Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.162
      1  1.162      maxv /*	$NetBSD: cpu.c,v 1.162 2018/11/12 18:10:36 maxv Exp $	*/
      2    1.2        ad 
      3  1.134      maxv /*
      4   1.98     rmind  * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
      5    1.2        ad  * All rights reserved.
      6    1.2        ad  *
      7    1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.11        ad  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9    1.2        ad  *
     10    1.2        ad  * Redistribution and use in source and binary forms, with or without
     11    1.2        ad  * modification, are permitted provided that the following conditions
     12    1.2        ad  * are met:
     13    1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14    1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15    1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17    1.2        ad  *    documentation and/or other materials provided with the distribution.
     18    1.2        ad  *
     19    1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30    1.2        ad  */
     31    1.2        ad 
     32    1.2        ad /*
     33    1.2        ad  * Copyright (c) 1999 Stefan Grefen
     34    1.2        ad  *
     35    1.2        ad  * Redistribution and use in source and binary forms, with or without
     36    1.2        ad  * modification, are permitted provided that the following conditions
     37    1.2        ad  * are met:
     38    1.2        ad  * 1. Redistributions of source code must retain the above copyright
     39    1.2        ad  *    notice, this list of conditions and the following disclaimer.
     40    1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     41    1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     42    1.2        ad  *    documentation and/or other materials provided with the distribution.
     43    1.2        ad  * 3. All advertising materials mentioning features or use of this software
     44    1.2        ad  *    must display the following acknowledgement:
     45    1.2        ad  *      This product includes software developed by the NetBSD
     46    1.2        ad  *      Foundation, Inc. and its contributors.
     47    1.2        ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48    1.2        ad  *    contributors may be used to endorse or promote products derived
     49    1.2        ad  *    from this software without specific prior written permission.
     50    1.2        ad  *
     51    1.2        ad  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52    1.2        ad  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53    1.2        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54    1.2        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55    1.2        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56    1.2        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57    1.2        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58    1.2        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59    1.2        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60    1.2        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61    1.2        ad  * SUCH DAMAGE.
     62    1.2        ad  */
     63    1.2        ad 
     64    1.2        ad #include <sys/cdefs.h>
     65  1.162      maxv __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.162 2018/11/12 18:10:36 maxv Exp $");
     66    1.2        ad 
     67    1.2        ad #include "opt_ddb.h"
     68    1.2        ad #include "opt_mpbios.h"		/* for MPDEBUG */
     69    1.2        ad #include "opt_mtrr.h"
     70  1.101  kiyohara #include "opt_multiprocessor.h"
     71  1.144      maxv #include "opt_svs.h"
     72    1.2        ad 
     73    1.2        ad #include "lapic.h"
     74    1.2        ad #include "ioapic.h"
     75    1.2        ad 
     76    1.2        ad #include <sys/param.h>
     77    1.2        ad #include <sys/proc.h>
     78    1.2        ad #include <sys/systm.h>
     79    1.2        ad #include <sys/device.h>
     80    1.9        ad #include <sys/cpu.h>
     81   1.93    jruoho #include <sys/cpufreq.h>
     82   1.98     rmind #include <sys/idle.h>
     83    1.9        ad #include <sys/atomic.h>
     84   1.35        ad #include <sys/reboot.h>
     85    1.2        ad 
     86   1.78  uebayasi #include <uvm/uvm.h>
     87    1.2        ad 
     88  1.102  pgoyette #include "acpica.h"		/* for NACPICA, for mp_verbose */
     89  1.102  pgoyette 
     90    1.2        ad #include <machine/cpufunc.h>
     91    1.2        ad #include <machine/cpuvar.h>
     92    1.2        ad #include <machine/pmap.h>
     93    1.2        ad #include <machine/vmparam.h>
     94  1.102  pgoyette #if defined(MULTIPROCESSOR)
     95    1.2        ad #include <machine/mpbiosvar.h>
     96  1.101  kiyohara #endif
     97  1.102  pgoyette #include <machine/mpconfig.h>		/* for mp_verbose */
     98    1.2        ad #include <machine/pcb.h>
     99    1.2        ad #include <machine/specialreg.h>
    100    1.2        ad #include <machine/segments.h>
    101    1.2        ad #include <machine/gdt.h>
    102    1.2        ad #include <machine/mtrr.h>
    103    1.2        ad #include <machine/pio.h>
    104   1.38        ad #include <machine/cpu_counter.h>
    105    1.2        ad 
    106  1.109       dsl #include <x86/fpu.h>
    107  1.109       dsl 
    108  1.101  kiyohara #if NLAPIC > 0
    109    1.2        ad #include <machine/apicvar.h>
    110    1.2        ad #include <machine/i82489reg.h>
    111    1.2        ad #include <machine/i82489var.h>
    112  1.101  kiyohara #endif
    113    1.2        ad 
    114    1.2        ad #include <dev/ic/mc146818reg.h>
    115    1.2        ad #include <i386/isa/nvram.h>
    116    1.2        ad #include <dev/isa/isareg.h>
    117    1.2        ad 
    118   1.38        ad #include "tsc.h"
    119   1.38        ad 
    120   1.87    jruoho static int	cpu_match(device_t, cfdata_t, void *);
    121   1.87    jruoho static void	cpu_attach(device_t, device_t, void *);
    122   1.87    jruoho static void	cpu_defer(device_t);
    123   1.87    jruoho static int	cpu_rescan(device_t, const char *, const int *);
    124   1.87    jruoho static void	cpu_childdetached(device_t, device_t);
    125   1.96    jruoho static bool	cpu_stop(device_t);
    126   1.69    dyoung static bool	cpu_suspend(device_t, const pmf_qual_t *);
    127   1.69    dyoung static bool	cpu_resume(device_t, const pmf_qual_t *);
    128   1.79    jruoho static bool	cpu_shutdown(device_t, int);
    129   1.12  jmcneill 
    130    1.2        ad struct cpu_softc {
    131   1.23      cube 	device_t sc_dev;		/* device tree glue */
    132    1.2        ad 	struct cpu_info *sc_info;	/* pointer to CPU info */
    133   1.20  jmcneill 	bool sc_wasonline;
    134    1.2        ad };
    135    1.2        ad 
    136  1.101  kiyohara #ifdef MULTIPROCESSOR
    137  1.120   msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
    138    1.2        ad void mp_cpu_start_cleanup(struct cpu_info *);
    139    1.2        ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    140    1.2        ad 					    mp_cpu_start_cleanup };
    141  1.101  kiyohara #endif
    142    1.2        ad 
    143    1.2        ad 
    144   1.81  jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    145   1.81  jmcneill     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    146    1.2        ad 
    147    1.2        ad /*
    148    1.2        ad  * Statically-allocated CPU info for the primary CPU (or the only
    149    1.2        ad  * CPU, on uniprocessors).  The CPU info list is initialized to
    150    1.2        ad  * point at it.
    151    1.2        ad  */
    152   1.21        ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    153    1.2        ad 	.ci_dev = 0,
    154    1.2        ad 	.ci_self = &cpu_info_primary,
    155    1.2        ad 	.ci_idepth = -1,
    156    1.2        ad 	.ci_curlwp = &lwp0,
    157   1.43        ad 	.ci_curldt = -1,
    158    1.2        ad };
    159    1.2        ad 
    160    1.2        ad struct cpu_info *cpu_info_list = &cpu_info_primary;
    161    1.2        ad 
    162    1.2        ad #ifdef i386
    163  1.134      maxv void		cpu_set_tss_gates(struct cpu_info *);
    164    1.2        ad #endif
    165    1.2        ad 
    166   1.12  jmcneill static void	cpu_init_idle_lwp(struct cpu_info *);
    167   1.12  jmcneill 
    168  1.122      maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
    169  1.117      maxv 			/* [0] basic features cpuid.1:%edx
    170  1.117      maxv 			 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
    171  1.117      maxv 			 * [2] extended features cpuid:80000001:%edx
    172  1.117      maxv 			 * [3] extended features cpuid:80000001:%ecx
    173  1.117      maxv 			 * [4] VIA padlock features
    174  1.117      maxv 			 * [5] structured extended features cpuid.7:%ebx
    175  1.117      maxv 			 * [6] structured extended features cpuid.7:%ecx
    176  1.117      maxv 			 */
    177   1.70       jym 
    178  1.101  kiyohara #ifdef MULTIPROCESSOR
    179   1.12  jmcneill bool x86_mp_online;
    180   1.12  jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    181  1.101  kiyohara #endif
    182  1.101  kiyohara #if NLAPIC > 0
    183   1.14     joerg static vaddr_t cmos_data_mapping;
    184  1.101  kiyohara #endif
    185   1.45        ad struct cpu_info *cpu_starting;
    186    1.2        ad 
    187  1.101  kiyohara #ifdef MULTIPROCESSOR
    188    1.2        ad void    	cpu_hatch(void *);
    189    1.2        ad static void    	cpu_boot_secondary(struct cpu_info *ci);
    190    1.2        ad static void    	cpu_start_secondary(struct cpu_info *ci);
    191  1.101  kiyohara #endif
    192  1.101  kiyohara #if NLAPIC > 0
    193  1.136      maxv static void	cpu_copy_trampoline(paddr_t);
    194  1.101  kiyohara #endif
    195    1.2        ad 
    196    1.2        ad /*
    197    1.2        ad  * Runs once per boot once multiprocessor goo has been detected and
    198    1.2        ad  * the local APIC on the boot processor has been mapped.
    199    1.2        ad  *
    200    1.2        ad  * Called from lapic_boot_init() (from mpbios_scan()).
    201    1.2        ad  */
    202  1.101  kiyohara #if NLAPIC > 0
    203    1.2        ad void
    204    1.9        ad cpu_init_first(void)
    205    1.2        ad {
    206    1.2        ad 
    207   1.45        ad 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    208   1.14     joerg 
    209   1.14     joerg 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    210   1.14     joerg 	if (cmos_data_mapping == 0)
    211   1.14     joerg 		panic("No KVA for page 0");
    212   1.64    cegger 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    213   1.14     joerg 	pmap_update(pmap_kernel());
    214    1.2        ad }
    215  1.101  kiyohara #endif
    216    1.2        ad 
    217   1.87    jruoho static int
    218   1.23      cube cpu_match(device_t parent, cfdata_t match, void *aux)
    219    1.2        ad {
    220    1.2        ad 
    221    1.2        ad 	return 1;
    222    1.2        ad }
    223    1.2        ad 
    224  1.142      maxv #ifdef __HAVE_PCPU_AREA
    225  1.142      maxv void
    226  1.142      maxv cpu_pcpuarea_init(struct cpu_info *ci)
    227  1.142      maxv {
    228  1.142      maxv 	struct vm_page *pg;
    229  1.142      maxv 	size_t i, npages;
    230  1.142      maxv 	vaddr_t base, va;
    231  1.142      maxv 	paddr_t pa;
    232  1.142      maxv 
    233  1.142      maxv 	CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
    234  1.142      maxv 
    235  1.142      maxv 	npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
    236  1.142      maxv 	base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
    237  1.142      maxv 
    238  1.142      maxv 	for (i = 0; i < npages; i++) {
    239  1.142      maxv 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
    240  1.142      maxv 		if (pg == NULL) {
    241  1.142      maxv 			panic("failed to allocate pcpu PA");
    242  1.142      maxv 		}
    243  1.142      maxv 
    244  1.142      maxv 		va = base + i * PAGE_SIZE;
    245  1.142      maxv 		pa = VM_PAGE_TO_PHYS(pg);
    246  1.142      maxv 
    247  1.142      maxv 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
    248  1.142      maxv 	}
    249  1.142      maxv 
    250  1.142      maxv 	pmap_update(pmap_kernel());
    251  1.142      maxv }
    252  1.142      maxv #endif
    253  1.142      maxv 
    254    1.2        ad static void
    255    1.2        ad cpu_vm_init(struct cpu_info *ci)
    256    1.2        ad {
    257    1.2        ad 	int ncolors = 2, i;
    258    1.2        ad 
    259    1.2        ad 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    260    1.2        ad 		struct x86_cache_info *cai;
    261    1.2        ad 		int tcolors;
    262    1.2        ad 
    263    1.2        ad 		cai = &ci->ci_cinfo[i];
    264    1.2        ad 
    265    1.2        ad 		tcolors = atop(cai->cai_totalsize);
    266    1.2        ad 		switch(cai->cai_associativity) {
    267    1.2        ad 		case 0xff:
    268    1.2        ad 			tcolors = 1; /* fully associative */
    269    1.2        ad 			break;
    270    1.2        ad 		case 0:
    271    1.2        ad 		case 1:
    272    1.2        ad 			break;
    273    1.2        ad 		default:
    274    1.2        ad 			tcolors /= cai->cai_associativity;
    275    1.2        ad 		}
    276  1.161  riastrad 		ncolors = uimax(ncolors, tcolors);
    277   1.32       tls 		/*
    278   1.32       tls 		 * If the desired number of colors is not a power of
    279   1.32       tls 		 * two, it won't be good.  Find the greatest power of
    280   1.32       tls 		 * two which is an even divisor of the number of colors,
    281   1.32       tls 		 * to preserve even coloring of pages.
    282   1.32       tls 		 */
    283   1.32       tls 		if (ncolors & (ncolors - 1) ) {
    284   1.32       tls 			int try, picked = 1;
    285   1.32       tls 			for (try = 1; try < ncolors; try *= 2) {
    286   1.32       tls 				if (ncolors % try == 0) picked = try;
    287   1.32       tls 			}
    288   1.32       tls 			if (picked == 1) {
    289   1.32       tls 				panic("desired number of cache colors %d is "
    290   1.32       tls 			      	" > 1, but not even!", ncolors);
    291   1.32       tls 			}
    292   1.32       tls 			ncolors = picked;
    293   1.32       tls 		}
    294    1.2        ad 	}
    295    1.2        ad 
    296    1.2        ad 	/*
    297   1.94       mrg 	 * Knowing the size of the largest cache on this CPU, potentially
    298   1.94       mrg 	 * re-color our pages.
    299    1.2        ad 	 */
    300   1.52        ad 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    301    1.2        ad 	uvm_page_recolor(ncolors);
    302   1.98     rmind 
    303   1.98     rmind 	pmap_tlb_cpu_init(ci);
    304  1.123      maxv #ifndef __HAVE_DIRECT_MAP
    305  1.123      maxv 	pmap_vpage_cpu_init(ci);
    306  1.123      maxv #endif
    307    1.2        ad }
    308    1.2        ad 
    309   1.87    jruoho static void
    310   1.23      cube cpu_attach(device_t parent, device_t self, void *aux)
    311    1.2        ad {
    312   1.23      cube 	struct cpu_softc *sc = device_private(self);
    313    1.2        ad 	struct cpu_attach_args *caa = aux;
    314    1.2        ad 	struct cpu_info *ci;
    315   1.21        ad 	uintptr_t ptr;
    316  1.101  kiyohara #if NLAPIC > 0
    317    1.2        ad 	int cpunum = caa->cpu_number;
    318  1.101  kiyohara #endif
    319   1.51        ad 	static bool again;
    320    1.2        ad 
    321   1.23      cube 	sc->sc_dev = self;
    322   1.23      cube 
    323   1.98     rmind 	if (ncpu == maxcpus) {
    324   1.98     rmind #ifndef _LP64
    325   1.98     rmind 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    326   1.98     rmind #else
    327   1.98     rmind 		aprint_error(": too many CPUs\n");
    328   1.98     rmind #endif
    329   1.48        ad 		return;
    330   1.48        ad 	}
    331   1.48        ad 
    332    1.2        ad 	/*
    333    1.2        ad 	 * If we're an Application Processor, allocate a cpu_info
    334    1.2        ad 	 * structure, otherwise use the primary's.
    335    1.2        ad 	 */
    336    1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    337   1.36        ad 		if ((boothowto & RB_MD1) != 0) {
    338   1.35        ad 			aprint_error(": multiprocessor boot disabled\n");
    339   1.56  jmcneill 			if (!pmf_device_register(self, NULL, NULL))
    340   1.56  jmcneill 				aprint_error_dev(self,
    341   1.56  jmcneill 				    "couldn't establish power handler\n");
    342   1.35        ad 			return;
    343   1.35        ad 		}
    344    1.2        ad 		aprint_naive(": Application Processor\n");
    345  1.143      maxv 		ptr = (uintptr_t)uvm_km_alloc(kernel_map,
    346  1.143      maxv 		    sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
    347  1.143      maxv 		    UVM_KMF_WIRED|UVM_KMF_ZERO);
    348   1.67       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    349   1.43        ad 		ci->ci_curldt = -1;
    350    1.2        ad 	} else {
    351    1.2        ad 		aprint_naive(": %s Processor\n",
    352    1.2        ad 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    353    1.2        ad 		ci = &cpu_info_primary;
    354  1.101  kiyohara #if NLAPIC > 0
    355    1.2        ad 		if (cpunum != lapic_cpu_number()) {
    356   1.51        ad 			/* XXX should be done earlier. */
    357   1.39        ad 			uint32_t reg;
    358   1.39        ad 			aprint_verbose("\n");
    359   1.47        ad 			aprint_verbose_dev(self, "running CPU at apic %d"
    360   1.47        ad 			    " instead of at expected %d", lapic_cpu_number(),
    361   1.23      cube 			    cpunum);
    362  1.125    nonaka 			reg = lapic_readreg(LAPIC_ID);
    363  1.125    nonaka 			lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    364   1.39        ad 			    (cpunum << LAPIC_ID_SHIFT));
    365    1.2        ad 		}
    366   1.47        ad 		if (cpunum != lapic_cpu_number()) {
    367   1.47        ad 			aprint_error_dev(self, "unable to reset apic id\n");
    368   1.47        ad 		}
    369  1.101  kiyohara #endif
    370    1.2        ad 	}
    371    1.2        ad 
    372    1.2        ad 	ci->ci_self = ci;
    373    1.2        ad 	sc->sc_info = ci;
    374    1.2        ad 	ci->ci_dev = self;
    375   1.74    jruoho 	ci->ci_acpiid = caa->cpu_id;
    376   1.42        ad 	ci->ci_cpuid = caa->cpu_number;
    377    1.2        ad 	ci->ci_func = caa->cpu_func;
    378  1.112   msaitoh 	aprint_normal("\n");
    379    1.2        ad 
    380   1.55        ad 	/* Must be before mi_cpu_attach(). */
    381   1.55        ad 	cpu_vm_init(ci);
    382   1.55        ad 
    383    1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    384    1.2        ad 		int error;
    385    1.2        ad 
    386    1.2        ad 		error = mi_cpu_attach(ci);
    387    1.2        ad 		if (error != 0) {
    388   1.47        ad 			aprint_error_dev(self,
    389   1.30    cegger 			    "mi_cpu_attach failed with %d\n", error);
    390    1.2        ad 			return;
    391    1.2        ad 		}
    392  1.142      maxv #ifdef __HAVE_PCPU_AREA
    393  1.142      maxv 		cpu_pcpuarea_init(ci);
    394  1.142      maxv #endif
    395   1.15      yamt 		cpu_init_tss(ci);
    396    1.2        ad 	} else {
    397    1.2        ad 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    398    1.2        ad 	}
    399    1.2        ad 
    400  1.146      maxv #ifdef SVS
    401  1.146      maxv 	cpu_svs_init(ci);
    402  1.146      maxv #endif
    403  1.146      maxv 
    404    1.2        ad 	pmap_reference(pmap_kernel());
    405    1.2        ad 	ci->ci_pmap = pmap_kernel();
    406    1.2        ad 	ci->ci_tlbstate = TLBSTATE_STALE;
    407    1.2        ad 
    408   1.51        ad 	/*
    409   1.51        ad 	 * Boot processor may not be attached first, but the below
    410   1.51        ad 	 * must be done to allow booting other processors.
    411   1.51        ad 	 */
    412   1.51        ad 	if (!again) {
    413   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    414   1.51        ad 		/* Basic init. */
    415    1.2        ad 		cpu_intr_init(ci);
    416   1.40        ad 		cpu_get_tsc_freq(ci);
    417    1.2        ad 		cpu_init(ci);
    418  1.134      maxv #ifdef i386
    419    1.2        ad 		cpu_set_tss_gates(ci);
    420  1.134      maxv #endif
    421    1.2        ad 		pmap_cpu_init_late(ci);
    422  1.101  kiyohara #if NLAPIC > 0
    423   1.51        ad 		if (caa->cpu_role != CPU_ROLE_SP) {
    424   1.51        ad 			/* Enable lapic. */
    425   1.51        ad 			lapic_enable();
    426   1.51        ad 			lapic_set_lvt();
    427   1.51        ad 			lapic_calibrate_timer(ci);
    428   1.51        ad 		}
    429  1.101  kiyohara #endif
    430   1.51        ad 		/* Make sure DELAY() is initialized. */
    431   1.51        ad 		DELAY(1);
    432   1.51        ad 		again = true;
    433   1.51        ad 	}
    434   1.51        ad 
    435   1.51        ad 	/* further PCB init done later. */
    436   1.51        ad 
    437   1.51        ad 	switch (caa->cpu_role) {
    438   1.51        ad 	case CPU_ROLE_SP:
    439   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    440   1.51        ad 		cpu_identify(ci);
    441   1.53        ad 		x86_errata();
    442   1.37     joerg 		x86_cpu_idle_init();
    443    1.2        ad 		break;
    444    1.2        ad 
    445    1.2        ad 	case CPU_ROLE_BP:
    446   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    447   1.40        ad 		cpu_identify(ci);
    448   1.53        ad 		x86_errata();
    449   1.37     joerg 		x86_cpu_idle_init();
    450    1.2        ad 		break;
    451    1.2        ad 
    452  1.101  kiyohara #ifdef MULTIPROCESSOR
    453    1.2        ad 	case CPU_ROLE_AP:
    454    1.2        ad 		/*
    455    1.2        ad 		 * report on an AP
    456    1.2        ad 		 */
    457    1.2        ad 		cpu_intr_init(ci);
    458    1.2        ad 		gdt_alloc_cpu(ci);
    459  1.134      maxv #ifdef i386
    460    1.2        ad 		cpu_set_tss_gates(ci);
    461  1.134      maxv #endif
    462    1.2        ad 		pmap_cpu_init_late(ci);
    463    1.2        ad 		cpu_start_secondary(ci);
    464    1.2        ad 		if (ci->ci_flags & CPUF_PRESENT) {
    465   1.59    cegger 			struct cpu_info *tmp;
    466   1.59    cegger 
    467   1.40        ad 			cpu_identify(ci);
    468   1.59    cegger 			tmp = cpu_info_list;
    469   1.59    cegger 			while (tmp->ci_next)
    470   1.59    cegger 				tmp = tmp->ci_next;
    471   1.59    cegger 
    472   1.59    cegger 			tmp->ci_next = ci;
    473    1.2        ad 		}
    474    1.2        ad 		break;
    475  1.101  kiyohara #endif
    476    1.2        ad 
    477    1.2        ad 	default:
    478    1.2        ad 		panic("unknown processor type??\n");
    479    1.2        ad 	}
    480   1.51        ad 
    481   1.71    cegger 	pat_init(ci);
    482    1.2        ad 
    483   1.79    jruoho 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    484   1.12  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    485   1.12  jmcneill 
    486  1.101  kiyohara #ifdef MULTIPROCESSOR
    487    1.2        ad 	if (mp_verbose) {
    488    1.2        ad 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    489   1.65     rmind 		struct pcb *pcb = lwp_getpcb(l);
    490    1.2        ad 
    491   1.47        ad 		aprint_verbose_dev(self,
    492   1.28    cegger 		    "idle lwp at %p, idle sp at %p\n",
    493   1.28    cegger 		    l,
    494    1.2        ad #ifdef i386
    495   1.65     rmind 		    (void *)pcb->pcb_esp
    496    1.2        ad #else
    497   1.65     rmind 		    (void *)pcb->pcb_rsp
    498    1.2        ad #endif
    499    1.2        ad 		);
    500    1.2        ad 	}
    501  1.101  kiyohara #endif
    502   1.81  jmcneill 
    503   1.89    jruoho 	/*
    504   1.89    jruoho 	 * Postpone the "cpufeaturebus" scan.
    505   1.89    jruoho 	 * It is safe to scan the pseudo-bus
    506   1.89    jruoho 	 * only after all CPUs have attached.
    507   1.89    jruoho 	 */
    508   1.87    jruoho 	(void)config_defer(self, cpu_defer);
    509   1.87    jruoho }
    510   1.87    jruoho 
    511   1.87    jruoho static void
    512   1.87    jruoho cpu_defer(device_t self)
    513   1.87    jruoho {
    514   1.81  jmcneill 	cpu_rescan(self, NULL, NULL);
    515   1.81  jmcneill }
    516   1.81  jmcneill 
    517   1.87    jruoho static int
    518   1.81  jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
    519   1.81  jmcneill {
    520   1.83    jruoho 	struct cpu_softc *sc = device_private(self);
    521   1.81  jmcneill 	struct cpufeature_attach_args cfaa;
    522   1.81  jmcneill 	struct cpu_info *ci = sc->sc_info;
    523   1.81  jmcneill 
    524   1.81  jmcneill 	memset(&cfaa, 0, sizeof(cfaa));
    525   1.81  jmcneill 	cfaa.ci = ci;
    526   1.81  jmcneill 
    527   1.81  jmcneill 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    528   1.83    jruoho 		if (ci->ci_frequency == NULL) {
    529   1.86    jruoho 			cfaa.name = "frequency";
    530   1.84    jruoho 			ci->ci_frequency = config_found_ia(self,
    531   1.84    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    532   1.84    jruoho 		}
    533   1.84    jruoho 
    534   1.81  jmcneill 		if (ci->ci_padlock == NULL) {
    535   1.81  jmcneill 			cfaa.name = "padlock";
    536   1.81  jmcneill 			ci->ci_padlock = config_found_ia(self,
    537   1.81  jmcneill 			    "cpufeaturebus", &cfaa, NULL);
    538   1.81  jmcneill 		}
    539   1.82    jruoho 
    540   1.86    jruoho 		if (ci->ci_temperature == NULL) {
    541   1.86    jruoho 			cfaa.name = "temperature";
    542   1.86    jruoho 			ci->ci_temperature = config_found_ia(self,
    543   1.85    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    544   1.85    jruoho 		}
    545   1.95  jmcneill 
    546   1.95  jmcneill 		if (ci->ci_vm == NULL) {
    547   1.95  jmcneill 			cfaa.name = "vm";
    548   1.95  jmcneill 			ci->ci_vm = config_found_ia(self,
    549   1.95  jmcneill 			    "cpufeaturebus", &cfaa, NULL);
    550   1.95  jmcneill 		}
    551   1.81  jmcneill 	}
    552   1.81  jmcneill 
    553   1.81  jmcneill 	return 0;
    554   1.81  jmcneill }
    555   1.81  jmcneill 
    556   1.87    jruoho static void
    557   1.81  jmcneill cpu_childdetached(device_t self, device_t child)
    558   1.81  jmcneill {
    559   1.81  jmcneill 	struct cpu_softc *sc = device_private(self);
    560   1.81  jmcneill 	struct cpu_info *ci = sc->sc_info;
    561   1.81  jmcneill 
    562   1.83    jruoho 	if (ci->ci_frequency == child)
    563   1.83    jruoho 		ci->ci_frequency = NULL;
    564   1.82    jruoho 
    565   1.81  jmcneill 	if (ci->ci_padlock == child)
    566   1.81  jmcneill 		ci->ci_padlock = NULL;
    567   1.83    jruoho 
    568   1.86    jruoho 	if (ci->ci_temperature == child)
    569   1.86    jruoho 		ci->ci_temperature = NULL;
    570   1.95  jmcneill 
    571   1.95  jmcneill 	if (ci->ci_vm == child)
    572   1.95  jmcneill 		ci->ci_vm = NULL;
    573    1.2        ad }
    574    1.2        ad 
    575    1.2        ad /*
    576    1.2        ad  * Initialize the processor appropriately.
    577    1.2        ad  */
    578    1.2        ad 
    579    1.2        ad void
    580    1.9        ad cpu_init(struct cpu_info *ci)
    581    1.2        ad {
    582  1.141      maxv 	extern int x86_fpu_save;
    583  1.113  christos 	uint32_t cr4 = 0;
    584    1.2        ad 
    585    1.2        ad 	lcr0(rcr0() | CR0_WP);
    586    1.2        ad 
    587    1.2        ad 	/*
    588    1.2        ad 	 * On a P6 or above, enable global TLB caching if the
    589    1.2        ad 	 * hardware supports it.
    590    1.2        ad 	 */
    591   1.70       jym 	if (cpu_feature[0] & CPUID_PGE)
    592  1.149      maxv #ifdef SVS
    593  1.149      maxv 		if (!svs_enabled)
    594  1.149      maxv #endif
    595  1.110       dsl 		cr4 |= CR4_PGE;	/* enable global TLB caching */
    596    1.2        ad 
    597    1.2        ad 	/*
    598    1.2        ad 	 * If we have FXSAVE/FXRESTOR, use them.
    599    1.2        ad 	 */
    600   1.70       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    601  1.110       dsl 		cr4 |= CR4_OSFXSR;
    602    1.2        ad 
    603    1.2        ad 		/*
    604    1.2        ad 		 * If we have SSE/SSE2, enable XMM exceptions.
    605    1.2        ad 		 */
    606   1.70       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    607  1.110       dsl 			cr4 |= CR4_OSXMMEXCPT;
    608    1.2        ad 	}
    609    1.2        ad 
    610  1.110       dsl 	/* If xsave is supported, enable it */
    611  1.110       dsl 	if (cpu_feature[1] & CPUID2_XSAVE)
    612  1.110       dsl 		cr4 |= CR4_OSXSAVE;
    613  1.110       dsl 
    614  1.118      maxv 	/* If SMEP is supported, enable it */
    615  1.118      maxv 	if (cpu_feature[5] & CPUID_SEF_SMEP)
    616  1.118      maxv 		cr4 |= CR4_SMEP;
    617  1.118      maxv 
    618  1.137      maxv 	/* If SMAP is supported, enable it */
    619  1.137      maxv 	if (cpu_feature[5] & CPUID_SEF_SMAP)
    620  1.137      maxv 		cr4 |= CR4_SMAP;
    621  1.137      maxv 
    622  1.113  christos 	if (cr4) {
    623  1.113  christos 		cr4 |= rcr4();
    624  1.113  christos 		lcr4(cr4);
    625  1.113  christos 	}
    626  1.110       dsl 
    627  1.145   msaitoh 	/*
    628  1.145   msaitoh 	 * Changing CR4 register may change cpuid values. For example, setting
    629  1.145   msaitoh 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
    630  1.145   msaitoh 	 * ci_feat_val[1], so update it.
    631  1.145   msaitoh 	 * XXX Other than ci_feat_val[1] might be changed.
    632  1.145   msaitoh 	 */
    633  1.145   msaitoh 	if (cpuid_level >= 1) {
    634  1.145   msaitoh 		u_int descs[4];
    635  1.145   msaitoh 
    636  1.145   msaitoh 		x86_cpuid(1, descs);
    637  1.145   msaitoh 		ci->ci_feat_val[1] = descs[2];
    638  1.145   msaitoh 	}
    639  1.145   msaitoh 
    640  1.141      maxv 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
    641  1.158      maxv 		fpuinit_mxcsr_mask();
    642  1.141      maxv 	}
    643  1.141      maxv 
    644  1.110       dsl 	/* If xsave is enabled, enable all fpu features */
    645  1.110       dsl 	if (cr4 & CR4_OSXSAVE)
    646  1.110       dsl 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    647  1.110       dsl 
    648    1.2        ad #ifdef MTRR
    649    1.2        ad 	/*
    650    1.2        ad 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    651    1.2        ad 	 */
    652   1.70       jym 	if (cpu_feature[0] & CPUID_MTRR) {
    653    1.2        ad 		if ((ci->ci_flags & CPUF_AP) == 0)
    654    1.2        ad 			i686_mtrr_init_first();
    655    1.2        ad 		mtrr_init_cpu(ci);
    656    1.2        ad 	}
    657    1.2        ad 
    658    1.2        ad #ifdef i386
    659    1.2        ad 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    660    1.2        ad 		/*
    661    1.2        ad 		 * Must be a K6-2 Step >= 7 or a K6-III.
    662    1.2        ad 		 */
    663  1.106   msaitoh 		if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
    664  1.106   msaitoh 			if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
    665  1.106   msaitoh 			    (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
    666  1.106   msaitoh 			     CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
    667    1.2        ad 				mtrr_funcs = &k6_mtrr_funcs;
    668    1.2        ad 				k6_mtrr_init_first();
    669    1.2        ad 				mtrr_init_cpu(ci);
    670    1.2        ad 			}
    671    1.2        ad 		}
    672    1.2        ad 	}
    673    1.2        ad #endif	/* i386 */
    674    1.2        ad #endif /* MTRR */
    675    1.2        ad 
    676   1.38        ad 	if (ci != &cpu_info_primary) {
    677  1.150      maxv 		/* Synchronize TSC */
    678   1.38        ad 		wbinvd();
    679   1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    680   1.38        ad 		tsc_sync_ap(ci);
    681   1.38        ad 	} else {
    682   1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    683   1.38        ad 	}
    684    1.2        ad }
    685    1.2        ad 
    686  1.101  kiyohara #ifdef MULTIPROCESSOR
    687    1.2        ad void
    688   1.12  jmcneill cpu_boot_secondary_processors(void)
    689    1.2        ad {
    690    1.2        ad 	struct cpu_info *ci;
    691  1.100       chs 	kcpuset_t *cpus;
    692    1.2        ad 	u_long i;
    693    1.2        ad 
    694    1.5        ad 	/* Now that we know the number of CPUs, patch the text segment. */
    695   1.60        ad 	x86_patch(false);
    696    1.5        ad 
    697  1.100       chs 	kcpuset_create(&cpus, true);
    698  1.100       chs 	kcpuset_set(cpus, cpu_index(curcpu()));
    699  1.100       chs 	for (i = 0; i < maxcpus; i++) {
    700   1.57        ad 		ci = cpu_lookup(i);
    701    1.2        ad 		if (ci == NULL)
    702    1.2        ad 			continue;
    703    1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    704    1.2        ad 			continue;
    705    1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    706    1.2        ad 			continue;
    707    1.2        ad 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    708    1.2        ad 			continue;
    709    1.2        ad 		cpu_boot_secondary(ci);
    710  1.100       chs 		kcpuset_set(cpus, cpu_index(ci));
    711    1.2        ad 	}
    712  1.100       chs 	while (!kcpuset_match(cpus, kcpuset_running))
    713  1.100       chs 		;
    714  1.100       chs 	kcpuset_destroy(cpus);
    715    1.2        ad 
    716    1.2        ad 	x86_mp_online = true;
    717   1.38        ad 
    718   1.38        ad 	/* Now that we know about the TSC, attach the timecounter. */
    719   1.38        ad 	tsc_tc_init();
    720   1.55        ad 
    721   1.55        ad 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    722   1.70       jym 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
    723    1.2        ad }
    724  1.101  kiyohara #endif
    725    1.2        ad 
    726    1.2        ad static void
    727    1.2        ad cpu_init_idle_lwp(struct cpu_info *ci)
    728    1.2        ad {
    729    1.2        ad 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    730   1.65     rmind 	struct pcb *pcb = lwp_getpcb(l);
    731    1.2        ad 
    732    1.2        ad 	pcb->pcb_cr0 = rcr0();
    733    1.2        ad }
    734    1.2        ad 
    735    1.2        ad void
    736   1.12  jmcneill cpu_init_idle_lwps(void)
    737    1.2        ad {
    738    1.2        ad 	struct cpu_info *ci;
    739    1.2        ad 	u_long i;
    740    1.2        ad 
    741   1.54        ad 	for (i = 0; i < maxcpus; i++) {
    742   1.57        ad 		ci = cpu_lookup(i);
    743    1.2        ad 		if (ci == NULL)
    744    1.2        ad 			continue;
    745    1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    746    1.2        ad 			continue;
    747    1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    748    1.2        ad 			continue;
    749    1.2        ad 		cpu_init_idle_lwp(ci);
    750    1.2        ad 	}
    751    1.2        ad }
    752    1.2        ad 
    753  1.101  kiyohara #ifdef MULTIPROCESSOR
    754    1.2        ad void
    755   1.12  jmcneill cpu_start_secondary(struct cpu_info *ci)
    756    1.2        ad {
    757  1.136      maxv 	paddr_t mp_pdirpa;
    758   1.38        ad 	u_long psl;
    759    1.2        ad 	int i;
    760    1.2        ad 
    761   1.12  jmcneill 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    762  1.136      maxv 	cpu_copy_trampoline(mp_pdirpa);
    763  1.136      maxv 
    764    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    765    1.2        ad 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    766   1.45        ad 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    767   1.25        ad 		return;
    768   1.45        ad 	}
    769    1.2        ad 
    770    1.2        ad 	/*
    771   1.50        ad 	 * Wait for it to become ready.   Setting cpu_starting opens the
    772   1.50        ad 	 * initial gate and allows the AP to start soft initialization.
    773    1.2        ad 	 */
    774   1.50        ad 	KASSERT(cpu_starting == NULL);
    775   1.50        ad 	cpu_starting = ci;
    776   1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    777   1.11        ad 		i8254_delay(10);
    778    1.2        ad 	}
    779   1.38        ad 
    780    1.9        ad 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    781   1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    782    1.2        ad #if defined(MPDEBUG) && defined(DDB)
    783    1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    784    1.2        ad 		Debugger();
    785    1.2        ad #endif
    786   1.38        ad 	} else {
    787   1.38        ad 		/*
    788   1.68       jym 		 * Synchronize time stamp counters. Invalidate cache and do
    789  1.150      maxv 		 * twice (in tsc_sync_bp) to minimize possible cache effects.
    790  1.150      maxv 		 * Disable interrupts to try and rule out any external
    791  1.150      maxv 		 * interference.
    792   1.38        ad 		 */
    793   1.38        ad 		psl = x86_read_psl();
    794   1.38        ad 		x86_disable_intr();
    795   1.38        ad 		wbinvd();
    796   1.38        ad 		tsc_sync_bp(ci);
    797   1.38        ad 		x86_write_psl(psl);
    798    1.2        ad 	}
    799    1.2        ad 
    800    1.2        ad 	CPU_START_CLEANUP(ci);
    801   1.45        ad 	cpu_starting = NULL;
    802    1.2        ad }
    803    1.2        ad 
    804    1.2        ad void
    805   1.12  jmcneill cpu_boot_secondary(struct cpu_info *ci)
    806    1.2        ad {
    807   1.38        ad 	int64_t drift;
    808   1.38        ad 	u_long psl;
    809    1.2        ad 	int i;
    810    1.2        ad 
    811    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    812   1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    813   1.11        ad 		i8254_delay(10);
    814    1.2        ad 	}
    815    1.9        ad 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    816   1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    817    1.2        ad #if defined(MPDEBUG) && defined(DDB)
    818    1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    819    1.2        ad 		Debugger();
    820    1.2        ad #endif
    821   1.38        ad 	} else {
    822   1.38        ad 		/* Synchronize TSC again, check for drift. */
    823   1.38        ad 		drift = ci->ci_data.cpu_cc_skew;
    824   1.38        ad 		psl = x86_read_psl();
    825   1.38        ad 		x86_disable_intr();
    826   1.38        ad 		wbinvd();
    827   1.38        ad 		tsc_sync_bp(ci);
    828   1.38        ad 		x86_write_psl(psl);
    829   1.38        ad 		drift -= ci->ci_data.cpu_cc_skew;
    830   1.38        ad 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    831   1.38        ad 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    832   1.38        ad 		tsc_sync_drift(drift);
    833    1.2        ad 	}
    834    1.2        ad }
    835    1.2        ad 
    836    1.2        ad /*
    837  1.117      maxv  * The CPU ends up here when it's ready to run.
    838    1.2        ad  * This is called from code in mptramp.s; at this point, we are running
    839    1.2        ad  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    840    1.2        ad  * this processor will enter the idle loop and start looking for work.
    841    1.2        ad  */
    842    1.2        ad void
    843    1.2        ad cpu_hatch(void *v)
    844    1.2        ad {
    845    1.2        ad 	struct cpu_info *ci = (struct cpu_info *)v;
    846   1.65     rmind 	struct pcb *pcb;
    847  1.130       kre 	int s, i;
    848    1.2        ad 
    849  1.162      maxv 	/* ------------------------------------------------------------- */
    850  1.162      maxv 
    851  1.162      maxv 	/*
    852  1.162      maxv 	 * This section of code must be compiled with SSP disabled, to
    853  1.162      maxv 	 * prevent a race against cpu0. See sys/conf/ssp.mk.
    854  1.162      maxv 	 */
    855  1.162      maxv 
    856   1.12  jmcneill 	cpu_init_msrs(ci, true);
    857   1.40        ad 	cpu_probe(ci);
    858  1.154      maxv 	cpu_speculation_init(ci);
    859   1.46        ad 
    860   1.46        ad 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    861  1.134      maxv 	/* cpu_get_tsc_freq(ci); */
    862   1.38        ad 
    863    1.8        ad 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    864   1.38        ad 
    865   1.38        ad 	/*
    866  1.150      maxv 	 * Synchronize the TSC for the first time. Note that interrupts are
    867  1.150      maxv 	 * off at this point.
    868   1.38        ad 	 */
    869   1.38        ad 	wbinvd();
    870    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    871   1.38        ad 	tsc_sync_ap(ci);
    872   1.38        ad 
    873  1.162      maxv 	/* ------------------------------------------------------------- */
    874  1.162      maxv 
    875   1.38        ad 	/*
    876  1.150      maxv 	 * Wait to be brought online.
    877  1.150      maxv 	 *
    878  1.150      maxv 	 * Use MONITOR/MWAIT if available. These instructions put the CPU in
    879  1.150      maxv 	 * a low consumption mode (C-state), and if the TSC is not invariant,
    880  1.150      maxv 	 * this causes the TSC to drift. We want this to happen, so that we
    881  1.150      maxv 	 * can later detect (in tsc_tc_init) any abnormal drift with invariant
    882  1.150      maxv 	 * TSCs. That's just for safety; by definition such drifts should
    883  1.150      maxv 	 * never occur with invariant TSCs.
    884  1.150      maxv 	 *
    885  1.150      maxv 	 * If not available, try PAUSE. We'd like to use HLT, but we have
    886  1.150      maxv 	 * interrupts off.
    887   1.38        ad 	 */
    888    1.6        ad 	while ((ci->ci_flags & CPUF_GO) == 0) {
    889   1.70       jym 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    890   1.38        ad 			x86_monitor(&ci->ci_flags, 0, 0);
    891   1.38        ad 			if ((ci->ci_flags & CPUF_GO) != 0) {
    892   1.38        ad 				continue;
    893   1.38        ad 			}
    894   1.38        ad 			x86_mwait(0, 0);
    895   1.38        ad 		} else {
    896  1.131  pgoyette 	/*
    897  1.131  pgoyette 	 * XXX The loop repetition count could be a lot higher, but
    898  1.131  pgoyette 	 * XXX currently qemu emulator takes a _very_long_time_ to
    899  1.131  pgoyette 	 * XXX execute the pause instruction.  So for now, use a low
    900  1.131  pgoyette 	 * XXX value to allow the cpu to hatch before timing out.
    901  1.131  pgoyette 	 */
    902  1.131  pgoyette 			for (i = 50; i != 0; i--) {
    903  1.127  pgoyette 				x86_pause();
    904  1.127  pgoyette 			}
    905   1.38        ad 		}
    906    1.6        ad 	}
    907    1.5        ad 
    908   1.26    cegger 	/* Because the text may have been patched in x86_patch(). */
    909    1.5        ad 	wbinvd();
    910    1.5        ad 	x86_flush();
    911   1.88     rmind 	tlbflushg();
    912    1.5        ad 
    913    1.8        ad 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    914    1.2        ad 
    915   1.73       jym #ifdef PAE
    916   1.73       jym 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    917   1.73       jym 	for (i = 0 ; i < PDP_SIZE; i++) {
    918   1.73       jym 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
    919   1.73       jym 	}
    920   1.73       jym 	lcr3(ci->ci_pae_l3_pdirpa);
    921   1.73       jym #else
    922   1.73       jym 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    923   1.73       jym #endif
    924   1.73       jym 
    925   1.65     rmind 	pcb = lwp_getpcb(curlwp);
    926   1.73       jym 	pcb->pcb_cr3 = rcr3();
    927   1.65     rmind 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    928   1.65     rmind 	lcr0(pcb->pcb_cr0);
    929   1.65     rmind 
    930    1.2        ad 	cpu_init_idt();
    931    1.8        ad 	gdt_init_cpu(ci);
    932  1.111     joerg #if NLAPIC > 0
    933    1.8        ad 	lapic_enable();
    934    1.2        ad 	lapic_set_lvt();
    935    1.8        ad 	lapic_initclocks();
    936  1.111     joerg #endif
    937    1.2        ad 
    938    1.2        ad 	fpuinit(ci);
    939    1.2        ad 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    940   1.15      yamt 	ltr(ci->ci_tss_sel);
    941    1.2        ad 
    942  1.150      maxv 	/*
    943  1.150      maxv 	 * cpu_init will re-synchronize the TSC, and will detect any abnormal
    944  1.150      maxv 	 * drift that would have been caused by the use of MONITOR/MWAIT
    945  1.150      maxv 	 * above.
    946  1.150      maxv 	 */
    947    1.2        ad 	cpu_init(ci);
    948    1.7        ad 	cpu_get_tsc_freq(ci);
    949    1.2        ad 
    950    1.2        ad 	s = splhigh();
    951  1.124    nonaka 	lapic_write_tpri(0);
    952    1.3        ad 	x86_enable_intr();
    953    1.2        ad 	splx(s);
    954    1.6        ad 	x86_errata();
    955    1.2        ad 
    956   1.42        ad 	aprint_debug_dev(ci->ci_dev, "running\n");
    957   1.98     rmind 
    958   1.98     rmind 	idle_loop(NULL);
    959   1.98     rmind 	KASSERT(false);
    960    1.2        ad }
    961  1.101  kiyohara #endif
    962    1.2        ad 
    963    1.2        ad #if defined(DDB)
    964    1.2        ad 
    965    1.2        ad #include <ddb/db_output.h>
    966    1.2        ad #include <machine/db_machdep.h>
    967    1.2        ad 
    968    1.2        ad /*
    969    1.2        ad  * Dump CPU information from ddb.
    970    1.2        ad  */
    971    1.2        ad void
    972    1.2        ad cpu_debug_dump(void)
    973    1.2        ad {
    974    1.2        ad 	struct cpu_info *ci;
    975    1.2        ad 	CPU_INFO_ITERATOR cii;
    976    1.2        ad 
    977  1.107  christos 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    978    1.2        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    979  1.107  christos 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    980    1.2        ad 		    ci,
    981   1.27    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    982    1.2        ad 		    (long)ci->ci_cpuid,
    983    1.2        ad 		    ci->ci_flags, ci->ci_ipis,
    984  1.107  christos 		    ci->ci_curlwp,
    985  1.107  christos 		    ci->ci_fpcurlwp);
    986    1.2        ad 	}
    987    1.2        ad }
    988    1.2        ad #endif
    989    1.2        ad 
    990  1.101  kiyohara #if NLAPIC > 0
    991    1.2        ad static void
    992  1.136      maxv cpu_copy_trampoline(paddr_t pdir_pa)
    993    1.2        ad {
    994  1.136      maxv 	extern uint32_t nox_flag;
    995    1.2        ad 	extern u_char cpu_spinup_trampoline[];
    996    1.2        ad 	extern u_char cpu_spinup_trampoline_end[];
    997   1.12  jmcneill 	vaddr_t mp_trampoline_vaddr;
    998  1.136      maxv 	struct {
    999  1.136      maxv 		uint32_t large;
   1000  1.136      maxv 		uint32_t nox;
   1001  1.136      maxv 		uint32_t pdir;
   1002  1.136      maxv 	} smp_data;
   1003  1.136      maxv 	CTASSERT(sizeof(smp_data) == 3 * 4);
   1004  1.136      maxv 
   1005  1.136      maxv 	smp_data.large = (pmap_largepages != 0);
   1006  1.136      maxv 	smp_data.nox = nox_flag;
   1007  1.136      maxv 	smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
   1008   1.12  jmcneill 
   1009  1.136      maxv 	/* Enter the physical address */
   1010   1.12  jmcneill 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1011   1.12  jmcneill 	    UVM_KMF_VAONLY);
   1012   1.12  jmcneill 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
   1013   1.64    cegger 	    VM_PROT_READ | VM_PROT_WRITE, 0);
   1014    1.2        ad 	pmap_update(pmap_kernel());
   1015  1.136      maxv 
   1016  1.136      maxv 	/* Copy boot code */
   1017   1.12  jmcneill 	memcpy((void *)mp_trampoline_vaddr,
   1018    1.2        ad 	    cpu_spinup_trampoline,
   1019   1.26    cegger 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
   1020   1.12  jmcneill 
   1021  1.136      maxv 	/* Copy smp_data at the end */
   1022  1.136      maxv 	memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
   1023  1.136      maxv 	    &smp_data, sizeof(smp_data));
   1024  1.136      maxv 
   1025   1.12  jmcneill 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
   1026   1.12  jmcneill 	pmap_update(pmap_kernel());
   1027   1.12  jmcneill 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
   1028    1.2        ad }
   1029  1.101  kiyohara #endif
   1030    1.2        ad 
   1031  1.101  kiyohara #ifdef MULTIPROCESSOR
   1032    1.2        ad int
   1033   1.14     joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
   1034    1.2        ad {
   1035   1.44        ad 	unsigned short dwordptr[2];
   1036    1.2        ad 	int error;
   1037   1.14     joerg 
   1038   1.14     joerg 	/*
   1039   1.14     joerg 	 * Bootstrap code must be addressable in real mode
   1040   1.14     joerg 	 * and it must be page aligned.
   1041   1.14     joerg 	 */
   1042   1.14     joerg 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
   1043    1.2        ad 
   1044    1.2        ad 	/*
   1045    1.2        ad 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
   1046    1.2        ad 	 */
   1047    1.2        ad 
   1048    1.2        ad 	outb(IO_RTC, NVRAM_RESET);
   1049    1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
   1050    1.2        ad 
   1051    1.2        ad 	/*
   1052    1.2        ad 	 * "and the warm reset vector (DWORD based at 40:67) to point
   1053    1.2        ad 	 * to the AP startup code ..."
   1054    1.2        ad 	 */
   1055    1.2        ad 
   1056    1.2        ad 	dwordptr[0] = 0;
   1057   1.14     joerg 	dwordptr[1] = target >> 4;
   1058    1.2        ad 
   1059  1.111     joerg #if NLAPIC > 0
   1060   1.25        ad 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
   1061  1.111     joerg #endif
   1062    1.2        ad 
   1063   1.70       jym 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
   1064   1.25        ad 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1065   1.25        ad 		return ENODEV;
   1066   1.25        ad 	}
   1067   1.25        ad 
   1068    1.2        ad 	/*
   1069   1.51        ad 	 * ... prior to executing the following sequence:".  We'll also add in
   1070   1.51        ad 	 * local cache flush, in case the BIOS has left the AP with its cache
   1071   1.51        ad 	 * disabled.  It may not be able to cope with MP coherency.
   1072    1.2        ad 	 */
   1073   1.51        ad 	wbinvd();
   1074    1.2        ad 
   1075    1.2        ad 	if (ci->ci_flags & CPUF_AP) {
   1076   1.42        ad 		error = x86_ipi_init(ci->ci_cpuid);
   1077   1.26    cegger 		if (error != 0) {
   1078   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1079   1.50        ad 			    __func__);
   1080    1.2        ad 			return error;
   1081   1.25        ad 		}
   1082   1.11        ad 		i8254_delay(10000);
   1083    1.2        ad 
   1084   1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1085   1.26    cegger 		if (error != 0) {
   1086   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1087   1.50        ad 			    __func__);
   1088   1.25        ad 			return error;
   1089   1.25        ad 		}
   1090   1.25        ad 		i8254_delay(200);
   1091    1.2        ad 
   1092   1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1093   1.26    cegger 		if (error != 0) {
   1094   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1095   1.50        ad 			    __func__);
   1096   1.25        ad 			return error;
   1097    1.2        ad 		}
   1098   1.25        ad 		i8254_delay(200);
   1099    1.2        ad 	}
   1100   1.44        ad 
   1101    1.2        ad 	return 0;
   1102    1.2        ad }
   1103    1.2        ad 
   1104    1.2        ad void
   1105    1.2        ad mp_cpu_start_cleanup(struct cpu_info *ci)
   1106    1.2        ad {
   1107    1.2        ad 	/*
   1108    1.2        ad 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1109    1.2        ad 	 */
   1110    1.2        ad 
   1111    1.2        ad 	outb(IO_RTC, NVRAM_RESET);
   1112    1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1113    1.2        ad }
   1114  1.101  kiyohara #endif
   1115    1.2        ad 
   1116    1.2        ad #ifdef __x86_64__
   1117    1.2        ad typedef void (vector)(void);
   1118  1.148      maxv extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
   1119   1.70       jym #endif
   1120    1.2        ad 
   1121    1.2        ad void
   1122   1.12  jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
   1123    1.2        ad {
   1124   1.70       jym #ifdef __x86_64__
   1125    1.2        ad 	wrmsr(MSR_STAR,
   1126    1.2        ad 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1127    1.2        ad 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1128    1.2        ad 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1129    1.2        ad 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1130  1.138      maxv 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
   1131    1.2        ad 
   1132  1.148      maxv #ifdef SVS
   1133  1.148      maxv 	if (svs_enabled)
   1134  1.148      maxv 		wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
   1135  1.148      maxv #endif
   1136  1.148      maxv 
   1137   1.12  jmcneill 	if (full) {
   1138   1.12  jmcneill 		wrmsr(MSR_FSBASE, 0);
   1139   1.27    cegger 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1140   1.12  jmcneill 		wrmsr(MSR_KERNELGSBASE, 0);
   1141   1.12  jmcneill 	}
   1142   1.70       jym #endif	/* __x86_64__ */
   1143    1.2        ad 
   1144   1.70       jym 	if (cpu_feature[2] & CPUID_NOX)
   1145    1.2        ad 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1146    1.2        ad }
   1147    1.7        ad 
   1148  1.107  christos void
   1149  1.107  christos cpu_offline_md(void)
   1150  1.107  christos {
   1151  1.107  christos 	int s;
   1152  1.107  christos 
   1153  1.107  christos 	s = splhigh();
   1154  1.107  christos 	fpusave_cpu(true);
   1155  1.107  christos 	splx(s);
   1156  1.107  christos }
   1157  1.107  christos 
   1158   1.12  jmcneill /* XXX joerg restructure and restart CPUs individually */
   1159   1.12  jmcneill static bool
   1160   1.96    jruoho cpu_stop(device_t dv)
   1161   1.12  jmcneill {
   1162   1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1163   1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1164   1.18     joerg 	int err;
   1165   1.12  jmcneill 
   1166   1.96    jruoho 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1167   1.93    jruoho 
   1168   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1169   1.93    jruoho 		return true;
   1170   1.93    jruoho 
   1171   1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1172   1.12  jmcneill 		return true;
   1173   1.12  jmcneill 
   1174   1.20  jmcneill 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1175   1.17     joerg 
   1176   1.20  jmcneill 	if (sc->sc_wasonline) {
   1177   1.20  jmcneill 		mutex_enter(&cpu_lock);
   1178   1.58     rmind 		err = cpu_setstate(ci, false);
   1179   1.20  jmcneill 		mutex_exit(&cpu_lock);
   1180   1.79    jruoho 
   1181   1.93    jruoho 		if (err != 0)
   1182   1.20  jmcneill 			return false;
   1183   1.20  jmcneill 	}
   1184   1.17     joerg 
   1185   1.17     joerg 	return true;
   1186   1.12  jmcneill }
   1187   1.12  jmcneill 
   1188   1.12  jmcneill static bool
   1189   1.96    jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1190   1.96    jruoho {
   1191   1.96    jruoho 	struct cpu_softc *sc = device_private(dv);
   1192   1.96    jruoho 	struct cpu_info *ci = sc->sc_info;
   1193   1.96    jruoho 
   1194   1.96    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1195   1.96    jruoho 		return true;
   1196   1.96    jruoho 	else {
   1197   1.96    jruoho 		cpufreq_suspend(ci);
   1198   1.96    jruoho 	}
   1199   1.96    jruoho 
   1200   1.96    jruoho 	return cpu_stop(dv);
   1201   1.96    jruoho }
   1202   1.96    jruoho 
   1203   1.96    jruoho static bool
   1204   1.69    dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
   1205   1.12  jmcneill {
   1206   1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1207   1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1208   1.20  jmcneill 	int err = 0;
   1209   1.12  jmcneill 
   1210   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1211   1.12  jmcneill 		return true;
   1212   1.93    jruoho 
   1213   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1214   1.93    jruoho 		goto out;
   1215   1.93    jruoho 
   1216   1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1217   1.93    jruoho 		goto out;
   1218   1.12  jmcneill 
   1219   1.20  jmcneill 	if (sc->sc_wasonline) {
   1220   1.20  jmcneill 		mutex_enter(&cpu_lock);
   1221   1.58     rmind 		err = cpu_setstate(ci, true);
   1222   1.20  jmcneill 		mutex_exit(&cpu_lock);
   1223   1.20  jmcneill 	}
   1224   1.13     joerg 
   1225   1.93    jruoho out:
   1226   1.93    jruoho 	if (err != 0)
   1227   1.93    jruoho 		return false;
   1228   1.93    jruoho 
   1229   1.93    jruoho 	cpufreq_resume(ci);
   1230   1.93    jruoho 
   1231   1.93    jruoho 	return true;
   1232   1.12  jmcneill }
   1233   1.12  jmcneill 
   1234   1.79    jruoho static bool
   1235   1.79    jruoho cpu_shutdown(device_t dv, int how)
   1236   1.79    jruoho {
   1237   1.90    dyoung 	struct cpu_softc *sc = device_private(dv);
   1238   1.90    dyoung 	struct cpu_info *ci = sc->sc_info;
   1239   1.90    dyoung 
   1240   1.96    jruoho 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1241   1.90    dyoung 		return false;
   1242   1.90    dyoung 
   1243   1.96    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1244   1.96    jruoho 		return true;
   1245   1.96    jruoho 
   1246   1.96    jruoho 	return cpu_stop(dv);
   1247   1.79    jruoho }
   1248   1.79    jruoho 
   1249    1.7        ad void
   1250    1.7        ad cpu_get_tsc_freq(struct cpu_info *ci)
   1251    1.7        ad {
   1252    1.7        ad 	uint64_t last_tsc;
   1253    1.7        ad 
   1254   1.70       jym 	if (cpu_hascounter()) {
   1255   1.80    bouyer 		last_tsc = cpu_counter_serializing();
   1256    1.7        ad 		i8254_delay(100000);
   1257   1.80    bouyer 		ci->ci_data.cpu_cc_freq =
   1258   1.80    bouyer 		    (cpu_counter_serializing() - last_tsc) * 10;
   1259    1.7        ad 	}
   1260    1.7        ad }
   1261   1.37     joerg 
   1262   1.37     joerg void
   1263   1.37     joerg x86_cpu_idle_mwait(void)
   1264   1.37     joerg {
   1265   1.37     joerg 	struct cpu_info *ci = curcpu();
   1266   1.37     joerg 
   1267   1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1268   1.37     joerg 
   1269   1.37     joerg 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1270   1.37     joerg 	if (__predict_false(ci->ci_want_resched)) {
   1271   1.37     joerg 		return;
   1272   1.37     joerg 	}
   1273   1.37     joerg 	x86_mwait(0, 0);
   1274   1.37     joerg }
   1275   1.37     joerg 
   1276   1.37     joerg void
   1277   1.37     joerg x86_cpu_idle_halt(void)
   1278   1.37     joerg {
   1279   1.37     joerg 	struct cpu_info *ci = curcpu();
   1280   1.37     joerg 
   1281   1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1282   1.37     joerg 
   1283   1.37     joerg 	x86_disable_intr();
   1284   1.37     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1285   1.37     joerg 		x86_stihlt();
   1286   1.37     joerg 	} else {
   1287   1.37     joerg 		x86_enable_intr();
   1288   1.37     joerg 	}
   1289   1.37     joerg }
   1290   1.73       jym 
   1291   1.73       jym /*
   1292   1.73       jym  * Loads pmap for the current CPU.
   1293   1.73       jym  */
   1294   1.73       jym void
   1295   1.97    bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1296   1.73       jym {
   1297  1.144      maxv #ifdef SVS
   1298  1.159      maxv 	if (svs_enabled) {
   1299  1.159      maxv 		svs_pdir_switch(pmap);
   1300  1.159      maxv 	}
   1301  1.144      maxv #endif
   1302  1.144      maxv 
   1303   1.73       jym #ifdef PAE
   1304   1.99      yamt 	struct cpu_info *ci = curcpu();
   1305  1.116       nat 	bool interrupts_enabled;
   1306   1.99      yamt 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1307   1.99      yamt 	int i;
   1308   1.73       jym 
   1309   1.99      yamt 	/*
   1310   1.99      yamt 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1311   1.99      yamt 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1312   1.99      yamt 	 * reload cr3.
   1313   1.99      yamt 	 */
   1314  1.116       nat 	interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
   1315  1.116       nat 	if (interrupts_enabled)
   1316  1.116       nat 		x86_disable_intr();
   1317  1.116       nat 
   1318   1.73       jym 	for (i = 0 ; i < PDP_SIZE; i++) {
   1319   1.73       jym 		l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
   1320   1.73       jym 	}
   1321  1.134      maxv 
   1322  1.116       nat 	if (interrupts_enabled)
   1323  1.116       nat 		x86_enable_intr();
   1324   1.73       jym 	tlbflush();
   1325  1.160      maxv #else
   1326   1.73       jym 	lcr3(pmap_pdirpa(pmap, 0));
   1327  1.160      maxv #endif
   1328   1.73       jym }
   1329   1.91    cherry 
   1330   1.91    cherry /*
   1331   1.91    cherry  * Notify all other cpus to halt.
   1332   1.91    cherry  */
   1333   1.91    cherry 
   1334   1.91    cherry void
   1335   1.92    cherry cpu_broadcast_halt(void)
   1336   1.91    cherry {
   1337   1.91    cherry 	x86_broadcast_ipi(X86_IPI_HALT);
   1338   1.91    cherry }
   1339   1.91    cherry 
   1340   1.91    cherry /*
   1341   1.91    cherry  * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
   1342   1.91    cherry  */
   1343   1.91    cherry 
   1344   1.91    cherry void
   1345   1.91    cherry cpu_kick(struct cpu_info *ci)
   1346   1.91    cherry {
   1347   1.91    cherry 	x86_send_ipi(ci, 0);
   1348   1.91    cherry }
   1349