cpu.c revision 1.175 1 1.175 ad /* $NetBSD: cpu.c,v 1.175 2019/11/22 23:36:25 ad Exp $ */
2 1.2 ad
3 1.134 maxv /*
4 1.98 rmind * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.175 ad __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.175 2019/11/22 23:36:25 ad Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.101 kiyohara #include "opt_multiprocessor.h"
71 1.144 maxv #include "opt_svs.h"
72 1.2 ad
73 1.2 ad #include "lapic.h"
74 1.2 ad #include "ioapic.h"
75 1.2 ad
76 1.2 ad #include <sys/param.h>
77 1.2 ad #include <sys/proc.h>
78 1.2 ad #include <sys/systm.h>
79 1.2 ad #include <sys/device.h>
80 1.9 ad #include <sys/cpu.h>
81 1.93 jruoho #include <sys/cpufreq.h>
82 1.98 rmind #include <sys/idle.h>
83 1.9 ad #include <sys/atomic.h>
84 1.35 ad #include <sys/reboot.h>
85 1.174 maxv #include <sys/csan.h>
86 1.2 ad
87 1.78 uebayasi #include <uvm/uvm.h>
88 1.2 ad
89 1.102 pgoyette #include "acpica.h" /* for NACPICA, for mp_verbose */
90 1.102 pgoyette
91 1.2 ad #include <machine/cpufunc.h>
92 1.2 ad #include <machine/cpuvar.h>
93 1.2 ad #include <machine/pmap.h>
94 1.2 ad #include <machine/vmparam.h>
95 1.102 pgoyette #if defined(MULTIPROCESSOR)
96 1.2 ad #include <machine/mpbiosvar.h>
97 1.101 kiyohara #endif
98 1.102 pgoyette #include <machine/mpconfig.h> /* for mp_verbose */
99 1.2 ad #include <machine/pcb.h>
100 1.2 ad #include <machine/specialreg.h>
101 1.2 ad #include <machine/segments.h>
102 1.2 ad #include <machine/gdt.h>
103 1.2 ad #include <machine/mtrr.h>
104 1.2 ad #include <machine/pio.h>
105 1.38 ad #include <machine/cpu_counter.h>
106 1.2 ad
107 1.109 dsl #include <x86/fpu.h>
108 1.109 dsl
109 1.101 kiyohara #if NLAPIC > 0
110 1.2 ad #include <machine/apicvar.h>
111 1.2 ad #include <machine/i82489reg.h>
112 1.2 ad #include <machine/i82489var.h>
113 1.101 kiyohara #endif
114 1.2 ad
115 1.2 ad #include <dev/ic/mc146818reg.h>
116 1.2 ad #include <i386/isa/nvram.h>
117 1.2 ad #include <dev/isa/isareg.h>
118 1.2 ad
119 1.38 ad #include "tsc.h"
120 1.38 ad
121 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
122 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
123 1.87 jruoho static void cpu_defer(device_t);
124 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
125 1.87 jruoho static void cpu_childdetached(device_t, device_t);
126 1.96 jruoho static bool cpu_stop(device_t);
127 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
128 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
129 1.79 jruoho static bool cpu_shutdown(device_t, int);
130 1.12 jmcneill
131 1.2 ad struct cpu_softc {
132 1.23 cube device_t sc_dev; /* device tree glue */
133 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
134 1.20 jmcneill bool sc_wasonline;
135 1.2 ad };
136 1.2 ad
137 1.101 kiyohara #ifdef MULTIPROCESSOR
138 1.120 msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
139 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
140 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
141 1.2 ad mp_cpu_start_cleanup };
142 1.101 kiyohara #endif
143 1.2 ad
144 1.2 ad
145 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
146 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
147 1.2 ad
148 1.2 ad /*
149 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
150 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
151 1.2 ad * point at it.
152 1.2 ad */
153 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
154 1.2 ad .ci_dev = 0,
155 1.2 ad .ci_self = &cpu_info_primary,
156 1.2 ad .ci_idepth = -1,
157 1.2 ad .ci_curlwp = &lwp0,
158 1.43 ad .ci_curldt = -1,
159 1.2 ad };
160 1.2 ad
161 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
162 1.2 ad
163 1.2 ad #ifdef i386
164 1.134 maxv void cpu_set_tss_gates(struct cpu_info *);
165 1.2 ad #endif
166 1.2 ad
167 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
168 1.12 jmcneill
169 1.122 maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
170 1.117 maxv /* [0] basic features cpuid.1:%edx
171 1.117 maxv * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
172 1.117 maxv * [2] extended features cpuid:80000001:%edx
173 1.117 maxv * [3] extended features cpuid:80000001:%ecx
174 1.117 maxv * [4] VIA padlock features
175 1.117 maxv * [5] structured extended features cpuid.7:%ebx
176 1.117 maxv * [6] structured extended features cpuid.7:%ecx
177 1.117 maxv */
178 1.70 jym
179 1.101 kiyohara #ifdef MULTIPROCESSOR
180 1.12 jmcneill bool x86_mp_online;
181 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
182 1.101 kiyohara #endif
183 1.101 kiyohara #if NLAPIC > 0
184 1.14 joerg static vaddr_t cmos_data_mapping;
185 1.101 kiyohara #endif
186 1.45 ad struct cpu_info *cpu_starting;
187 1.2 ad
188 1.101 kiyohara #ifdef MULTIPROCESSOR
189 1.2 ad void cpu_hatch(void *);
190 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
191 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
192 1.101 kiyohara #if NLAPIC > 0
193 1.136 maxv static void cpu_copy_trampoline(paddr_t);
194 1.101 kiyohara #endif
195 1.164 cherry #endif /* MULTIPROCESSOR */
196 1.2 ad
197 1.2 ad /*
198 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
199 1.2 ad * the local APIC on the boot processor has been mapped.
200 1.2 ad *
201 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
202 1.2 ad */
203 1.101 kiyohara #if NLAPIC > 0
204 1.2 ad void
205 1.9 ad cpu_init_first(void)
206 1.2 ad {
207 1.2 ad
208 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
209 1.14 joerg
210 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
211 1.14 joerg if (cmos_data_mapping == 0)
212 1.14 joerg panic("No KVA for page 0");
213 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
214 1.14 joerg pmap_update(pmap_kernel());
215 1.2 ad }
216 1.101 kiyohara #endif
217 1.2 ad
218 1.87 jruoho static int
219 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
220 1.2 ad {
221 1.2 ad
222 1.2 ad return 1;
223 1.2 ad }
224 1.2 ad
225 1.142 maxv #ifdef __HAVE_PCPU_AREA
226 1.142 maxv void
227 1.142 maxv cpu_pcpuarea_init(struct cpu_info *ci)
228 1.142 maxv {
229 1.142 maxv struct vm_page *pg;
230 1.142 maxv size_t i, npages;
231 1.142 maxv vaddr_t base, va;
232 1.142 maxv paddr_t pa;
233 1.142 maxv
234 1.142 maxv CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
235 1.142 maxv
236 1.142 maxv npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
237 1.142 maxv base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
238 1.142 maxv
239 1.142 maxv for (i = 0; i < npages; i++) {
240 1.142 maxv pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
241 1.142 maxv if (pg == NULL) {
242 1.142 maxv panic("failed to allocate pcpu PA");
243 1.142 maxv }
244 1.142 maxv
245 1.142 maxv va = base + i * PAGE_SIZE;
246 1.142 maxv pa = VM_PAGE_TO_PHYS(pg);
247 1.142 maxv
248 1.142 maxv pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
249 1.142 maxv }
250 1.142 maxv
251 1.142 maxv pmap_update(pmap_kernel());
252 1.142 maxv }
253 1.142 maxv #endif
254 1.142 maxv
255 1.2 ad static void
256 1.2 ad cpu_vm_init(struct cpu_info *ci)
257 1.2 ad {
258 1.2 ad int ncolors = 2, i;
259 1.2 ad
260 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
261 1.2 ad struct x86_cache_info *cai;
262 1.2 ad int tcolors;
263 1.2 ad
264 1.2 ad cai = &ci->ci_cinfo[i];
265 1.2 ad
266 1.2 ad tcolors = atop(cai->cai_totalsize);
267 1.2 ad switch(cai->cai_associativity) {
268 1.2 ad case 0xff:
269 1.2 ad tcolors = 1; /* fully associative */
270 1.2 ad break;
271 1.2 ad case 0:
272 1.2 ad case 1:
273 1.2 ad break;
274 1.2 ad default:
275 1.2 ad tcolors /= cai->cai_associativity;
276 1.2 ad }
277 1.161 riastrad ncolors = uimax(ncolors, tcolors);
278 1.32 tls /*
279 1.32 tls * If the desired number of colors is not a power of
280 1.32 tls * two, it won't be good. Find the greatest power of
281 1.32 tls * two which is an even divisor of the number of colors,
282 1.32 tls * to preserve even coloring of pages.
283 1.32 tls */
284 1.32 tls if (ncolors & (ncolors - 1) ) {
285 1.32 tls int try, picked = 1;
286 1.32 tls for (try = 1; try < ncolors; try *= 2) {
287 1.32 tls if (ncolors % try == 0) picked = try;
288 1.32 tls }
289 1.32 tls if (picked == 1) {
290 1.32 tls panic("desired number of cache colors %d is "
291 1.32 tls " > 1, but not even!", ncolors);
292 1.32 tls }
293 1.32 tls ncolors = picked;
294 1.32 tls }
295 1.2 ad }
296 1.2 ad
297 1.2 ad /*
298 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
299 1.94 mrg * re-color our pages.
300 1.2 ad */
301 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
302 1.2 ad uvm_page_recolor(ncolors);
303 1.98 rmind
304 1.98 rmind pmap_tlb_cpu_init(ci);
305 1.123 maxv #ifndef __HAVE_DIRECT_MAP
306 1.123 maxv pmap_vpage_cpu_init(ci);
307 1.123 maxv #endif
308 1.2 ad }
309 1.2 ad
310 1.87 jruoho static void
311 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
312 1.2 ad {
313 1.23 cube struct cpu_softc *sc = device_private(self);
314 1.2 ad struct cpu_attach_args *caa = aux;
315 1.2 ad struct cpu_info *ci;
316 1.21 ad uintptr_t ptr;
317 1.101 kiyohara #if NLAPIC > 0
318 1.2 ad int cpunum = caa->cpu_number;
319 1.101 kiyohara #endif
320 1.51 ad static bool again;
321 1.2 ad
322 1.23 cube sc->sc_dev = self;
323 1.23 cube
324 1.163 cherry if (ncpu > maxcpus) {
325 1.98 rmind #ifndef _LP64
326 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
327 1.98 rmind #else
328 1.98 rmind aprint_error(": too many CPUs\n");
329 1.98 rmind #endif
330 1.48 ad return;
331 1.48 ad }
332 1.48 ad
333 1.2 ad /*
334 1.2 ad * If we're an Application Processor, allocate a cpu_info
335 1.2 ad * structure, otherwise use the primary's.
336 1.2 ad */
337 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
338 1.36 ad if ((boothowto & RB_MD1) != 0) {
339 1.35 ad aprint_error(": multiprocessor boot disabled\n");
340 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
341 1.56 jmcneill aprint_error_dev(self,
342 1.56 jmcneill "couldn't establish power handler\n");
343 1.35 ad return;
344 1.35 ad }
345 1.2 ad aprint_naive(": Application Processor\n");
346 1.143 maxv ptr = (uintptr_t)uvm_km_alloc(kernel_map,
347 1.143 maxv sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
348 1.143 maxv UVM_KMF_WIRED|UVM_KMF_ZERO);
349 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
350 1.43 ad ci->ci_curldt = -1;
351 1.2 ad } else {
352 1.2 ad aprint_naive(": %s Processor\n",
353 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
354 1.2 ad ci = &cpu_info_primary;
355 1.101 kiyohara #if NLAPIC > 0
356 1.2 ad if (cpunum != lapic_cpu_number()) {
357 1.51 ad /* XXX should be done earlier. */
358 1.39 ad uint32_t reg;
359 1.39 ad aprint_verbose("\n");
360 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
361 1.47 ad " instead of at expected %d", lapic_cpu_number(),
362 1.23 cube cpunum);
363 1.125 nonaka reg = lapic_readreg(LAPIC_ID);
364 1.125 nonaka lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
365 1.39 ad (cpunum << LAPIC_ID_SHIFT));
366 1.2 ad }
367 1.47 ad if (cpunum != lapic_cpu_number()) {
368 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
369 1.47 ad }
370 1.101 kiyohara #endif
371 1.2 ad }
372 1.2 ad
373 1.2 ad ci->ci_self = ci;
374 1.2 ad sc->sc_info = ci;
375 1.2 ad ci->ci_dev = self;
376 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
377 1.42 ad ci->ci_cpuid = caa->cpu_number;
378 1.2 ad ci->ci_func = caa->cpu_func;
379 1.112 msaitoh aprint_normal("\n");
380 1.2 ad
381 1.55 ad /* Must be before mi_cpu_attach(). */
382 1.55 ad cpu_vm_init(ci);
383 1.55 ad
384 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
385 1.2 ad int error;
386 1.2 ad
387 1.2 ad error = mi_cpu_attach(ci);
388 1.2 ad if (error != 0) {
389 1.47 ad aprint_error_dev(self,
390 1.30 cegger "mi_cpu_attach failed with %d\n", error);
391 1.2 ad return;
392 1.2 ad }
393 1.142 maxv #ifdef __HAVE_PCPU_AREA
394 1.142 maxv cpu_pcpuarea_init(ci);
395 1.142 maxv #endif
396 1.15 yamt cpu_init_tss(ci);
397 1.2 ad } else {
398 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
399 1.2 ad }
400 1.2 ad
401 1.146 maxv #ifdef SVS
402 1.146 maxv cpu_svs_init(ci);
403 1.146 maxv #endif
404 1.146 maxv
405 1.2 ad pmap_reference(pmap_kernel());
406 1.2 ad ci->ci_pmap = pmap_kernel();
407 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
408 1.2 ad
409 1.51 ad /*
410 1.51 ad * Boot processor may not be attached first, but the below
411 1.51 ad * must be done to allow booting other processors.
412 1.51 ad */
413 1.51 ad if (!again) {
414 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
415 1.51 ad /* Basic init. */
416 1.2 ad cpu_intr_init(ci);
417 1.40 ad cpu_get_tsc_freq(ci);
418 1.2 ad cpu_init(ci);
419 1.134 maxv #ifdef i386
420 1.2 ad cpu_set_tss_gates(ci);
421 1.134 maxv #endif
422 1.2 ad pmap_cpu_init_late(ci);
423 1.101 kiyohara #if NLAPIC > 0
424 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
425 1.51 ad /* Enable lapic. */
426 1.51 ad lapic_enable();
427 1.51 ad lapic_set_lvt();
428 1.51 ad lapic_calibrate_timer(ci);
429 1.51 ad }
430 1.101 kiyohara #endif
431 1.51 ad /* Make sure DELAY() is initialized. */
432 1.51 ad DELAY(1);
433 1.174 maxv kcsan_cpu_init(ci);
434 1.51 ad again = true;
435 1.51 ad }
436 1.51 ad
437 1.51 ad /* further PCB init done later. */
438 1.51 ad
439 1.51 ad switch (caa->cpu_role) {
440 1.51 ad case CPU_ROLE_SP:
441 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
442 1.51 ad cpu_identify(ci);
443 1.53 ad x86_errata();
444 1.37 joerg x86_cpu_idle_init();
445 1.2 ad break;
446 1.2 ad
447 1.2 ad case CPU_ROLE_BP:
448 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
449 1.40 ad cpu_identify(ci);
450 1.53 ad x86_errata();
451 1.37 joerg x86_cpu_idle_init();
452 1.2 ad break;
453 1.2 ad
454 1.101 kiyohara #ifdef MULTIPROCESSOR
455 1.2 ad case CPU_ROLE_AP:
456 1.2 ad /*
457 1.2 ad * report on an AP
458 1.2 ad */
459 1.2 ad cpu_intr_init(ci);
460 1.2 ad gdt_alloc_cpu(ci);
461 1.134 maxv #ifdef i386
462 1.2 ad cpu_set_tss_gates(ci);
463 1.134 maxv #endif
464 1.2 ad pmap_cpu_init_late(ci);
465 1.2 ad cpu_start_secondary(ci);
466 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
467 1.59 cegger struct cpu_info *tmp;
468 1.59 cegger
469 1.40 ad cpu_identify(ci);
470 1.59 cegger tmp = cpu_info_list;
471 1.59 cegger while (tmp->ci_next)
472 1.59 cegger tmp = tmp->ci_next;
473 1.59 cegger
474 1.59 cegger tmp->ci_next = ci;
475 1.2 ad }
476 1.2 ad break;
477 1.101 kiyohara #endif
478 1.2 ad
479 1.2 ad default:
480 1.2 ad panic("unknown processor type??\n");
481 1.2 ad }
482 1.51 ad
483 1.71 cegger pat_init(ci);
484 1.2 ad
485 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
486 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
487 1.12 jmcneill
488 1.101 kiyohara #ifdef MULTIPROCESSOR
489 1.2 ad if (mp_verbose) {
490 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
491 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
492 1.2 ad
493 1.47 ad aprint_verbose_dev(self,
494 1.28 cegger "idle lwp at %p, idle sp at %p\n",
495 1.28 cegger l,
496 1.2 ad #ifdef i386
497 1.65 rmind (void *)pcb->pcb_esp
498 1.2 ad #else
499 1.65 rmind (void *)pcb->pcb_rsp
500 1.2 ad #endif
501 1.2 ad );
502 1.2 ad }
503 1.101 kiyohara #endif
504 1.81 jmcneill
505 1.89 jruoho /*
506 1.89 jruoho * Postpone the "cpufeaturebus" scan.
507 1.89 jruoho * It is safe to scan the pseudo-bus
508 1.89 jruoho * only after all CPUs have attached.
509 1.89 jruoho */
510 1.87 jruoho (void)config_defer(self, cpu_defer);
511 1.87 jruoho }
512 1.87 jruoho
513 1.87 jruoho static void
514 1.87 jruoho cpu_defer(device_t self)
515 1.87 jruoho {
516 1.81 jmcneill cpu_rescan(self, NULL, NULL);
517 1.81 jmcneill }
518 1.81 jmcneill
519 1.87 jruoho static int
520 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
521 1.81 jmcneill {
522 1.83 jruoho struct cpu_softc *sc = device_private(self);
523 1.81 jmcneill struct cpufeature_attach_args cfaa;
524 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
525 1.81 jmcneill
526 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
527 1.81 jmcneill cfaa.ci = ci;
528 1.81 jmcneill
529 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
530 1.83 jruoho if (ci->ci_frequency == NULL) {
531 1.86 jruoho cfaa.name = "frequency";
532 1.84 jruoho ci->ci_frequency = config_found_ia(self,
533 1.84 jruoho "cpufeaturebus", &cfaa, NULL);
534 1.84 jruoho }
535 1.84 jruoho
536 1.81 jmcneill if (ci->ci_padlock == NULL) {
537 1.81 jmcneill cfaa.name = "padlock";
538 1.81 jmcneill ci->ci_padlock = config_found_ia(self,
539 1.81 jmcneill "cpufeaturebus", &cfaa, NULL);
540 1.81 jmcneill }
541 1.82 jruoho
542 1.86 jruoho if (ci->ci_temperature == NULL) {
543 1.86 jruoho cfaa.name = "temperature";
544 1.86 jruoho ci->ci_temperature = config_found_ia(self,
545 1.85 jruoho "cpufeaturebus", &cfaa, NULL);
546 1.85 jruoho }
547 1.95 jmcneill
548 1.95 jmcneill if (ci->ci_vm == NULL) {
549 1.95 jmcneill cfaa.name = "vm";
550 1.95 jmcneill ci->ci_vm = config_found_ia(self,
551 1.95 jmcneill "cpufeaturebus", &cfaa, NULL);
552 1.95 jmcneill }
553 1.81 jmcneill }
554 1.81 jmcneill
555 1.81 jmcneill return 0;
556 1.81 jmcneill }
557 1.81 jmcneill
558 1.87 jruoho static void
559 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
560 1.81 jmcneill {
561 1.81 jmcneill struct cpu_softc *sc = device_private(self);
562 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
563 1.81 jmcneill
564 1.83 jruoho if (ci->ci_frequency == child)
565 1.83 jruoho ci->ci_frequency = NULL;
566 1.82 jruoho
567 1.81 jmcneill if (ci->ci_padlock == child)
568 1.81 jmcneill ci->ci_padlock = NULL;
569 1.83 jruoho
570 1.86 jruoho if (ci->ci_temperature == child)
571 1.86 jruoho ci->ci_temperature = NULL;
572 1.95 jmcneill
573 1.95 jmcneill if (ci->ci_vm == child)
574 1.95 jmcneill ci->ci_vm = NULL;
575 1.2 ad }
576 1.2 ad
577 1.2 ad /*
578 1.2 ad * Initialize the processor appropriately.
579 1.2 ad */
580 1.2 ad
581 1.2 ad void
582 1.9 ad cpu_init(struct cpu_info *ci)
583 1.2 ad {
584 1.141 maxv extern int x86_fpu_save;
585 1.113 christos uint32_t cr4 = 0;
586 1.2 ad
587 1.2 ad lcr0(rcr0() | CR0_WP);
588 1.2 ad
589 1.169 maxv /* If global TLB caching is supported, enable it */
590 1.70 jym if (cpu_feature[0] & CPUID_PGE)
591 1.169 maxv cr4 |= CR4_PGE;
592 1.2 ad
593 1.2 ad /*
594 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
595 1.2 ad */
596 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
597 1.110 dsl cr4 |= CR4_OSFXSR;
598 1.2 ad
599 1.2 ad /*
600 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
601 1.2 ad */
602 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
603 1.110 dsl cr4 |= CR4_OSXMMEXCPT;
604 1.2 ad }
605 1.2 ad
606 1.110 dsl /* If xsave is supported, enable it */
607 1.110 dsl if (cpu_feature[1] & CPUID2_XSAVE)
608 1.110 dsl cr4 |= CR4_OSXSAVE;
609 1.110 dsl
610 1.118 maxv /* If SMEP is supported, enable it */
611 1.118 maxv if (cpu_feature[5] & CPUID_SEF_SMEP)
612 1.118 maxv cr4 |= CR4_SMEP;
613 1.118 maxv
614 1.137 maxv /* If SMAP is supported, enable it */
615 1.137 maxv if (cpu_feature[5] & CPUID_SEF_SMAP)
616 1.137 maxv cr4 |= CR4_SMAP;
617 1.137 maxv
618 1.171 maxv #ifdef SVS
619 1.171 maxv /* If PCID is supported, enable it */
620 1.171 maxv if (svs_pcid)
621 1.171 maxv cr4 |= CR4_PCIDE;
622 1.171 maxv #endif
623 1.171 maxv
624 1.113 christos if (cr4) {
625 1.113 christos cr4 |= rcr4();
626 1.113 christos lcr4(cr4);
627 1.113 christos }
628 1.110 dsl
629 1.145 msaitoh /*
630 1.145 msaitoh * Changing CR4 register may change cpuid values. For example, setting
631 1.145 msaitoh * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
632 1.145 msaitoh * ci_feat_val[1], so update it.
633 1.145 msaitoh * XXX Other than ci_feat_val[1] might be changed.
634 1.145 msaitoh */
635 1.145 msaitoh if (cpuid_level >= 1) {
636 1.145 msaitoh u_int descs[4];
637 1.145 msaitoh
638 1.145 msaitoh x86_cpuid(1, descs);
639 1.145 msaitoh ci->ci_feat_val[1] = descs[2];
640 1.145 msaitoh }
641 1.145 msaitoh
642 1.141 maxv if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
643 1.158 maxv fpuinit_mxcsr_mask();
644 1.141 maxv }
645 1.141 maxv
646 1.110 dsl /* If xsave is enabled, enable all fpu features */
647 1.110 dsl if (cr4 & CR4_OSXSAVE)
648 1.110 dsl wrxcr(0, x86_xsave_features & XCR0_FPU);
649 1.110 dsl
650 1.2 ad #ifdef MTRR
651 1.2 ad /*
652 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
653 1.2 ad */
654 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
655 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
656 1.2 ad i686_mtrr_init_first();
657 1.2 ad mtrr_init_cpu(ci);
658 1.2 ad }
659 1.2 ad
660 1.2 ad #ifdef i386
661 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
662 1.2 ad /*
663 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
664 1.2 ad */
665 1.106 msaitoh if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
666 1.106 msaitoh if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
667 1.106 msaitoh (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
668 1.106 msaitoh CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
669 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
670 1.2 ad k6_mtrr_init_first();
671 1.2 ad mtrr_init_cpu(ci);
672 1.2 ad }
673 1.2 ad }
674 1.2 ad }
675 1.2 ad #endif /* i386 */
676 1.2 ad #endif /* MTRR */
677 1.2 ad
678 1.38 ad if (ci != &cpu_info_primary) {
679 1.150 maxv /* Synchronize TSC */
680 1.38 ad wbinvd();
681 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
682 1.38 ad tsc_sync_ap(ci);
683 1.38 ad } else {
684 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
685 1.38 ad }
686 1.2 ad }
687 1.2 ad
688 1.101 kiyohara #ifdef MULTIPROCESSOR
689 1.2 ad void
690 1.12 jmcneill cpu_boot_secondary_processors(void)
691 1.2 ad {
692 1.2 ad struct cpu_info *ci;
693 1.100 chs kcpuset_t *cpus;
694 1.2 ad u_long i;
695 1.2 ad
696 1.166 cherry #ifndef XEN
697 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
698 1.60 ad x86_patch(false);
699 1.166 cherry #endif
700 1.5 ad
701 1.100 chs kcpuset_create(&cpus, true);
702 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
703 1.100 chs for (i = 0; i < maxcpus; i++) {
704 1.57 ad ci = cpu_lookup(i);
705 1.2 ad if (ci == NULL)
706 1.2 ad continue;
707 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
708 1.2 ad continue;
709 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
710 1.2 ad continue;
711 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
712 1.2 ad continue;
713 1.2 ad cpu_boot_secondary(ci);
714 1.100 chs kcpuset_set(cpus, cpu_index(ci));
715 1.2 ad }
716 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
717 1.100 chs ;
718 1.100 chs kcpuset_destroy(cpus);
719 1.2 ad
720 1.2 ad x86_mp_online = true;
721 1.38 ad
722 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
723 1.38 ad tsc_tc_init();
724 1.55 ad
725 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
726 1.175 ad vm_page_zero_enable = false; /* ((cpu_feature[0] & CPUID_SSE2) != 0); */
727 1.2 ad }
728 1.101 kiyohara #endif
729 1.2 ad
730 1.2 ad static void
731 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
732 1.2 ad {
733 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
734 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
735 1.2 ad
736 1.2 ad pcb->pcb_cr0 = rcr0();
737 1.2 ad }
738 1.2 ad
739 1.2 ad void
740 1.12 jmcneill cpu_init_idle_lwps(void)
741 1.2 ad {
742 1.2 ad struct cpu_info *ci;
743 1.2 ad u_long i;
744 1.2 ad
745 1.54 ad for (i = 0; i < maxcpus; i++) {
746 1.57 ad ci = cpu_lookup(i);
747 1.2 ad if (ci == NULL)
748 1.2 ad continue;
749 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
750 1.2 ad continue;
751 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
752 1.2 ad continue;
753 1.2 ad cpu_init_idle_lwp(ci);
754 1.2 ad }
755 1.2 ad }
756 1.2 ad
757 1.101 kiyohara #ifdef MULTIPROCESSOR
758 1.2 ad void
759 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
760 1.2 ad {
761 1.38 ad u_long psl;
762 1.2 ad int i;
763 1.2 ad
764 1.165 cherry #if NLAPIC > 0
765 1.165 cherry paddr_t mp_pdirpa;
766 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
767 1.136 maxv cpu_copy_trampoline(mp_pdirpa);
768 1.165 cherry #endif
769 1.136 maxv
770 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
771 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
772 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
773 1.25 ad return;
774 1.45 ad }
775 1.2 ad
776 1.2 ad /*
777 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
778 1.50 ad * initial gate and allows the AP to start soft initialization.
779 1.2 ad */
780 1.50 ad KASSERT(cpu_starting == NULL);
781 1.50 ad cpu_starting = ci;
782 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
783 1.167 nonaka x86_delay(10);
784 1.2 ad }
785 1.38 ad
786 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
787 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
788 1.2 ad #if defined(MPDEBUG) && defined(DDB)
789 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
790 1.2 ad Debugger();
791 1.2 ad #endif
792 1.38 ad } else {
793 1.38 ad /*
794 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
795 1.150 maxv * twice (in tsc_sync_bp) to minimize possible cache effects.
796 1.150 maxv * Disable interrupts to try and rule out any external
797 1.150 maxv * interference.
798 1.38 ad */
799 1.38 ad psl = x86_read_psl();
800 1.38 ad x86_disable_intr();
801 1.38 ad wbinvd();
802 1.38 ad tsc_sync_bp(ci);
803 1.38 ad x86_write_psl(psl);
804 1.2 ad }
805 1.2 ad
806 1.2 ad CPU_START_CLEANUP(ci);
807 1.45 ad cpu_starting = NULL;
808 1.2 ad }
809 1.2 ad
810 1.2 ad void
811 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
812 1.2 ad {
813 1.38 ad int64_t drift;
814 1.38 ad u_long psl;
815 1.2 ad int i;
816 1.2 ad
817 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
818 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
819 1.167 nonaka x86_delay(10);
820 1.2 ad }
821 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
822 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
823 1.2 ad #if defined(MPDEBUG) && defined(DDB)
824 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
825 1.2 ad Debugger();
826 1.2 ad #endif
827 1.38 ad } else {
828 1.38 ad /* Synchronize TSC again, check for drift. */
829 1.38 ad drift = ci->ci_data.cpu_cc_skew;
830 1.38 ad psl = x86_read_psl();
831 1.38 ad x86_disable_intr();
832 1.38 ad wbinvd();
833 1.38 ad tsc_sync_bp(ci);
834 1.38 ad x86_write_psl(psl);
835 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
836 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
837 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
838 1.38 ad tsc_sync_drift(drift);
839 1.2 ad }
840 1.2 ad }
841 1.2 ad
842 1.2 ad /*
843 1.117 maxv * The CPU ends up here when it's ready to run.
844 1.2 ad * This is called from code in mptramp.s; at this point, we are running
845 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
846 1.2 ad * this processor will enter the idle loop and start looking for work.
847 1.2 ad */
848 1.2 ad void
849 1.2 ad cpu_hatch(void *v)
850 1.2 ad {
851 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
852 1.65 rmind struct pcb *pcb;
853 1.130 kre int s, i;
854 1.2 ad
855 1.162 maxv /* ------------------------------------------------------------- */
856 1.162 maxv
857 1.162 maxv /*
858 1.162 maxv * This section of code must be compiled with SSP disabled, to
859 1.162 maxv * prevent a race against cpu0. See sys/conf/ssp.mk.
860 1.162 maxv */
861 1.162 maxv
862 1.12 jmcneill cpu_init_msrs(ci, true);
863 1.40 ad cpu_probe(ci);
864 1.154 maxv cpu_speculation_init(ci);
865 1.46 ad
866 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
867 1.134 maxv /* cpu_get_tsc_freq(ci); */
868 1.38 ad
869 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
870 1.38 ad
871 1.38 ad /*
872 1.150 maxv * Synchronize the TSC for the first time. Note that interrupts are
873 1.150 maxv * off at this point.
874 1.38 ad */
875 1.38 ad wbinvd();
876 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
877 1.38 ad tsc_sync_ap(ci);
878 1.38 ad
879 1.162 maxv /* ------------------------------------------------------------- */
880 1.162 maxv
881 1.38 ad /*
882 1.150 maxv * Wait to be brought online.
883 1.150 maxv *
884 1.150 maxv * Use MONITOR/MWAIT if available. These instructions put the CPU in
885 1.150 maxv * a low consumption mode (C-state), and if the TSC is not invariant,
886 1.150 maxv * this causes the TSC to drift. We want this to happen, so that we
887 1.150 maxv * can later detect (in tsc_tc_init) any abnormal drift with invariant
888 1.150 maxv * TSCs. That's just for safety; by definition such drifts should
889 1.150 maxv * never occur with invariant TSCs.
890 1.150 maxv *
891 1.150 maxv * If not available, try PAUSE. We'd like to use HLT, but we have
892 1.150 maxv * interrupts off.
893 1.38 ad */
894 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
895 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
896 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
897 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
898 1.38 ad continue;
899 1.38 ad }
900 1.38 ad x86_mwait(0, 0);
901 1.38 ad } else {
902 1.131 pgoyette /*
903 1.131 pgoyette * XXX The loop repetition count could be a lot higher, but
904 1.131 pgoyette * XXX currently qemu emulator takes a _very_long_time_ to
905 1.131 pgoyette * XXX execute the pause instruction. So for now, use a low
906 1.131 pgoyette * XXX value to allow the cpu to hatch before timing out.
907 1.131 pgoyette */
908 1.131 pgoyette for (i = 50; i != 0; i--) {
909 1.127 pgoyette x86_pause();
910 1.127 pgoyette }
911 1.38 ad }
912 1.6 ad }
913 1.5 ad
914 1.26 cegger /* Because the text may have been patched in x86_patch(). */
915 1.5 ad wbinvd();
916 1.5 ad x86_flush();
917 1.88 rmind tlbflushg();
918 1.5 ad
919 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
920 1.2 ad
921 1.73 jym #ifdef PAE
922 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
923 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
924 1.168 maxv l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
925 1.73 jym }
926 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
927 1.73 jym #else
928 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
929 1.73 jym #endif
930 1.73 jym
931 1.65 rmind pcb = lwp_getpcb(curlwp);
932 1.73 jym pcb->pcb_cr3 = rcr3();
933 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
934 1.65 rmind lcr0(pcb->pcb_cr0);
935 1.65 rmind
936 1.2 ad cpu_init_idt();
937 1.8 ad gdt_init_cpu(ci);
938 1.111 joerg #if NLAPIC > 0
939 1.8 ad lapic_enable();
940 1.2 ad lapic_set_lvt();
941 1.8 ad lapic_initclocks();
942 1.111 joerg #endif
943 1.2 ad
944 1.2 ad fpuinit(ci);
945 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
946 1.15 yamt ltr(ci->ci_tss_sel);
947 1.2 ad
948 1.150 maxv /*
949 1.150 maxv * cpu_init will re-synchronize the TSC, and will detect any abnormal
950 1.150 maxv * drift that would have been caused by the use of MONITOR/MWAIT
951 1.150 maxv * above.
952 1.150 maxv */
953 1.2 ad cpu_init(ci);
954 1.7 ad cpu_get_tsc_freq(ci);
955 1.2 ad
956 1.2 ad s = splhigh();
957 1.165 cherry #if NLAPIC > 0
958 1.124 nonaka lapic_write_tpri(0);
959 1.165 cherry #endif
960 1.3 ad x86_enable_intr();
961 1.2 ad splx(s);
962 1.6 ad x86_errata();
963 1.2 ad
964 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
965 1.98 rmind
966 1.174 maxv kcsan_cpu_init(ci);
967 1.174 maxv
968 1.98 rmind idle_loop(NULL);
969 1.98 rmind KASSERT(false);
970 1.2 ad }
971 1.101 kiyohara #endif
972 1.2 ad
973 1.2 ad #if defined(DDB)
974 1.2 ad
975 1.2 ad #include <ddb/db_output.h>
976 1.2 ad #include <machine/db_machdep.h>
977 1.2 ad
978 1.2 ad /*
979 1.2 ad * Dump CPU information from ddb.
980 1.2 ad */
981 1.2 ad void
982 1.2 ad cpu_debug_dump(void)
983 1.2 ad {
984 1.2 ad struct cpu_info *ci;
985 1.2 ad CPU_INFO_ITERATOR cii;
986 1.172 mrg const char sixtyfour64space[] =
987 1.172 mrg #ifdef _LP64
988 1.172 mrg " "
989 1.172 mrg #endif
990 1.172 mrg "";
991 1.2 ad
992 1.172 mrg db_printf("addr %sdev id flags ipis curlwp "
993 1.173 maxv "\n", sixtyfour64space);
994 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
995 1.173 maxv db_printf("%p %s %ld %x %x %10p\n",
996 1.2 ad ci,
997 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
998 1.2 ad (long)ci->ci_cpuid,
999 1.2 ad ci->ci_flags, ci->ci_ipis,
1000 1.173 maxv ci->ci_curlwp);
1001 1.2 ad }
1002 1.2 ad }
1003 1.2 ad #endif
1004 1.2 ad
1005 1.164 cherry #ifdef MULTIPROCESSOR
1006 1.101 kiyohara #if NLAPIC > 0
1007 1.2 ad static void
1008 1.136 maxv cpu_copy_trampoline(paddr_t pdir_pa)
1009 1.2 ad {
1010 1.136 maxv extern uint32_t nox_flag;
1011 1.2 ad extern u_char cpu_spinup_trampoline[];
1012 1.2 ad extern u_char cpu_spinup_trampoline_end[];
1013 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
1014 1.136 maxv struct {
1015 1.136 maxv uint32_t large;
1016 1.136 maxv uint32_t nox;
1017 1.136 maxv uint32_t pdir;
1018 1.136 maxv } smp_data;
1019 1.136 maxv CTASSERT(sizeof(smp_data) == 3 * 4);
1020 1.136 maxv
1021 1.136 maxv smp_data.large = (pmap_largepages != 0);
1022 1.136 maxv smp_data.nox = nox_flag;
1023 1.136 maxv smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
1024 1.12 jmcneill
1025 1.136 maxv /* Enter the physical address */
1026 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1027 1.12 jmcneill UVM_KMF_VAONLY);
1028 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
1029 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
1030 1.2 ad pmap_update(pmap_kernel());
1031 1.136 maxv
1032 1.136 maxv /* Copy boot code */
1033 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
1034 1.2 ad cpu_spinup_trampoline,
1035 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
1036 1.12 jmcneill
1037 1.136 maxv /* Copy smp_data at the end */
1038 1.136 maxv memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
1039 1.136 maxv &smp_data, sizeof(smp_data));
1040 1.136 maxv
1041 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
1042 1.12 jmcneill pmap_update(pmap_kernel());
1043 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
1044 1.2 ad }
1045 1.101 kiyohara #endif
1046 1.2 ad
1047 1.2 ad int
1048 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
1049 1.2 ad {
1050 1.2 ad int error;
1051 1.14 joerg
1052 1.14 joerg /*
1053 1.14 joerg * Bootstrap code must be addressable in real mode
1054 1.14 joerg * and it must be page aligned.
1055 1.14 joerg */
1056 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1057 1.2 ad
1058 1.2 ad /*
1059 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1060 1.2 ad */
1061 1.2 ad
1062 1.2 ad outb(IO_RTC, NVRAM_RESET);
1063 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
1064 1.2 ad
1065 1.165 cherry #if NLAPIC > 0
1066 1.2 ad /*
1067 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
1068 1.2 ad * to the AP startup code ..."
1069 1.2 ad */
1070 1.165 cherry unsigned short dwordptr[2];
1071 1.2 ad dwordptr[0] = 0;
1072 1.14 joerg dwordptr[1] = target >> 4;
1073 1.2 ad
1074 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1075 1.111 joerg #endif
1076 1.2 ad
1077 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
1078 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
1079 1.25 ad return ENODEV;
1080 1.25 ad }
1081 1.25 ad
1082 1.2 ad /*
1083 1.51 ad * ... prior to executing the following sequence:". We'll also add in
1084 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
1085 1.51 ad * disabled. It may not be able to cope with MP coherency.
1086 1.2 ad */
1087 1.51 ad wbinvd();
1088 1.2 ad
1089 1.2 ad if (ci->ci_flags & CPUF_AP) {
1090 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
1091 1.26 cegger if (error != 0) {
1092 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1093 1.50 ad __func__);
1094 1.2 ad return error;
1095 1.25 ad }
1096 1.167 nonaka x86_delay(10000);
1097 1.2 ad
1098 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1099 1.26 cegger if (error != 0) {
1100 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1101 1.50 ad __func__);
1102 1.25 ad return error;
1103 1.25 ad }
1104 1.167 nonaka x86_delay(200);
1105 1.2 ad
1106 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1107 1.26 cegger if (error != 0) {
1108 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1109 1.50 ad __func__);
1110 1.25 ad return error;
1111 1.2 ad }
1112 1.167 nonaka x86_delay(200);
1113 1.2 ad }
1114 1.44 ad
1115 1.2 ad return 0;
1116 1.2 ad }
1117 1.2 ad
1118 1.2 ad void
1119 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1120 1.2 ad {
1121 1.2 ad /*
1122 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1123 1.2 ad */
1124 1.2 ad
1125 1.2 ad outb(IO_RTC, NVRAM_RESET);
1126 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1127 1.2 ad }
1128 1.101 kiyohara #endif
1129 1.2 ad
1130 1.2 ad #ifdef __x86_64__
1131 1.2 ad typedef void (vector)(void);
1132 1.148 maxv extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
1133 1.70 jym #endif
1134 1.2 ad
1135 1.2 ad void
1136 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1137 1.2 ad {
1138 1.70 jym #ifdef __x86_64__
1139 1.2 ad wrmsr(MSR_STAR,
1140 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1141 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1142 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1143 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1144 1.138 maxv wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1145 1.2 ad
1146 1.148 maxv #ifdef SVS
1147 1.148 maxv if (svs_enabled)
1148 1.148 maxv wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
1149 1.148 maxv #endif
1150 1.148 maxv
1151 1.12 jmcneill if (full) {
1152 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1153 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1154 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1155 1.12 jmcneill }
1156 1.70 jym #endif /* __x86_64__ */
1157 1.2 ad
1158 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1159 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1160 1.2 ad }
1161 1.7 ad
1162 1.107 christos void
1163 1.107 christos cpu_offline_md(void)
1164 1.107 christos {
1165 1.173 maxv return;
1166 1.107 christos }
1167 1.107 christos
1168 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1169 1.12 jmcneill static bool
1170 1.96 jruoho cpu_stop(device_t dv)
1171 1.12 jmcneill {
1172 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1173 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1174 1.18 joerg int err;
1175 1.12 jmcneill
1176 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1177 1.93 jruoho
1178 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1179 1.93 jruoho return true;
1180 1.93 jruoho
1181 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1182 1.12 jmcneill return true;
1183 1.12 jmcneill
1184 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1185 1.17 joerg
1186 1.20 jmcneill if (sc->sc_wasonline) {
1187 1.20 jmcneill mutex_enter(&cpu_lock);
1188 1.58 rmind err = cpu_setstate(ci, false);
1189 1.20 jmcneill mutex_exit(&cpu_lock);
1190 1.79 jruoho
1191 1.93 jruoho if (err != 0)
1192 1.20 jmcneill return false;
1193 1.20 jmcneill }
1194 1.17 joerg
1195 1.17 joerg return true;
1196 1.12 jmcneill }
1197 1.12 jmcneill
1198 1.12 jmcneill static bool
1199 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1200 1.96 jruoho {
1201 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1202 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1203 1.96 jruoho
1204 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1205 1.96 jruoho return true;
1206 1.96 jruoho else {
1207 1.96 jruoho cpufreq_suspend(ci);
1208 1.96 jruoho }
1209 1.96 jruoho
1210 1.96 jruoho return cpu_stop(dv);
1211 1.96 jruoho }
1212 1.96 jruoho
1213 1.96 jruoho static bool
1214 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1215 1.12 jmcneill {
1216 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1217 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1218 1.20 jmcneill int err = 0;
1219 1.12 jmcneill
1220 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1221 1.12 jmcneill return true;
1222 1.93 jruoho
1223 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1224 1.93 jruoho goto out;
1225 1.93 jruoho
1226 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1227 1.93 jruoho goto out;
1228 1.12 jmcneill
1229 1.20 jmcneill if (sc->sc_wasonline) {
1230 1.20 jmcneill mutex_enter(&cpu_lock);
1231 1.58 rmind err = cpu_setstate(ci, true);
1232 1.20 jmcneill mutex_exit(&cpu_lock);
1233 1.20 jmcneill }
1234 1.13 joerg
1235 1.93 jruoho out:
1236 1.93 jruoho if (err != 0)
1237 1.93 jruoho return false;
1238 1.93 jruoho
1239 1.93 jruoho cpufreq_resume(ci);
1240 1.93 jruoho
1241 1.93 jruoho return true;
1242 1.12 jmcneill }
1243 1.12 jmcneill
1244 1.79 jruoho static bool
1245 1.79 jruoho cpu_shutdown(device_t dv, int how)
1246 1.79 jruoho {
1247 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1248 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1249 1.90 dyoung
1250 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1251 1.90 dyoung return false;
1252 1.90 dyoung
1253 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1254 1.96 jruoho return true;
1255 1.96 jruoho
1256 1.96 jruoho return cpu_stop(dv);
1257 1.79 jruoho }
1258 1.79 jruoho
1259 1.7 ad void
1260 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1261 1.7 ad {
1262 1.7 ad uint64_t last_tsc;
1263 1.7 ad
1264 1.70 jym if (cpu_hascounter()) {
1265 1.80 bouyer last_tsc = cpu_counter_serializing();
1266 1.167 nonaka x86_delay(100000);
1267 1.80 bouyer ci->ci_data.cpu_cc_freq =
1268 1.80 bouyer (cpu_counter_serializing() - last_tsc) * 10;
1269 1.7 ad }
1270 1.7 ad }
1271 1.37 joerg
1272 1.37 joerg void
1273 1.37 joerg x86_cpu_idle_mwait(void)
1274 1.37 joerg {
1275 1.37 joerg struct cpu_info *ci = curcpu();
1276 1.37 joerg
1277 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1278 1.37 joerg
1279 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1280 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1281 1.37 joerg return;
1282 1.37 joerg }
1283 1.37 joerg x86_mwait(0, 0);
1284 1.37 joerg }
1285 1.37 joerg
1286 1.37 joerg void
1287 1.37 joerg x86_cpu_idle_halt(void)
1288 1.37 joerg {
1289 1.37 joerg struct cpu_info *ci = curcpu();
1290 1.37 joerg
1291 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1292 1.37 joerg
1293 1.37 joerg x86_disable_intr();
1294 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1295 1.37 joerg x86_stihlt();
1296 1.37 joerg } else {
1297 1.37 joerg x86_enable_intr();
1298 1.37 joerg }
1299 1.37 joerg }
1300 1.73 jym
1301 1.73 jym /*
1302 1.73 jym * Loads pmap for the current CPU.
1303 1.73 jym */
1304 1.73 jym void
1305 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1306 1.73 jym {
1307 1.144 maxv #ifdef SVS
1308 1.159 maxv if (svs_enabled) {
1309 1.159 maxv svs_pdir_switch(pmap);
1310 1.159 maxv }
1311 1.144 maxv #endif
1312 1.144 maxv
1313 1.73 jym #ifdef PAE
1314 1.99 yamt struct cpu_info *ci = curcpu();
1315 1.116 nat bool interrupts_enabled;
1316 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1317 1.99 yamt int i;
1318 1.73 jym
1319 1.99 yamt /*
1320 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1321 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1322 1.99 yamt * reload cr3.
1323 1.99 yamt */
1324 1.116 nat interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1325 1.116 nat if (interrupts_enabled)
1326 1.116 nat x86_disable_intr();
1327 1.116 nat
1328 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1329 1.168 maxv l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
1330 1.73 jym }
1331 1.134 maxv
1332 1.116 nat if (interrupts_enabled)
1333 1.116 nat x86_enable_intr();
1334 1.73 jym tlbflush();
1335 1.160 maxv #else
1336 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1337 1.160 maxv #endif
1338 1.73 jym }
1339 1.91 cherry
1340 1.91 cherry /*
1341 1.91 cherry * Notify all other cpus to halt.
1342 1.91 cherry */
1343 1.91 cherry
1344 1.91 cherry void
1345 1.92 cherry cpu_broadcast_halt(void)
1346 1.91 cherry {
1347 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1348 1.91 cherry }
1349 1.91 cherry
1350 1.91 cherry /*
1351 1.91 cherry * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1352 1.91 cherry */
1353 1.91 cherry
1354 1.91 cherry void
1355 1.91 cherry cpu_kick(struct cpu_info *ci)
1356 1.91 cherry {
1357 1.91 cherry x86_send_ipi(ci, 0);
1358 1.91 cherry }
1359