cpu.c revision 1.178 1 1.178 nonaka /* $NetBSD: cpu.c,v 1.178 2019/12/07 11:45:45 nonaka Exp $ */
2 1.2 ad
3 1.134 maxv /*
4 1.98 rmind * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.178 nonaka __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.178 2019/12/07 11:45:45 nonaka Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.101 kiyohara #include "opt_multiprocessor.h"
71 1.144 maxv #include "opt_svs.h"
72 1.2 ad
73 1.2 ad #include "lapic.h"
74 1.2 ad #include "ioapic.h"
75 1.2 ad
76 1.2 ad #include <sys/param.h>
77 1.2 ad #include <sys/proc.h>
78 1.2 ad #include <sys/systm.h>
79 1.2 ad #include <sys/device.h>
80 1.9 ad #include <sys/cpu.h>
81 1.93 jruoho #include <sys/cpufreq.h>
82 1.98 rmind #include <sys/idle.h>
83 1.9 ad #include <sys/atomic.h>
84 1.35 ad #include <sys/reboot.h>
85 1.174 maxv #include <sys/csan.h>
86 1.2 ad
87 1.78 uebayasi #include <uvm/uvm.h>
88 1.2 ad
89 1.102 pgoyette #include "acpica.h" /* for NACPICA, for mp_verbose */
90 1.102 pgoyette
91 1.2 ad #include <machine/cpufunc.h>
92 1.2 ad #include <machine/cpuvar.h>
93 1.2 ad #include <machine/pmap.h>
94 1.2 ad #include <machine/vmparam.h>
95 1.102 pgoyette #if defined(MULTIPROCESSOR)
96 1.2 ad #include <machine/mpbiosvar.h>
97 1.101 kiyohara #endif
98 1.102 pgoyette #include <machine/mpconfig.h> /* for mp_verbose */
99 1.2 ad #include <machine/pcb.h>
100 1.2 ad #include <machine/specialreg.h>
101 1.2 ad #include <machine/segments.h>
102 1.2 ad #include <machine/gdt.h>
103 1.2 ad #include <machine/mtrr.h>
104 1.2 ad #include <machine/pio.h>
105 1.38 ad #include <machine/cpu_counter.h>
106 1.2 ad
107 1.109 dsl #include <x86/fpu.h>
108 1.109 dsl
109 1.101 kiyohara #if NLAPIC > 0
110 1.2 ad #include <machine/apicvar.h>
111 1.2 ad #include <machine/i82489reg.h>
112 1.2 ad #include <machine/i82489var.h>
113 1.101 kiyohara #endif
114 1.2 ad
115 1.2 ad #include <dev/ic/mc146818reg.h>
116 1.2 ad #include <i386/isa/nvram.h>
117 1.2 ad #include <dev/isa/isareg.h>
118 1.2 ad
119 1.38 ad #include "tsc.h"
120 1.38 ad
121 1.178 nonaka #ifndef XEN
122 1.178 nonaka #include "hyperv.h"
123 1.178 nonaka #if NHYPERV > 0
124 1.178 nonaka #include <x86/x86/hypervvar.h>
125 1.178 nonaka #endif
126 1.178 nonaka #endif
127 1.178 nonaka
128 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
129 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
130 1.87 jruoho static void cpu_defer(device_t);
131 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
132 1.87 jruoho static void cpu_childdetached(device_t, device_t);
133 1.96 jruoho static bool cpu_stop(device_t);
134 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
135 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
136 1.79 jruoho static bool cpu_shutdown(device_t, int);
137 1.12 jmcneill
138 1.2 ad struct cpu_softc {
139 1.23 cube device_t sc_dev; /* device tree glue */
140 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
141 1.20 jmcneill bool sc_wasonline;
142 1.2 ad };
143 1.2 ad
144 1.101 kiyohara #ifdef MULTIPROCESSOR
145 1.120 msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
146 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
147 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
148 1.2 ad mp_cpu_start_cleanup };
149 1.101 kiyohara #endif
150 1.2 ad
151 1.2 ad
152 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
153 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
154 1.2 ad
155 1.2 ad /*
156 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
157 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
158 1.2 ad * point at it.
159 1.2 ad */
160 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
161 1.2 ad .ci_dev = 0,
162 1.2 ad .ci_self = &cpu_info_primary,
163 1.2 ad .ci_idepth = -1,
164 1.2 ad .ci_curlwp = &lwp0,
165 1.43 ad .ci_curldt = -1,
166 1.2 ad };
167 1.2 ad
168 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
169 1.2 ad
170 1.2 ad #ifdef i386
171 1.134 maxv void cpu_set_tss_gates(struct cpu_info *);
172 1.2 ad #endif
173 1.2 ad
174 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
175 1.12 jmcneill
176 1.122 maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
177 1.117 maxv /* [0] basic features cpuid.1:%edx
178 1.117 maxv * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
179 1.117 maxv * [2] extended features cpuid:80000001:%edx
180 1.117 maxv * [3] extended features cpuid:80000001:%ecx
181 1.117 maxv * [4] VIA padlock features
182 1.117 maxv * [5] structured extended features cpuid.7:%ebx
183 1.117 maxv * [6] structured extended features cpuid.7:%ecx
184 1.117 maxv */
185 1.70 jym
186 1.101 kiyohara #ifdef MULTIPROCESSOR
187 1.12 jmcneill bool x86_mp_online;
188 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
189 1.101 kiyohara #endif
190 1.101 kiyohara #if NLAPIC > 0
191 1.14 joerg static vaddr_t cmos_data_mapping;
192 1.101 kiyohara #endif
193 1.45 ad struct cpu_info *cpu_starting;
194 1.2 ad
195 1.101 kiyohara #ifdef MULTIPROCESSOR
196 1.2 ad void cpu_hatch(void *);
197 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
198 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
199 1.101 kiyohara #if NLAPIC > 0
200 1.136 maxv static void cpu_copy_trampoline(paddr_t);
201 1.101 kiyohara #endif
202 1.164 cherry #endif /* MULTIPROCESSOR */
203 1.2 ad
204 1.2 ad /*
205 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
206 1.2 ad * the local APIC on the boot processor has been mapped.
207 1.2 ad *
208 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
209 1.2 ad */
210 1.101 kiyohara #if NLAPIC > 0
211 1.2 ad void
212 1.9 ad cpu_init_first(void)
213 1.2 ad {
214 1.2 ad
215 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
216 1.14 joerg
217 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
218 1.14 joerg if (cmos_data_mapping == 0)
219 1.14 joerg panic("No KVA for page 0");
220 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
221 1.14 joerg pmap_update(pmap_kernel());
222 1.2 ad }
223 1.101 kiyohara #endif
224 1.2 ad
225 1.87 jruoho static int
226 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
227 1.2 ad {
228 1.2 ad
229 1.2 ad return 1;
230 1.2 ad }
231 1.2 ad
232 1.142 maxv #ifdef __HAVE_PCPU_AREA
233 1.142 maxv void
234 1.142 maxv cpu_pcpuarea_init(struct cpu_info *ci)
235 1.142 maxv {
236 1.142 maxv struct vm_page *pg;
237 1.142 maxv size_t i, npages;
238 1.142 maxv vaddr_t base, va;
239 1.142 maxv paddr_t pa;
240 1.142 maxv
241 1.142 maxv CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
242 1.142 maxv
243 1.142 maxv npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
244 1.142 maxv base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
245 1.142 maxv
246 1.142 maxv for (i = 0; i < npages; i++) {
247 1.142 maxv pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
248 1.142 maxv if (pg == NULL) {
249 1.142 maxv panic("failed to allocate pcpu PA");
250 1.142 maxv }
251 1.142 maxv
252 1.142 maxv va = base + i * PAGE_SIZE;
253 1.142 maxv pa = VM_PAGE_TO_PHYS(pg);
254 1.142 maxv
255 1.142 maxv pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
256 1.142 maxv }
257 1.142 maxv
258 1.142 maxv pmap_update(pmap_kernel());
259 1.142 maxv }
260 1.142 maxv #endif
261 1.142 maxv
262 1.2 ad static void
263 1.2 ad cpu_vm_init(struct cpu_info *ci)
264 1.2 ad {
265 1.2 ad int ncolors = 2, i;
266 1.2 ad
267 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
268 1.2 ad struct x86_cache_info *cai;
269 1.2 ad int tcolors;
270 1.2 ad
271 1.2 ad cai = &ci->ci_cinfo[i];
272 1.2 ad
273 1.2 ad tcolors = atop(cai->cai_totalsize);
274 1.2 ad switch(cai->cai_associativity) {
275 1.2 ad case 0xff:
276 1.2 ad tcolors = 1; /* fully associative */
277 1.2 ad break;
278 1.2 ad case 0:
279 1.2 ad case 1:
280 1.2 ad break;
281 1.2 ad default:
282 1.2 ad tcolors /= cai->cai_associativity;
283 1.2 ad }
284 1.161 riastrad ncolors = uimax(ncolors, tcolors);
285 1.32 tls /*
286 1.32 tls * If the desired number of colors is not a power of
287 1.32 tls * two, it won't be good. Find the greatest power of
288 1.32 tls * two which is an even divisor of the number of colors,
289 1.32 tls * to preserve even coloring of pages.
290 1.32 tls */
291 1.32 tls if (ncolors & (ncolors - 1) ) {
292 1.32 tls int try, picked = 1;
293 1.32 tls for (try = 1; try < ncolors; try *= 2) {
294 1.32 tls if (ncolors % try == 0) picked = try;
295 1.32 tls }
296 1.32 tls if (picked == 1) {
297 1.32 tls panic("desired number of cache colors %d is "
298 1.32 tls " > 1, but not even!", ncolors);
299 1.32 tls }
300 1.32 tls ncolors = picked;
301 1.32 tls }
302 1.2 ad }
303 1.2 ad
304 1.2 ad /*
305 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
306 1.94 mrg * re-color our pages.
307 1.2 ad */
308 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
309 1.2 ad uvm_page_recolor(ncolors);
310 1.98 rmind
311 1.98 rmind pmap_tlb_cpu_init(ci);
312 1.123 maxv #ifndef __HAVE_DIRECT_MAP
313 1.123 maxv pmap_vpage_cpu_init(ci);
314 1.123 maxv #endif
315 1.2 ad }
316 1.2 ad
317 1.87 jruoho static void
318 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
319 1.2 ad {
320 1.23 cube struct cpu_softc *sc = device_private(self);
321 1.2 ad struct cpu_attach_args *caa = aux;
322 1.2 ad struct cpu_info *ci;
323 1.21 ad uintptr_t ptr;
324 1.101 kiyohara #if NLAPIC > 0
325 1.2 ad int cpunum = caa->cpu_number;
326 1.101 kiyohara #endif
327 1.51 ad static bool again;
328 1.2 ad
329 1.23 cube sc->sc_dev = self;
330 1.23 cube
331 1.163 cherry if (ncpu > maxcpus) {
332 1.98 rmind #ifndef _LP64
333 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
334 1.98 rmind #else
335 1.98 rmind aprint_error(": too many CPUs\n");
336 1.98 rmind #endif
337 1.48 ad return;
338 1.48 ad }
339 1.48 ad
340 1.2 ad /*
341 1.2 ad * If we're an Application Processor, allocate a cpu_info
342 1.2 ad * structure, otherwise use the primary's.
343 1.2 ad */
344 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
345 1.36 ad if ((boothowto & RB_MD1) != 0) {
346 1.35 ad aprint_error(": multiprocessor boot disabled\n");
347 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
348 1.56 jmcneill aprint_error_dev(self,
349 1.56 jmcneill "couldn't establish power handler\n");
350 1.35 ad return;
351 1.35 ad }
352 1.2 ad aprint_naive(": Application Processor\n");
353 1.143 maxv ptr = (uintptr_t)uvm_km_alloc(kernel_map,
354 1.143 maxv sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
355 1.143 maxv UVM_KMF_WIRED|UVM_KMF_ZERO);
356 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
357 1.43 ad ci->ci_curldt = -1;
358 1.2 ad } else {
359 1.2 ad aprint_naive(": %s Processor\n",
360 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
361 1.2 ad ci = &cpu_info_primary;
362 1.101 kiyohara #if NLAPIC > 0
363 1.2 ad if (cpunum != lapic_cpu_number()) {
364 1.51 ad /* XXX should be done earlier. */
365 1.39 ad uint32_t reg;
366 1.39 ad aprint_verbose("\n");
367 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
368 1.47 ad " instead of at expected %d", lapic_cpu_number(),
369 1.23 cube cpunum);
370 1.125 nonaka reg = lapic_readreg(LAPIC_ID);
371 1.125 nonaka lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
372 1.39 ad (cpunum << LAPIC_ID_SHIFT));
373 1.2 ad }
374 1.47 ad if (cpunum != lapic_cpu_number()) {
375 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
376 1.47 ad }
377 1.101 kiyohara #endif
378 1.2 ad }
379 1.2 ad
380 1.2 ad ci->ci_self = ci;
381 1.2 ad sc->sc_info = ci;
382 1.2 ad ci->ci_dev = self;
383 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
384 1.42 ad ci->ci_cpuid = caa->cpu_number;
385 1.2 ad ci->ci_func = caa->cpu_func;
386 1.177 maxv ci->ci_kfpu_spl = -1;
387 1.112 msaitoh aprint_normal("\n");
388 1.2 ad
389 1.55 ad /* Must be before mi_cpu_attach(). */
390 1.55 ad cpu_vm_init(ci);
391 1.55 ad
392 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
393 1.2 ad int error;
394 1.2 ad
395 1.2 ad error = mi_cpu_attach(ci);
396 1.2 ad if (error != 0) {
397 1.47 ad aprint_error_dev(self,
398 1.30 cegger "mi_cpu_attach failed with %d\n", error);
399 1.2 ad return;
400 1.2 ad }
401 1.142 maxv #ifdef __HAVE_PCPU_AREA
402 1.142 maxv cpu_pcpuarea_init(ci);
403 1.142 maxv #endif
404 1.15 yamt cpu_init_tss(ci);
405 1.2 ad } else {
406 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
407 1.2 ad }
408 1.2 ad
409 1.146 maxv #ifdef SVS
410 1.146 maxv cpu_svs_init(ci);
411 1.146 maxv #endif
412 1.146 maxv
413 1.2 ad pmap_reference(pmap_kernel());
414 1.2 ad ci->ci_pmap = pmap_kernel();
415 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
416 1.2 ad
417 1.51 ad /*
418 1.51 ad * Boot processor may not be attached first, but the below
419 1.51 ad * must be done to allow booting other processors.
420 1.51 ad */
421 1.51 ad if (!again) {
422 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
423 1.51 ad /* Basic init. */
424 1.2 ad cpu_intr_init(ci);
425 1.40 ad cpu_get_tsc_freq(ci);
426 1.2 ad cpu_init(ci);
427 1.134 maxv #ifdef i386
428 1.2 ad cpu_set_tss_gates(ci);
429 1.134 maxv #endif
430 1.2 ad pmap_cpu_init_late(ci);
431 1.101 kiyohara #if NLAPIC > 0
432 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
433 1.51 ad /* Enable lapic. */
434 1.51 ad lapic_enable();
435 1.51 ad lapic_set_lvt();
436 1.51 ad lapic_calibrate_timer(ci);
437 1.51 ad }
438 1.101 kiyohara #endif
439 1.51 ad /* Make sure DELAY() is initialized. */
440 1.51 ad DELAY(1);
441 1.174 maxv kcsan_cpu_init(ci);
442 1.51 ad again = true;
443 1.51 ad }
444 1.51 ad
445 1.51 ad /* further PCB init done later. */
446 1.51 ad
447 1.51 ad switch (caa->cpu_role) {
448 1.51 ad case CPU_ROLE_SP:
449 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
450 1.51 ad cpu_identify(ci);
451 1.53 ad x86_errata();
452 1.37 joerg x86_cpu_idle_init();
453 1.2 ad break;
454 1.2 ad
455 1.2 ad case CPU_ROLE_BP:
456 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
457 1.40 ad cpu_identify(ci);
458 1.53 ad x86_errata();
459 1.37 joerg x86_cpu_idle_init();
460 1.2 ad break;
461 1.2 ad
462 1.101 kiyohara #ifdef MULTIPROCESSOR
463 1.2 ad case CPU_ROLE_AP:
464 1.2 ad /*
465 1.2 ad * report on an AP
466 1.2 ad */
467 1.2 ad cpu_intr_init(ci);
468 1.2 ad gdt_alloc_cpu(ci);
469 1.134 maxv #ifdef i386
470 1.2 ad cpu_set_tss_gates(ci);
471 1.134 maxv #endif
472 1.2 ad pmap_cpu_init_late(ci);
473 1.2 ad cpu_start_secondary(ci);
474 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
475 1.59 cegger struct cpu_info *tmp;
476 1.59 cegger
477 1.40 ad cpu_identify(ci);
478 1.59 cegger tmp = cpu_info_list;
479 1.59 cegger while (tmp->ci_next)
480 1.59 cegger tmp = tmp->ci_next;
481 1.59 cegger
482 1.59 cegger tmp->ci_next = ci;
483 1.2 ad }
484 1.2 ad break;
485 1.101 kiyohara #endif
486 1.2 ad
487 1.2 ad default:
488 1.2 ad panic("unknown processor type??\n");
489 1.2 ad }
490 1.51 ad
491 1.71 cegger pat_init(ci);
492 1.2 ad
493 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
494 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
495 1.12 jmcneill
496 1.101 kiyohara #ifdef MULTIPROCESSOR
497 1.2 ad if (mp_verbose) {
498 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
499 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
500 1.2 ad
501 1.47 ad aprint_verbose_dev(self,
502 1.28 cegger "idle lwp at %p, idle sp at %p\n",
503 1.28 cegger l,
504 1.2 ad #ifdef i386
505 1.65 rmind (void *)pcb->pcb_esp
506 1.2 ad #else
507 1.65 rmind (void *)pcb->pcb_rsp
508 1.2 ad #endif
509 1.2 ad );
510 1.2 ad }
511 1.101 kiyohara #endif
512 1.81 jmcneill
513 1.89 jruoho /*
514 1.89 jruoho * Postpone the "cpufeaturebus" scan.
515 1.89 jruoho * It is safe to scan the pseudo-bus
516 1.89 jruoho * only after all CPUs have attached.
517 1.89 jruoho */
518 1.87 jruoho (void)config_defer(self, cpu_defer);
519 1.87 jruoho }
520 1.87 jruoho
521 1.87 jruoho static void
522 1.87 jruoho cpu_defer(device_t self)
523 1.87 jruoho {
524 1.81 jmcneill cpu_rescan(self, NULL, NULL);
525 1.81 jmcneill }
526 1.81 jmcneill
527 1.87 jruoho static int
528 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
529 1.81 jmcneill {
530 1.83 jruoho struct cpu_softc *sc = device_private(self);
531 1.81 jmcneill struct cpufeature_attach_args cfaa;
532 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
533 1.81 jmcneill
534 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
535 1.81 jmcneill cfaa.ci = ci;
536 1.81 jmcneill
537 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
538 1.83 jruoho if (ci->ci_frequency == NULL) {
539 1.86 jruoho cfaa.name = "frequency";
540 1.84 jruoho ci->ci_frequency = config_found_ia(self,
541 1.84 jruoho "cpufeaturebus", &cfaa, NULL);
542 1.84 jruoho }
543 1.84 jruoho
544 1.81 jmcneill if (ci->ci_padlock == NULL) {
545 1.81 jmcneill cfaa.name = "padlock";
546 1.81 jmcneill ci->ci_padlock = config_found_ia(self,
547 1.81 jmcneill "cpufeaturebus", &cfaa, NULL);
548 1.81 jmcneill }
549 1.82 jruoho
550 1.86 jruoho if (ci->ci_temperature == NULL) {
551 1.86 jruoho cfaa.name = "temperature";
552 1.86 jruoho ci->ci_temperature = config_found_ia(self,
553 1.85 jruoho "cpufeaturebus", &cfaa, NULL);
554 1.85 jruoho }
555 1.95 jmcneill
556 1.95 jmcneill if (ci->ci_vm == NULL) {
557 1.95 jmcneill cfaa.name = "vm";
558 1.95 jmcneill ci->ci_vm = config_found_ia(self,
559 1.95 jmcneill "cpufeaturebus", &cfaa, NULL);
560 1.95 jmcneill }
561 1.81 jmcneill }
562 1.81 jmcneill
563 1.81 jmcneill return 0;
564 1.81 jmcneill }
565 1.81 jmcneill
566 1.87 jruoho static void
567 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
568 1.81 jmcneill {
569 1.81 jmcneill struct cpu_softc *sc = device_private(self);
570 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
571 1.81 jmcneill
572 1.83 jruoho if (ci->ci_frequency == child)
573 1.83 jruoho ci->ci_frequency = NULL;
574 1.82 jruoho
575 1.81 jmcneill if (ci->ci_padlock == child)
576 1.81 jmcneill ci->ci_padlock = NULL;
577 1.83 jruoho
578 1.86 jruoho if (ci->ci_temperature == child)
579 1.86 jruoho ci->ci_temperature = NULL;
580 1.95 jmcneill
581 1.95 jmcneill if (ci->ci_vm == child)
582 1.95 jmcneill ci->ci_vm = NULL;
583 1.2 ad }
584 1.2 ad
585 1.2 ad /*
586 1.2 ad * Initialize the processor appropriately.
587 1.2 ad */
588 1.2 ad
589 1.2 ad void
590 1.9 ad cpu_init(struct cpu_info *ci)
591 1.2 ad {
592 1.141 maxv extern int x86_fpu_save;
593 1.113 christos uint32_t cr4 = 0;
594 1.2 ad
595 1.2 ad lcr0(rcr0() | CR0_WP);
596 1.2 ad
597 1.169 maxv /* If global TLB caching is supported, enable it */
598 1.70 jym if (cpu_feature[0] & CPUID_PGE)
599 1.169 maxv cr4 |= CR4_PGE;
600 1.2 ad
601 1.2 ad /*
602 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
603 1.2 ad */
604 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
605 1.110 dsl cr4 |= CR4_OSFXSR;
606 1.2 ad
607 1.2 ad /*
608 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
609 1.2 ad */
610 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
611 1.110 dsl cr4 |= CR4_OSXMMEXCPT;
612 1.2 ad }
613 1.2 ad
614 1.110 dsl /* If xsave is supported, enable it */
615 1.110 dsl if (cpu_feature[1] & CPUID2_XSAVE)
616 1.110 dsl cr4 |= CR4_OSXSAVE;
617 1.110 dsl
618 1.118 maxv /* If SMEP is supported, enable it */
619 1.118 maxv if (cpu_feature[5] & CPUID_SEF_SMEP)
620 1.118 maxv cr4 |= CR4_SMEP;
621 1.118 maxv
622 1.137 maxv /* If SMAP is supported, enable it */
623 1.137 maxv if (cpu_feature[5] & CPUID_SEF_SMAP)
624 1.137 maxv cr4 |= CR4_SMAP;
625 1.137 maxv
626 1.171 maxv #ifdef SVS
627 1.171 maxv /* If PCID is supported, enable it */
628 1.171 maxv if (svs_pcid)
629 1.171 maxv cr4 |= CR4_PCIDE;
630 1.171 maxv #endif
631 1.171 maxv
632 1.113 christos if (cr4) {
633 1.113 christos cr4 |= rcr4();
634 1.113 christos lcr4(cr4);
635 1.113 christos }
636 1.110 dsl
637 1.145 msaitoh /*
638 1.145 msaitoh * Changing CR4 register may change cpuid values. For example, setting
639 1.145 msaitoh * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
640 1.145 msaitoh * ci_feat_val[1], so update it.
641 1.145 msaitoh * XXX Other than ci_feat_val[1] might be changed.
642 1.145 msaitoh */
643 1.145 msaitoh if (cpuid_level >= 1) {
644 1.145 msaitoh u_int descs[4];
645 1.145 msaitoh
646 1.145 msaitoh x86_cpuid(1, descs);
647 1.145 msaitoh ci->ci_feat_val[1] = descs[2];
648 1.145 msaitoh }
649 1.145 msaitoh
650 1.141 maxv if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
651 1.158 maxv fpuinit_mxcsr_mask();
652 1.141 maxv }
653 1.141 maxv
654 1.110 dsl /* If xsave is enabled, enable all fpu features */
655 1.110 dsl if (cr4 & CR4_OSXSAVE)
656 1.110 dsl wrxcr(0, x86_xsave_features & XCR0_FPU);
657 1.110 dsl
658 1.2 ad #ifdef MTRR
659 1.2 ad /*
660 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
661 1.2 ad */
662 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
663 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
664 1.2 ad i686_mtrr_init_first();
665 1.2 ad mtrr_init_cpu(ci);
666 1.2 ad }
667 1.2 ad
668 1.2 ad #ifdef i386
669 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
670 1.2 ad /*
671 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
672 1.2 ad */
673 1.106 msaitoh if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
674 1.106 msaitoh if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
675 1.106 msaitoh (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
676 1.106 msaitoh CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
677 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
678 1.2 ad k6_mtrr_init_first();
679 1.2 ad mtrr_init_cpu(ci);
680 1.2 ad }
681 1.2 ad }
682 1.2 ad }
683 1.2 ad #endif /* i386 */
684 1.2 ad #endif /* MTRR */
685 1.2 ad
686 1.38 ad if (ci != &cpu_info_primary) {
687 1.150 maxv /* Synchronize TSC */
688 1.38 ad wbinvd();
689 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
690 1.38 ad tsc_sync_ap(ci);
691 1.38 ad } else {
692 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
693 1.38 ad }
694 1.2 ad }
695 1.2 ad
696 1.101 kiyohara #ifdef MULTIPROCESSOR
697 1.2 ad void
698 1.12 jmcneill cpu_boot_secondary_processors(void)
699 1.2 ad {
700 1.2 ad struct cpu_info *ci;
701 1.100 chs kcpuset_t *cpus;
702 1.2 ad u_long i;
703 1.2 ad
704 1.166 cherry #ifndef XEN
705 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
706 1.60 ad x86_patch(false);
707 1.166 cherry #endif
708 1.5 ad
709 1.100 chs kcpuset_create(&cpus, true);
710 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
711 1.100 chs for (i = 0; i < maxcpus; i++) {
712 1.57 ad ci = cpu_lookup(i);
713 1.2 ad if (ci == NULL)
714 1.2 ad continue;
715 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
716 1.2 ad continue;
717 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
718 1.2 ad continue;
719 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
720 1.2 ad continue;
721 1.2 ad cpu_boot_secondary(ci);
722 1.100 chs kcpuset_set(cpus, cpu_index(ci));
723 1.2 ad }
724 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
725 1.100 chs ;
726 1.100 chs kcpuset_destroy(cpus);
727 1.2 ad
728 1.2 ad x86_mp_online = true;
729 1.38 ad
730 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
731 1.38 ad tsc_tc_init();
732 1.55 ad
733 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
734 1.175 ad vm_page_zero_enable = false; /* ((cpu_feature[0] & CPUID_SSE2) != 0); */
735 1.2 ad }
736 1.101 kiyohara #endif
737 1.2 ad
738 1.2 ad static void
739 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
740 1.2 ad {
741 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
742 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
743 1.2 ad
744 1.2 ad pcb->pcb_cr0 = rcr0();
745 1.2 ad }
746 1.2 ad
747 1.2 ad void
748 1.12 jmcneill cpu_init_idle_lwps(void)
749 1.2 ad {
750 1.2 ad struct cpu_info *ci;
751 1.2 ad u_long i;
752 1.2 ad
753 1.54 ad for (i = 0; i < maxcpus; i++) {
754 1.57 ad ci = cpu_lookup(i);
755 1.2 ad if (ci == NULL)
756 1.2 ad continue;
757 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
758 1.2 ad continue;
759 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
760 1.2 ad continue;
761 1.2 ad cpu_init_idle_lwp(ci);
762 1.2 ad }
763 1.2 ad }
764 1.2 ad
765 1.101 kiyohara #ifdef MULTIPROCESSOR
766 1.2 ad void
767 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
768 1.2 ad {
769 1.38 ad u_long psl;
770 1.2 ad int i;
771 1.2 ad
772 1.165 cherry #if NLAPIC > 0
773 1.165 cherry paddr_t mp_pdirpa;
774 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
775 1.136 maxv cpu_copy_trampoline(mp_pdirpa);
776 1.165 cherry #endif
777 1.136 maxv
778 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
779 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
780 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
781 1.25 ad return;
782 1.45 ad }
783 1.2 ad
784 1.2 ad /*
785 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
786 1.50 ad * initial gate and allows the AP to start soft initialization.
787 1.2 ad */
788 1.50 ad KASSERT(cpu_starting == NULL);
789 1.50 ad cpu_starting = ci;
790 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
791 1.167 nonaka x86_delay(10);
792 1.2 ad }
793 1.38 ad
794 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
795 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
796 1.2 ad #if defined(MPDEBUG) && defined(DDB)
797 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
798 1.2 ad Debugger();
799 1.2 ad #endif
800 1.38 ad } else {
801 1.38 ad /*
802 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
803 1.150 maxv * twice (in tsc_sync_bp) to minimize possible cache effects.
804 1.150 maxv * Disable interrupts to try and rule out any external
805 1.150 maxv * interference.
806 1.38 ad */
807 1.38 ad psl = x86_read_psl();
808 1.38 ad x86_disable_intr();
809 1.38 ad wbinvd();
810 1.38 ad tsc_sync_bp(ci);
811 1.38 ad x86_write_psl(psl);
812 1.2 ad }
813 1.2 ad
814 1.2 ad CPU_START_CLEANUP(ci);
815 1.45 ad cpu_starting = NULL;
816 1.2 ad }
817 1.2 ad
818 1.2 ad void
819 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
820 1.2 ad {
821 1.38 ad int64_t drift;
822 1.38 ad u_long psl;
823 1.2 ad int i;
824 1.2 ad
825 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
826 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
827 1.167 nonaka x86_delay(10);
828 1.2 ad }
829 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
830 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
831 1.2 ad #if defined(MPDEBUG) && defined(DDB)
832 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
833 1.2 ad Debugger();
834 1.2 ad #endif
835 1.38 ad } else {
836 1.38 ad /* Synchronize TSC again, check for drift. */
837 1.38 ad drift = ci->ci_data.cpu_cc_skew;
838 1.38 ad psl = x86_read_psl();
839 1.38 ad x86_disable_intr();
840 1.38 ad wbinvd();
841 1.38 ad tsc_sync_bp(ci);
842 1.38 ad x86_write_psl(psl);
843 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
844 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
845 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
846 1.38 ad tsc_sync_drift(drift);
847 1.2 ad }
848 1.2 ad }
849 1.2 ad
850 1.2 ad /*
851 1.117 maxv * The CPU ends up here when it's ready to run.
852 1.2 ad * This is called from code in mptramp.s; at this point, we are running
853 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
854 1.2 ad * this processor will enter the idle loop and start looking for work.
855 1.2 ad */
856 1.2 ad void
857 1.2 ad cpu_hatch(void *v)
858 1.2 ad {
859 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
860 1.65 rmind struct pcb *pcb;
861 1.130 kre int s, i;
862 1.2 ad
863 1.162 maxv /* ------------------------------------------------------------- */
864 1.162 maxv
865 1.162 maxv /*
866 1.162 maxv * This section of code must be compiled with SSP disabled, to
867 1.162 maxv * prevent a race against cpu0. See sys/conf/ssp.mk.
868 1.162 maxv */
869 1.162 maxv
870 1.12 jmcneill cpu_init_msrs(ci, true);
871 1.40 ad cpu_probe(ci);
872 1.154 maxv cpu_speculation_init(ci);
873 1.178 nonaka #if NHYPERV > 0
874 1.178 nonaka hyperv_init_cpu(ci);
875 1.178 nonaka #endif
876 1.46 ad
877 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
878 1.134 maxv /* cpu_get_tsc_freq(ci); */
879 1.38 ad
880 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
881 1.38 ad
882 1.38 ad /*
883 1.150 maxv * Synchronize the TSC for the first time. Note that interrupts are
884 1.150 maxv * off at this point.
885 1.38 ad */
886 1.38 ad wbinvd();
887 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
888 1.38 ad tsc_sync_ap(ci);
889 1.38 ad
890 1.162 maxv /* ------------------------------------------------------------- */
891 1.162 maxv
892 1.38 ad /*
893 1.150 maxv * Wait to be brought online.
894 1.150 maxv *
895 1.150 maxv * Use MONITOR/MWAIT if available. These instructions put the CPU in
896 1.150 maxv * a low consumption mode (C-state), and if the TSC is not invariant,
897 1.150 maxv * this causes the TSC to drift. We want this to happen, so that we
898 1.150 maxv * can later detect (in tsc_tc_init) any abnormal drift with invariant
899 1.150 maxv * TSCs. That's just for safety; by definition such drifts should
900 1.150 maxv * never occur with invariant TSCs.
901 1.150 maxv *
902 1.150 maxv * If not available, try PAUSE. We'd like to use HLT, but we have
903 1.150 maxv * interrupts off.
904 1.38 ad */
905 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
906 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
907 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
908 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
909 1.38 ad continue;
910 1.38 ad }
911 1.38 ad x86_mwait(0, 0);
912 1.38 ad } else {
913 1.131 pgoyette /*
914 1.131 pgoyette * XXX The loop repetition count could be a lot higher, but
915 1.131 pgoyette * XXX currently qemu emulator takes a _very_long_time_ to
916 1.131 pgoyette * XXX execute the pause instruction. So for now, use a low
917 1.131 pgoyette * XXX value to allow the cpu to hatch before timing out.
918 1.131 pgoyette */
919 1.131 pgoyette for (i = 50; i != 0; i--) {
920 1.127 pgoyette x86_pause();
921 1.127 pgoyette }
922 1.38 ad }
923 1.6 ad }
924 1.5 ad
925 1.26 cegger /* Because the text may have been patched in x86_patch(). */
926 1.5 ad wbinvd();
927 1.5 ad x86_flush();
928 1.88 rmind tlbflushg();
929 1.5 ad
930 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
931 1.2 ad
932 1.73 jym #ifdef PAE
933 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
934 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
935 1.168 maxv l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
936 1.73 jym }
937 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
938 1.73 jym #else
939 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
940 1.73 jym #endif
941 1.73 jym
942 1.65 rmind pcb = lwp_getpcb(curlwp);
943 1.73 jym pcb->pcb_cr3 = rcr3();
944 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
945 1.65 rmind lcr0(pcb->pcb_cr0);
946 1.65 rmind
947 1.2 ad cpu_init_idt();
948 1.8 ad gdt_init_cpu(ci);
949 1.111 joerg #if NLAPIC > 0
950 1.8 ad lapic_enable();
951 1.2 ad lapic_set_lvt();
952 1.8 ad lapic_initclocks();
953 1.111 joerg #endif
954 1.2 ad
955 1.2 ad fpuinit(ci);
956 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
957 1.15 yamt ltr(ci->ci_tss_sel);
958 1.2 ad
959 1.150 maxv /*
960 1.150 maxv * cpu_init will re-synchronize the TSC, and will detect any abnormal
961 1.150 maxv * drift that would have been caused by the use of MONITOR/MWAIT
962 1.150 maxv * above.
963 1.150 maxv */
964 1.2 ad cpu_init(ci);
965 1.7 ad cpu_get_tsc_freq(ci);
966 1.2 ad
967 1.2 ad s = splhigh();
968 1.165 cherry #if NLAPIC > 0
969 1.124 nonaka lapic_write_tpri(0);
970 1.165 cherry #endif
971 1.3 ad x86_enable_intr();
972 1.2 ad splx(s);
973 1.6 ad x86_errata();
974 1.2 ad
975 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
976 1.98 rmind
977 1.174 maxv kcsan_cpu_init(ci);
978 1.174 maxv
979 1.98 rmind idle_loop(NULL);
980 1.98 rmind KASSERT(false);
981 1.2 ad }
982 1.101 kiyohara #endif
983 1.2 ad
984 1.2 ad #if defined(DDB)
985 1.2 ad
986 1.2 ad #include <ddb/db_output.h>
987 1.2 ad #include <machine/db_machdep.h>
988 1.2 ad
989 1.2 ad /*
990 1.2 ad * Dump CPU information from ddb.
991 1.2 ad */
992 1.2 ad void
993 1.2 ad cpu_debug_dump(void)
994 1.2 ad {
995 1.2 ad struct cpu_info *ci;
996 1.2 ad CPU_INFO_ITERATOR cii;
997 1.172 mrg const char sixtyfour64space[] =
998 1.172 mrg #ifdef _LP64
999 1.172 mrg " "
1000 1.172 mrg #endif
1001 1.172 mrg "";
1002 1.2 ad
1003 1.172 mrg db_printf("addr %sdev id flags ipis curlwp "
1004 1.173 maxv "\n", sixtyfour64space);
1005 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
1006 1.173 maxv db_printf("%p %s %ld %x %x %10p\n",
1007 1.2 ad ci,
1008 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
1009 1.2 ad (long)ci->ci_cpuid,
1010 1.2 ad ci->ci_flags, ci->ci_ipis,
1011 1.173 maxv ci->ci_curlwp);
1012 1.2 ad }
1013 1.2 ad }
1014 1.2 ad #endif
1015 1.2 ad
1016 1.164 cherry #ifdef MULTIPROCESSOR
1017 1.101 kiyohara #if NLAPIC > 0
1018 1.2 ad static void
1019 1.136 maxv cpu_copy_trampoline(paddr_t pdir_pa)
1020 1.2 ad {
1021 1.136 maxv extern uint32_t nox_flag;
1022 1.2 ad extern u_char cpu_spinup_trampoline[];
1023 1.2 ad extern u_char cpu_spinup_trampoline_end[];
1024 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
1025 1.136 maxv struct {
1026 1.136 maxv uint32_t large;
1027 1.136 maxv uint32_t nox;
1028 1.136 maxv uint32_t pdir;
1029 1.136 maxv } smp_data;
1030 1.136 maxv CTASSERT(sizeof(smp_data) == 3 * 4);
1031 1.136 maxv
1032 1.136 maxv smp_data.large = (pmap_largepages != 0);
1033 1.136 maxv smp_data.nox = nox_flag;
1034 1.136 maxv smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
1035 1.12 jmcneill
1036 1.136 maxv /* Enter the physical address */
1037 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1038 1.12 jmcneill UVM_KMF_VAONLY);
1039 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
1040 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
1041 1.2 ad pmap_update(pmap_kernel());
1042 1.136 maxv
1043 1.136 maxv /* Copy boot code */
1044 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
1045 1.2 ad cpu_spinup_trampoline,
1046 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
1047 1.12 jmcneill
1048 1.136 maxv /* Copy smp_data at the end */
1049 1.136 maxv memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
1050 1.136 maxv &smp_data, sizeof(smp_data));
1051 1.136 maxv
1052 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
1053 1.12 jmcneill pmap_update(pmap_kernel());
1054 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
1055 1.2 ad }
1056 1.101 kiyohara #endif
1057 1.2 ad
1058 1.2 ad int
1059 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
1060 1.2 ad {
1061 1.2 ad int error;
1062 1.14 joerg
1063 1.14 joerg /*
1064 1.14 joerg * Bootstrap code must be addressable in real mode
1065 1.14 joerg * and it must be page aligned.
1066 1.14 joerg */
1067 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1068 1.2 ad
1069 1.2 ad /*
1070 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1071 1.2 ad */
1072 1.2 ad
1073 1.2 ad outb(IO_RTC, NVRAM_RESET);
1074 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
1075 1.2 ad
1076 1.165 cherry #if NLAPIC > 0
1077 1.2 ad /*
1078 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
1079 1.2 ad * to the AP startup code ..."
1080 1.2 ad */
1081 1.165 cherry unsigned short dwordptr[2];
1082 1.2 ad dwordptr[0] = 0;
1083 1.14 joerg dwordptr[1] = target >> 4;
1084 1.2 ad
1085 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1086 1.111 joerg #endif
1087 1.2 ad
1088 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
1089 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
1090 1.25 ad return ENODEV;
1091 1.25 ad }
1092 1.25 ad
1093 1.2 ad /*
1094 1.51 ad * ... prior to executing the following sequence:". We'll also add in
1095 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
1096 1.51 ad * disabled. It may not be able to cope with MP coherency.
1097 1.2 ad */
1098 1.51 ad wbinvd();
1099 1.2 ad
1100 1.2 ad if (ci->ci_flags & CPUF_AP) {
1101 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
1102 1.26 cegger if (error != 0) {
1103 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1104 1.50 ad __func__);
1105 1.2 ad return error;
1106 1.25 ad }
1107 1.167 nonaka x86_delay(10000);
1108 1.2 ad
1109 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1110 1.26 cegger if (error != 0) {
1111 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1112 1.50 ad __func__);
1113 1.25 ad return error;
1114 1.25 ad }
1115 1.167 nonaka x86_delay(200);
1116 1.2 ad
1117 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1118 1.26 cegger if (error != 0) {
1119 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1120 1.50 ad __func__);
1121 1.25 ad return error;
1122 1.2 ad }
1123 1.167 nonaka x86_delay(200);
1124 1.2 ad }
1125 1.44 ad
1126 1.2 ad return 0;
1127 1.2 ad }
1128 1.2 ad
1129 1.2 ad void
1130 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1131 1.2 ad {
1132 1.2 ad /*
1133 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1134 1.2 ad */
1135 1.2 ad
1136 1.2 ad outb(IO_RTC, NVRAM_RESET);
1137 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1138 1.2 ad }
1139 1.101 kiyohara #endif
1140 1.2 ad
1141 1.2 ad #ifdef __x86_64__
1142 1.2 ad typedef void (vector)(void);
1143 1.148 maxv extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
1144 1.70 jym #endif
1145 1.2 ad
1146 1.2 ad void
1147 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1148 1.2 ad {
1149 1.70 jym #ifdef __x86_64__
1150 1.2 ad wrmsr(MSR_STAR,
1151 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1152 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1153 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1154 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1155 1.138 maxv wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1156 1.2 ad
1157 1.148 maxv #ifdef SVS
1158 1.148 maxv if (svs_enabled)
1159 1.148 maxv wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
1160 1.148 maxv #endif
1161 1.148 maxv
1162 1.12 jmcneill if (full) {
1163 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1164 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1165 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1166 1.12 jmcneill }
1167 1.70 jym #endif /* __x86_64__ */
1168 1.2 ad
1169 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1170 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1171 1.2 ad }
1172 1.7 ad
1173 1.107 christos void
1174 1.107 christos cpu_offline_md(void)
1175 1.107 christos {
1176 1.173 maxv return;
1177 1.107 christos }
1178 1.107 christos
1179 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1180 1.12 jmcneill static bool
1181 1.96 jruoho cpu_stop(device_t dv)
1182 1.12 jmcneill {
1183 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1184 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1185 1.18 joerg int err;
1186 1.12 jmcneill
1187 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1188 1.93 jruoho
1189 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1190 1.93 jruoho return true;
1191 1.93 jruoho
1192 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1193 1.12 jmcneill return true;
1194 1.12 jmcneill
1195 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1196 1.17 joerg
1197 1.20 jmcneill if (sc->sc_wasonline) {
1198 1.20 jmcneill mutex_enter(&cpu_lock);
1199 1.58 rmind err = cpu_setstate(ci, false);
1200 1.20 jmcneill mutex_exit(&cpu_lock);
1201 1.79 jruoho
1202 1.93 jruoho if (err != 0)
1203 1.20 jmcneill return false;
1204 1.20 jmcneill }
1205 1.17 joerg
1206 1.17 joerg return true;
1207 1.12 jmcneill }
1208 1.12 jmcneill
1209 1.12 jmcneill static bool
1210 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1211 1.96 jruoho {
1212 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1213 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1214 1.96 jruoho
1215 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1216 1.96 jruoho return true;
1217 1.96 jruoho else {
1218 1.96 jruoho cpufreq_suspend(ci);
1219 1.96 jruoho }
1220 1.96 jruoho
1221 1.96 jruoho return cpu_stop(dv);
1222 1.96 jruoho }
1223 1.96 jruoho
1224 1.96 jruoho static bool
1225 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1226 1.12 jmcneill {
1227 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1228 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1229 1.20 jmcneill int err = 0;
1230 1.12 jmcneill
1231 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1232 1.12 jmcneill return true;
1233 1.93 jruoho
1234 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1235 1.93 jruoho goto out;
1236 1.93 jruoho
1237 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1238 1.93 jruoho goto out;
1239 1.12 jmcneill
1240 1.20 jmcneill if (sc->sc_wasonline) {
1241 1.20 jmcneill mutex_enter(&cpu_lock);
1242 1.58 rmind err = cpu_setstate(ci, true);
1243 1.20 jmcneill mutex_exit(&cpu_lock);
1244 1.20 jmcneill }
1245 1.13 joerg
1246 1.93 jruoho out:
1247 1.93 jruoho if (err != 0)
1248 1.93 jruoho return false;
1249 1.93 jruoho
1250 1.93 jruoho cpufreq_resume(ci);
1251 1.93 jruoho
1252 1.93 jruoho return true;
1253 1.12 jmcneill }
1254 1.12 jmcneill
1255 1.79 jruoho static bool
1256 1.79 jruoho cpu_shutdown(device_t dv, int how)
1257 1.79 jruoho {
1258 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1259 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1260 1.90 dyoung
1261 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1262 1.90 dyoung return false;
1263 1.90 dyoung
1264 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1265 1.96 jruoho return true;
1266 1.96 jruoho
1267 1.96 jruoho return cpu_stop(dv);
1268 1.79 jruoho }
1269 1.79 jruoho
1270 1.7 ad void
1271 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1272 1.7 ad {
1273 1.7 ad uint64_t last_tsc;
1274 1.7 ad
1275 1.70 jym if (cpu_hascounter()) {
1276 1.80 bouyer last_tsc = cpu_counter_serializing();
1277 1.167 nonaka x86_delay(100000);
1278 1.80 bouyer ci->ci_data.cpu_cc_freq =
1279 1.80 bouyer (cpu_counter_serializing() - last_tsc) * 10;
1280 1.7 ad }
1281 1.7 ad }
1282 1.37 joerg
1283 1.37 joerg void
1284 1.37 joerg x86_cpu_idle_mwait(void)
1285 1.37 joerg {
1286 1.37 joerg struct cpu_info *ci = curcpu();
1287 1.37 joerg
1288 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1289 1.37 joerg
1290 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1291 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1292 1.37 joerg return;
1293 1.37 joerg }
1294 1.37 joerg x86_mwait(0, 0);
1295 1.37 joerg }
1296 1.37 joerg
1297 1.37 joerg void
1298 1.37 joerg x86_cpu_idle_halt(void)
1299 1.37 joerg {
1300 1.37 joerg struct cpu_info *ci = curcpu();
1301 1.37 joerg
1302 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1303 1.37 joerg
1304 1.37 joerg x86_disable_intr();
1305 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1306 1.37 joerg x86_stihlt();
1307 1.37 joerg } else {
1308 1.37 joerg x86_enable_intr();
1309 1.37 joerg }
1310 1.37 joerg }
1311 1.73 jym
1312 1.73 jym /*
1313 1.73 jym * Loads pmap for the current CPU.
1314 1.73 jym */
1315 1.73 jym void
1316 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1317 1.73 jym {
1318 1.144 maxv #ifdef SVS
1319 1.159 maxv if (svs_enabled) {
1320 1.159 maxv svs_pdir_switch(pmap);
1321 1.159 maxv }
1322 1.144 maxv #endif
1323 1.144 maxv
1324 1.73 jym #ifdef PAE
1325 1.99 yamt struct cpu_info *ci = curcpu();
1326 1.116 nat bool interrupts_enabled;
1327 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1328 1.99 yamt int i;
1329 1.73 jym
1330 1.99 yamt /*
1331 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1332 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1333 1.99 yamt * reload cr3.
1334 1.99 yamt */
1335 1.116 nat interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1336 1.116 nat if (interrupts_enabled)
1337 1.116 nat x86_disable_intr();
1338 1.116 nat
1339 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1340 1.168 maxv l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
1341 1.73 jym }
1342 1.134 maxv
1343 1.116 nat if (interrupts_enabled)
1344 1.116 nat x86_enable_intr();
1345 1.73 jym tlbflush();
1346 1.160 maxv #else
1347 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1348 1.160 maxv #endif
1349 1.73 jym }
1350 1.91 cherry
1351 1.91 cherry /*
1352 1.91 cherry * Notify all other cpus to halt.
1353 1.91 cherry */
1354 1.91 cherry
1355 1.91 cherry void
1356 1.92 cherry cpu_broadcast_halt(void)
1357 1.91 cherry {
1358 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1359 1.91 cherry }
1360 1.91 cherry
1361 1.91 cherry /*
1362 1.176 ad * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
1363 1.176 ad * and trigger an AST on the running LWP.
1364 1.91 cherry */
1365 1.91 cherry
1366 1.91 cherry void
1367 1.91 cherry cpu_kick(struct cpu_info *ci)
1368 1.91 cherry {
1369 1.176 ad x86_send_ipi(ci, X86_IPI_AST);
1370 1.91 cherry }
1371