
864 1.38 ad } else {
865 1.131 pgoyette /*
866 1.131 pgoyette * XXX The loop repetition count could be a lot higher, but
867 1.131 pgoyette * XXX currently qemu emulator takes a _very_long_time_ to
868 1.131 pgoyette * XXX execute the pause instruction. So for now, use a low
869 1.131 pgoyette * XXX value to allow the cpu to hatch before timing out.
870 1.131 pgoyette */
871 1.131 pgoyette for (i = 50; i != 0; i--) {
872 1.127 pgoyette x86_pause();
873 1.127 pgoyette }
874 1.38 ad }
875 1.6 ad }
876 1.5 ad
877 1.26 cegger /* Because the text may have been patched in x86_patch(). */
878 1.5 ad wbinvd();
879 1.5 ad x86_flush();
880 1.88 rmind tlbflushg();
881 1.5 ad
882 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
883 1.2 ad
884 1.73 jym #ifdef PAE
885 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
886 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
887 1.73 jym l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
888 1.73 jym }
889 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
890 1.73 jym #else
891 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
892 1.73 jym #endif
893 1.73 jym
894 1.65 rmind pcb = lwp_getpcb(curlwp);
895 1.73 jym pcb->pcb_cr3 = rcr3();
896 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
897 1.65 rmind lcr0(pcb->pcb_cr0);
898 1.65 rmind
899 1.2 ad cpu_init_idt();
900 1.8 ad gdt_init_cpu(ci);
901 1.111 joerg #if NLAPIC > 0
902 1.8 ad lapic_enable();
903 1.2 ad lapic_set_lvt();
904 1.8 ad lapic_initclocks();
905 1.111 joerg #endif
906 1.2 ad
907 1.2 ad fpuinit(ci);
908 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
909 1.15 yamt ltr(ci->ci_tss_sel);
910 1.2 ad
911 1.2 ad cpu_init(ci);
912 1.7 ad cpu_get_tsc_freq(ci);
913 1.2 ad
914 1.2 ad s = splhigh();
915 1.124 nonaka lapic_write_tpri(0);
916 1.3 ad x86_enable_intr();
917 1.2 ad splx(s);
918 1.6 ad x86_errata();
919 1.2 ad
920 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
921 1.98 rmind
922 1.98 rmind idle_loop(NULL);
923 1.98 rmind KASSERT(false);
924 1.2 ad }
925 1.101 kiyohara #endif
926 1.2 ad
927 1.2 ad #if defined(DDB)
928 1.2 ad
929 1.2 ad #include <ddb/db_output.h>
930 1.2 ad #include <machine/db_machdep.h>
931 1.2 ad
932 1.2 ad /*
933 1.2 ad * Dump CPU information from ddb.
934 1.2 ad */
935 1.2 ad void
936 1.2 ad cpu_debug_dump(void)
937 1.2 ad {
938 1.2 ad struct cpu_info *ci;
939 1.2 ad CPU_INFO_ITERATOR cii;
940 1.2 ad
941 1.107 christos db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
942 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
943 1.107 christos db_printf("%p %s %ld %x %x %10p %10p\n",
944 1.2 ad ci,
945 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
946 1.2 ad (long)ci->ci_cpuid,
947 1.2 ad ci->ci_flags, ci->ci_ipis,
948 1.107 christos ci->ci_curlwp,
949 1.107 christos ci->ci_fpcurlwp);
950 1.2 ad }
951 1.2 ad }
952 1.2 ad #endif
953 1.2 ad
954 1.101 kiyohara #if NLAPIC > 0
955 1.2 ad static void
956 1.136 maxv cpu_copy_trampoline(paddr_t pdir_pa)
957 1.2 ad {
958 1.136 maxv extern uint32_t nox_flag;
959 1.2 ad extern u_char cpu_spinup_trampoline[];
960 1.2 ad extern u_char cpu_spinup_trampoline_end[];
961 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
962 1.136 maxv struct {
963 1.136 maxv uint32_t large;
964 1.136 maxv uint32_t nox;
965 1.136 maxv uint32_t pdir;
966 1.136 maxv } smp_data;
967 1.136 maxv CTASSERT(sizeof(smp_data) == 3 * 4);
968 1.136 maxv
969 1.136 maxv smp_data.large = (pmap_largepages != 0);
970 1.136 maxv smp_data.nox = nox_flag;
971 1.136 maxv smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
972 1.12 jmcneill
973 1.136 maxv /* Enter the physical address */
974 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
975 1.12 jmcneill UVM_KMF_VAONLY);
976 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
977 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
978 1.2 ad pmap_update(pmap_kernel());
979 1.136 maxv
980 1.136 maxv /* Copy boot code */
981 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
982 1.2 ad cpu_spinup_trampoline,
983 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
984 1.12 jmcneill
985 1.136 maxv /* Copy smp_data at the end */
986 1.136 maxv memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
987 1.136 maxv &smp_data, sizeof(smp_data));
988 1.136 maxv
989 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
990 1.12 jmcneill pmap_update(pmap_kernel());
991 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
992 1.2 ad }
993 1.101 kiyohara #endif
994 1.2 ad
995 1.101 kiyohara #ifdef MULTIPROCESSOR
996 1.2 ad int
997 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
998 1.2 ad {
999 1.44 ad unsigned short dwordptr[2];
1000 1.2 ad int error;
1001 1.14 joerg
1002 1.14 joerg /*
1003 1.14 joerg * Bootstrap code must be addressable in real mode
1004 1.14 joerg * and it must be page aligned.
1005 1.14 joerg */
1006 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1007 1.2 ad
1008 1.2 ad /*
1009 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1010 1.2 ad */
1011 1.2 ad
1012 1.2 ad outb(IO_RTC, NVRAM_RESET);
1013 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
1014 1.2 ad
1015 1.2 ad /*
1016 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
1017 1.2 ad * to the AP startup code ..."
1018 1.2 ad */
1019 1.2 ad
1020 1.2 ad dwordptr[0] = 0;
1021 1.14 joerg dwordptr[1] = target >> 4;
1022 1.2 ad
1023 1.111 joerg #if NLAPIC > 0
1024 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1025 1.111 joerg #endif
1026 1.2 ad
1027 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
1028 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
1029 1.25 ad return ENODEV;
1030 1.25 ad }
1031 1.25 ad
1032 1.2 ad /*
1033 1.51 ad * ... prior to executing the following sequence:". We'll also add in
1034 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
1035 1.51 ad * disabled. It may not be able to cope with MP coherency.
1036 1.2 ad */
1037 1.51 ad wbinvd();
1038 1.2 ad
1039 1.2 ad if (ci->ci_flags & CPUF_AP) {
1040 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
1041 1.26 cegger if (error != 0) {
1042 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1043 1.50 ad __func__);
1044 1.2 ad return error;
1045 1.25 ad }
1046 1.11 ad i8254_delay(10000);
1047 1.2 ad
1048 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1049 1.26 cegger if (error != 0) {
1050 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1051 1.50 ad __func__);
1052 1.25 ad return error;
1053 1.25 ad }
1054 1.25 ad i8254_delay(200);
1055 1.2 ad
1056 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1057 1.26 cegger if (error != 0) {
1058 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1059 1.50 ad __func__);
1060 1.25 ad return error;
1061 1.2 ad }
1062 1.25 ad i8254_delay(200);
1063 1.2 ad }
1064 1.44 ad
1065 1.2 ad return 0;
1066 1.2 ad }
1067 1.2 ad
1068 1.2 ad void
1069 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1070 1.2 ad {
1071 1.2 ad /*
1072 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1073 1.2 ad */
1074 1.2 ad
1075 1.2 ad outb(IO_RTC, NVRAM_RESET);
1076 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1077 1.2 ad }
1078 1.101 kiyohara #endif
1079 1.2 ad
1080 1.2 ad #ifdef __x86_64__
1081 1.2 ad typedef void (vector)(void);
1082 1.2 ad extern vector Xsyscall, Xsyscall32;
1083 1.70 jym #endif
1084 1.2 ad
1085 1.2 ad void
1086 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1087 1.2 ad {
1088 1.70 jym #ifdef __x86_64__
1089 1.2 ad wrmsr(MSR_STAR,
1090 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1091 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1092 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1093 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1094 1.138 maxv wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1095 1.2 ad
1096 1.12 jmcneill if (full) {
1097 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1098 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1099 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1100 1.12 jmcneill }
1101 1.70 jym #endif /* __x86_64__ */
1102 1.2 ad
1103 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1104 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1105 1.2 ad }
1106 1.7 ad
1107 1.107 christos void
1108 1.107 christos cpu_offline_md(void)
1109 1.107 christos {
1110 1.107 christos int s;
1111 1.107 christos
1112 1.107 christos s = splhigh();
1113 1.107 christos fpusave_cpu(true);
1114 1.107 christos splx(s);
1115 1.107 christos }
1116 1.107 christos
1117 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1118 1.12 jmcneill static bool
1119 1.96 jruoho cpu_stop(device_t dv)
1120 1.12 jmcneill {
1121 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1122 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1123 1.18 joerg int err;
1124 1.12 jmcneill
1125 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1126 1.93 jruoho
1127 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1128 1.93 jruoho return true;
1129 1.93 jruoho
1130 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1131 1.12 jmcneill return true;
1132 1.12 jmcneill
1133 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1134 1.17 joerg
1135 1.20 jmcneill if (sc->sc_wasonline) {
1136 1.20 jmcneill mutex_enter(&cpu_lock);
1137 1.58 rmind err = cpu_setstate(ci, false);
1138 1.20 jmcneill mutex_exit(&cpu_lock);
1139 1.79 jruoho
1140 1.93 jruoho if (err != 0)
1141 1.20 jmcneill return false;
1142 1.20 jmcneill }
1143 1.17 joerg
1144 1.17 joerg return true;
1145 1.12 jmcneill }
1146 1.12 jmcneill
1147 1.12 jmcneill static bool
1148 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1149 1.96 jruoho {
1150 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1151 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1152 1.96 jruoho
1153 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1154 1.96 jruoho return true;
1155 1.96 jruoho else {
1156 1.96 jruoho cpufreq_suspend(ci);
1157 1.96 jruoho }
1158 1.96 jruoho
1159 1.96 jruoho return cpu_stop(dv);
1160 1.96 jruoho }
1161 1.96 jruoho
1162 1.96 jruoho static bool
1163 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1164 1.12 jmcneill {
1165 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1166 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1167 1.20 jmcneill int err = 0;
1168 1.12 jmcneill
1169 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1170 1.12 jmcneill return true;
1171 1.93 jruoho
1172 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1173 1.93 jruoho goto out;
1174 1.93 jruoho
1175 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1176 1.93 jruoho goto out;
1177 1.12 jmcneill
1178 1.20 jmcneill if (sc->sc_wasonline) {
1179 1.20 jmcneill mutex_enter(&cpu_lock);
1180 1.58 rmind err = cpu_setstate(ci, true);
1181 1.20 jmcneill mutex_exit(&cpu_lock);
1182 1.20 jmcneill }
1183 1.13 joerg
1184 1.93 jruoho out:
1185 1.93 jruoho if (err != 0)
1186 1.93 jruoho return false;
1187 1.93 jruoho
1188 1.93 jruoho cpufreq_resume(ci);
1189 1.93 jruoho
1190 1.93 jruoho return true;
1191 1.12 jmcneill }
1192 1.12 jmcneill
1193 1.79 jruoho static bool
1194 1.79 jruoho cpu_shutdown(device_t dv, int how)
1195 1.79 jruoho {
1196 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1197 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1198 1.90 dyoung
1199 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1200 1.90 dyoung return false;
1201 1.90 dyoung
1202 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1203 1.96 jruoho return true;
1204 1.96 jruoho
1205 1.96 jruoho return cpu_stop(dv);
1206 1.79 jruoho }
1207 1.79 jruoho
1208 1.7 ad void
1209 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1210 1.7 ad {
1211 1.7 ad uint64_t last_tsc;
1212 1.7 ad
1213 1.70 jym if (cpu_hascounter()) {
1214 1.80 bouyer last_tsc = cpu_counter_serializing();
1215 1.7 ad i8254_delay(100000);
1216 1.80 bouyer ci->ci_data.cpu_cc_freq =
1217 1.80 bouyer (cpu_counter_serializing() - last_tsc) * 10;
1218 1.7 ad }
1219 1.7 ad }
1220 1.37 joerg
1221 1.37 joerg void
1222 1.37 joerg x86_cpu_idle_mwait(void)
1223 1.37 joerg {
1224 1.37 joerg struct cpu_info *ci = curcpu();
1225 1.37 joerg
1226 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1227 1.37 joerg
1228 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1229 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1230 1.37 joerg return;
1231 1.37 joerg }
1232 1.37 joerg x86_mwait(0, 0);
1233 1.37 joerg }
1234 1.37 joerg
1235 1.37 joerg void
1236 1.37 joerg x86_cpu_idle_halt(void)
1237 1.37 joerg {
1238 1.37 joerg struct cpu_info *ci = curcpu();
1239 1.37 joerg
1240 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1241 1.37 joerg
1242 1.37 joerg x86_disable_intr();
1243 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1244 1.37 joerg x86_stihlt();
1245 1.37 joerg } else {
1246 1.37 joerg x86_enable_intr();
1247 1.37 joerg }
1248 1.37 joerg }
1249 1.73 jym
1250 1.73 jym /*
1251 1.73 jym * Loads pmap for the current CPU.
1252 1.73 jym */
1253 1.73 jym void
1254 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1255 1.73 jym {
1256 1.144 maxv #ifdef SVS
1257 1.144 maxv svs_pdir_switch(pmap);
1258 1.144 maxv #endif
1259 1.144 maxv
1260 1.73 jym #ifdef PAE
1261 1.99 yamt struct cpu_info *ci = curcpu();
1262 1.116 nat bool interrupts_enabled;
1263 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1264 1.99 yamt int i;
1265 1.73 jym
1266 1.99 yamt /*
1267 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1268 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1269 1.99 yamt * reload cr3.
1270 1.99 yamt */
1271 1.116 nat interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1272 1.116 nat if (interrupts_enabled)
1273 1.116 nat x86_disable_intr();
1274 1.116 nat
1275 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1276 1.73 jym l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1277 1.73 jym }
1278 1.134 maxv
1279 1.116 nat if (interrupts_enabled)
1280 1.116 nat x86_enable_intr();
1281 1.73 jym tlbflush();
1282 1.73 jym #else /* PAE */
1283 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1284 1.73 jym #endif /* PAE */
1285 1.73 jym }
1286 1.91 cherry
1287 1.91 cherry /*
1288 1.91 cherry * Notify all other cpus to halt.
1289 1.91 cherry */
1290 1.91 cherry
1291 1.91 cherry void
1292 1.92 cherry cpu_broadcast_halt(void)
1293 1.91 cherry {
1294 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1295 1.91 cherry }
1296 1.91 cherry
1297 1.91 cherry /*
1298 1.91 cherry * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1299 1.91 cherry */
1300 1.91 cherry
1301 1.91 cherry void
1302 1.91 cherry cpu_kick(struct cpu_info *ci)
1303 1.91 cherry {
1304 1.91 cherry x86_send_ipi(ci, 0);
1305 1.91 cherry }
1306