cpu.c revision 1.186 1 1.186 ad /* $NetBSD: cpu.c,v 1.186 2020/04/23 21:35:18 ad Exp $ */
2 1.2 ad
3 1.134 maxv /*
4 1.186 ad * Copyright (c) 2000-2020 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.186 ad __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.186 2020/04/23 21:35:18 ad Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.101 kiyohara #include "opt_multiprocessor.h"
71 1.144 maxv #include "opt_svs.h"
72 1.2 ad
73 1.2 ad #include "lapic.h"
74 1.2 ad #include "ioapic.h"
75 1.179 ad #include "acpica.h"
76 1.186 ad #include "hpet.h"
77 1.2 ad
78 1.2 ad #include <sys/param.h>
79 1.2 ad #include <sys/proc.h>
80 1.2 ad #include <sys/systm.h>
81 1.2 ad #include <sys/device.h>
82 1.9 ad #include <sys/cpu.h>
83 1.93 jruoho #include <sys/cpufreq.h>
84 1.98 rmind #include <sys/idle.h>
85 1.9 ad #include <sys/atomic.h>
86 1.35 ad #include <sys/reboot.h>
87 1.174 maxv #include <sys/csan.h>
88 1.2 ad
89 1.78 uebayasi #include <uvm/uvm.h>
90 1.2 ad
91 1.102 pgoyette #include "acpica.h" /* for NACPICA, for mp_verbose */
92 1.102 pgoyette
93 1.2 ad #include <machine/cpufunc.h>
94 1.2 ad #include <machine/cpuvar.h>
95 1.2 ad #include <machine/pmap.h>
96 1.2 ad #include <machine/vmparam.h>
97 1.102 pgoyette #if defined(MULTIPROCESSOR)
98 1.2 ad #include <machine/mpbiosvar.h>
99 1.101 kiyohara #endif
100 1.102 pgoyette #include <machine/mpconfig.h> /* for mp_verbose */
101 1.2 ad #include <machine/pcb.h>
102 1.2 ad #include <machine/specialreg.h>
103 1.2 ad #include <machine/segments.h>
104 1.2 ad #include <machine/gdt.h>
105 1.2 ad #include <machine/mtrr.h>
106 1.2 ad #include <machine/pio.h>
107 1.38 ad #include <machine/cpu_counter.h>
108 1.2 ad
109 1.109 dsl #include <x86/fpu.h>
110 1.109 dsl
111 1.179 ad #if NACPICA > 0
112 1.179 ad #include <dev/acpi/acpi_srat.h>
113 1.179 ad #endif
114 1.179 ad
115 1.101 kiyohara #if NLAPIC > 0
116 1.2 ad #include <machine/apicvar.h>
117 1.2 ad #include <machine/i82489reg.h>
118 1.2 ad #include <machine/i82489var.h>
119 1.101 kiyohara #endif
120 1.2 ad
121 1.2 ad #include <dev/ic/mc146818reg.h>
122 1.186 ad #include <dev/ic/hpetvar.h>
123 1.2 ad #include <i386/isa/nvram.h>
124 1.2 ad #include <dev/isa/isareg.h>
125 1.2 ad
126 1.38 ad #include "tsc.h"
127 1.38 ad
128 1.178 nonaka #ifndef XEN
129 1.178 nonaka #include "hyperv.h"
130 1.178 nonaka #if NHYPERV > 0
131 1.178 nonaka #include <x86/x86/hypervvar.h>
132 1.178 nonaka #endif
133 1.178 nonaka #endif
134 1.178 nonaka
135 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
136 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
137 1.87 jruoho static void cpu_defer(device_t);
138 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
139 1.87 jruoho static void cpu_childdetached(device_t, device_t);
140 1.96 jruoho static bool cpu_stop(device_t);
141 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
142 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
143 1.79 jruoho static bool cpu_shutdown(device_t, int);
144 1.12 jmcneill
145 1.2 ad struct cpu_softc {
146 1.23 cube device_t sc_dev; /* device tree glue */
147 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
148 1.20 jmcneill bool sc_wasonline;
149 1.2 ad };
150 1.2 ad
151 1.101 kiyohara #ifdef MULTIPROCESSOR
152 1.120 msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
153 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
154 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
155 1.2 ad mp_cpu_start_cleanup };
156 1.101 kiyohara #endif
157 1.2 ad
158 1.2 ad
159 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
160 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
161 1.2 ad
162 1.2 ad /*
163 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
164 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
165 1.2 ad * point at it.
166 1.2 ad */
167 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
168 1.2 ad .ci_dev = 0,
169 1.2 ad .ci_self = &cpu_info_primary,
170 1.2 ad .ci_idepth = -1,
171 1.2 ad .ci_curlwp = &lwp0,
172 1.43 ad .ci_curldt = -1,
173 1.2 ad };
174 1.2 ad
175 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
176 1.2 ad
177 1.2 ad #ifdef i386
178 1.134 maxv void cpu_set_tss_gates(struct cpu_info *);
179 1.2 ad #endif
180 1.2 ad
181 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
182 1.12 jmcneill
183 1.122 maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
184 1.117 maxv /* [0] basic features cpuid.1:%edx
185 1.117 maxv * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
186 1.117 maxv * [2] extended features cpuid:80000001:%edx
187 1.117 maxv * [3] extended features cpuid:80000001:%ecx
188 1.117 maxv * [4] VIA padlock features
189 1.117 maxv * [5] structured extended features cpuid.7:%ebx
190 1.117 maxv * [6] structured extended features cpuid.7:%ecx
191 1.117 maxv */
192 1.70 jym
193 1.101 kiyohara #ifdef MULTIPROCESSOR
194 1.12 jmcneill bool x86_mp_online;
195 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
196 1.101 kiyohara #endif
197 1.101 kiyohara #if NLAPIC > 0
198 1.14 joerg static vaddr_t cmos_data_mapping;
199 1.101 kiyohara #endif
200 1.45 ad struct cpu_info *cpu_starting;
201 1.2 ad
202 1.186 ad int (*cpu_nullop_ptr)(void *) = nullop;
203 1.186 ad
204 1.101 kiyohara #ifdef MULTIPROCESSOR
205 1.184 msaitoh void cpu_hatch(void *);
206 1.184 msaitoh static void cpu_boot_secondary(struct cpu_info *ci);
207 1.184 msaitoh static void cpu_start_secondary(struct cpu_info *ci);
208 1.101 kiyohara #if NLAPIC > 0
209 1.136 maxv static void cpu_copy_trampoline(paddr_t);
210 1.101 kiyohara #endif
211 1.164 cherry #endif /* MULTIPROCESSOR */
212 1.2 ad
213 1.2 ad /*
214 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
215 1.2 ad * the local APIC on the boot processor has been mapped.
216 1.2 ad *
217 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
218 1.2 ad */
219 1.101 kiyohara #if NLAPIC > 0
220 1.2 ad void
221 1.9 ad cpu_init_first(void)
222 1.2 ad {
223 1.2 ad
224 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
225 1.14 joerg
226 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
227 1.14 joerg if (cmos_data_mapping == 0)
228 1.14 joerg panic("No KVA for page 0");
229 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
230 1.14 joerg pmap_update(pmap_kernel());
231 1.2 ad }
232 1.101 kiyohara #endif
233 1.2 ad
234 1.87 jruoho static int
235 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
236 1.2 ad {
237 1.2 ad
238 1.2 ad return 1;
239 1.2 ad }
240 1.2 ad
241 1.142 maxv #ifdef __HAVE_PCPU_AREA
242 1.142 maxv void
243 1.142 maxv cpu_pcpuarea_init(struct cpu_info *ci)
244 1.142 maxv {
245 1.142 maxv struct vm_page *pg;
246 1.142 maxv size_t i, npages;
247 1.142 maxv vaddr_t base, va;
248 1.142 maxv paddr_t pa;
249 1.142 maxv
250 1.142 maxv CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
251 1.142 maxv
252 1.142 maxv npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
253 1.142 maxv base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
254 1.142 maxv
255 1.142 maxv for (i = 0; i < npages; i++) {
256 1.142 maxv pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
257 1.142 maxv if (pg == NULL) {
258 1.142 maxv panic("failed to allocate pcpu PA");
259 1.142 maxv }
260 1.142 maxv
261 1.142 maxv va = base + i * PAGE_SIZE;
262 1.142 maxv pa = VM_PAGE_TO_PHYS(pg);
263 1.142 maxv
264 1.142 maxv pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
265 1.142 maxv }
266 1.142 maxv
267 1.142 maxv pmap_update(pmap_kernel());
268 1.142 maxv }
269 1.142 maxv #endif
270 1.142 maxv
271 1.2 ad static void
272 1.2 ad cpu_vm_init(struct cpu_info *ci)
273 1.2 ad {
274 1.2 ad int ncolors = 2, i;
275 1.2 ad
276 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
277 1.2 ad struct x86_cache_info *cai;
278 1.2 ad int tcolors;
279 1.2 ad
280 1.2 ad cai = &ci->ci_cinfo[i];
281 1.2 ad
282 1.2 ad tcolors = atop(cai->cai_totalsize);
283 1.184 msaitoh switch (cai->cai_associativity) {
284 1.2 ad case 0xff:
285 1.2 ad tcolors = 1; /* fully associative */
286 1.2 ad break;
287 1.2 ad case 0:
288 1.2 ad case 1:
289 1.2 ad break;
290 1.2 ad default:
291 1.2 ad tcolors /= cai->cai_associativity;
292 1.2 ad }
293 1.161 riastrad ncolors = uimax(ncolors, tcolors);
294 1.32 tls /*
295 1.32 tls * If the desired number of colors is not a power of
296 1.32 tls * two, it won't be good. Find the greatest power of
297 1.32 tls * two which is an even divisor of the number of colors,
298 1.32 tls * to preserve even coloring of pages.
299 1.32 tls */
300 1.32 tls if (ncolors & (ncolors - 1) ) {
301 1.32 tls int try, picked = 1;
302 1.32 tls for (try = 1; try < ncolors; try *= 2) {
303 1.32 tls if (ncolors % try == 0) picked = try;
304 1.32 tls }
305 1.32 tls if (picked == 1) {
306 1.32 tls panic("desired number of cache colors %d is "
307 1.184 msaitoh " > 1, but not even!", ncolors);
308 1.32 tls }
309 1.32 tls ncolors = picked;
310 1.32 tls }
311 1.2 ad }
312 1.2 ad
313 1.2 ad /*
314 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
315 1.94 mrg * re-color our pages.
316 1.2 ad */
317 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
318 1.2 ad uvm_page_recolor(ncolors);
319 1.98 rmind
320 1.98 rmind pmap_tlb_cpu_init(ci);
321 1.123 maxv #ifndef __HAVE_DIRECT_MAP
322 1.123 maxv pmap_vpage_cpu_init(ci);
323 1.123 maxv #endif
324 1.2 ad }
325 1.2 ad
326 1.87 jruoho static void
327 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
328 1.2 ad {
329 1.23 cube struct cpu_softc *sc = device_private(self);
330 1.2 ad struct cpu_attach_args *caa = aux;
331 1.2 ad struct cpu_info *ci;
332 1.21 ad uintptr_t ptr;
333 1.101 kiyohara #if NLAPIC > 0
334 1.2 ad int cpunum = caa->cpu_number;
335 1.101 kiyohara #endif
336 1.51 ad static bool again;
337 1.2 ad
338 1.23 cube sc->sc_dev = self;
339 1.23 cube
340 1.163 cherry if (ncpu > maxcpus) {
341 1.98 rmind #ifndef _LP64
342 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
343 1.98 rmind #else
344 1.98 rmind aprint_error(": too many CPUs\n");
345 1.98 rmind #endif
346 1.48 ad return;
347 1.48 ad }
348 1.48 ad
349 1.2 ad /*
350 1.2 ad * If we're an Application Processor, allocate a cpu_info
351 1.2 ad * structure, otherwise use the primary's.
352 1.2 ad */
353 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
354 1.36 ad if ((boothowto & RB_MD1) != 0) {
355 1.35 ad aprint_error(": multiprocessor boot disabled\n");
356 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
357 1.56 jmcneill aprint_error_dev(self,
358 1.56 jmcneill "couldn't establish power handler\n");
359 1.35 ad return;
360 1.35 ad }
361 1.2 ad aprint_naive(": Application Processor\n");
362 1.143 maxv ptr = (uintptr_t)uvm_km_alloc(kernel_map,
363 1.143 maxv sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
364 1.143 maxv UVM_KMF_WIRED|UVM_KMF_ZERO);
365 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
366 1.43 ad ci->ci_curldt = -1;
367 1.2 ad } else {
368 1.2 ad aprint_naive(": %s Processor\n",
369 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
370 1.2 ad ci = &cpu_info_primary;
371 1.101 kiyohara #if NLAPIC > 0
372 1.2 ad if (cpunum != lapic_cpu_number()) {
373 1.51 ad /* XXX should be done earlier. */
374 1.39 ad uint32_t reg;
375 1.39 ad aprint_verbose("\n");
376 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
377 1.47 ad " instead of at expected %d", lapic_cpu_number(),
378 1.23 cube cpunum);
379 1.125 nonaka reg = lapic_readreg(LAPIC_ID);
380 1.125 nonaka lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
381 1.39 ad (cpunum << LAPIC_ID_SHIFT));
382 1.2 ad }
383 1.47 ad if (cpunum != lapic_cpu_number()) {
384 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
385 1.47 ad }
386 1.101 kiyohara #endif
387 1.2 ad }
388 1.2 ad
389 1.2 ad ci->ci_self = ci;
390 1.2 ad sc->sc_info = ci;
391 1.2 ad ci->ci_dev = self;
392 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
393 1.42 ad ci->ci_cpuid = caa->cpu_number;
394 1.2 ad ci->ci_func = caa->cpu_func;
395 1.177 maxv ci->ci_kfpu_spl = -1;
396 1.112 msaitoh aprint_normal("\n");
397 1.2 ad
398 1.55 ad /* Must be before mi_cpu_attach(). */
399 1.55 ad cpu_vm_init(ci);
400 1.55 ad
401 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
402 1.2 ad int error;
403 1.2 ad
404 1.2 ad error = mi_cpu_attach(ci);
405 1.2 ad if (error != 0) {
406 1.47 ad aprint_error_dev(self,
407 1.30 cegger "mi_cpu_attach failed with %d\n", error);
408 1.2 ad return;
409 1.2 ad }
410 1.142 maxv #ifdef __HAVE_PCPU_AREA
411 1.142 maxv cpu_pcpuarea_init(ci);
412 1.142 maxv #endif
413 1.15 yamt cpu_init_tss(ci);
414 1.2 ad } else {
415 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
416 1.179 ad #if NACPICA > 0
417 1.179 ad /* Parse out NUMA info for cpu_identify(). */
418 1.179 ad acpisrat_init();
419 1.179 ad #endif
420 1.2 ad }
421 1.2 ad
422 1.146 maxv #ifdef SVS
423 1.146 maxv cpu_svs_init(ci);
424 1.146 maxv #endif
425 1.146 maxv
426 1.2 ad pmap_reference(pmap_kernel());
427 1.2 ad ci->ci_pmap = pmap_kernel();
428 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
429 1.2 ad
430 1.51 ad /*
431 1.51 ad * Boot processor may not be attached first, but the below
432 1.51 ad * must be done to allow booting other processors.
433 1.51 ad */
434 1.51 ad if (!again) {
435 1.186 ad /* Make sure DELAY() (likely i8254_delay()) is initialized. */
436 1.186 ad DELAY(1);
437 1.186 ad
438 1.186 ad /* Basic init. */
439 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
440 1.2 ad cpu_intr_init(ci);
441 1.40 ad cpu_get_tsc_freq(ci);
442 1.2 ad cpu_init(ci);
443 1.134 maxv #ifdef i386
444 1.2 ad cpu_set_tss_gates(ci);
445 1.134 maxv #endif
446 1.2 ad pmap_cpu_init_late(ci);
447 1.101 kiyohara #if NLAPIC > 0
448 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
449 1.51 ad /* Enable lapic. */
450 1.51 ad lapic_enable();
451 1.51 ad lapic_set_lvt();
452 1.51 ad lapic_calibrate_timer(ci);
453 1.51 ad }
454 1.101 kiyohara #endif
455 1.174 maxv kcsan_cpu_init(ci);
456 1.51 ad again = true;
457 1.51 ad }
458 1.51 ad
459 1.51 ad /* further PCB init done later. */
460 1.51 ad
461 1.51 ad switch (caa->cpu_role) {
462 1.51 ad case CPU_ROLE_SP:
463 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
464 1.51 ad cpu_identify(ci);
465 1.53 ad x86_errata();
466 1.37 joerg x86_cpu_idle_init();
467 1.2 ad break;
468 1.2 ad
469 1.2 ad case CPU_ROLE_BP:
470 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
471 1.40 ad cpu_identify(ci);
472 1.53 ad x86_errata();
473 1.37 joerg x86_cpu_idle_init();
474 1.2 ad break;
475 1.2 ad
476 1.101 kiyohara #ifdef MULTIPROCESSOR
477 1.2 ad case CPU_ROLE_AP:
478 1.2 ad /*
479 1.2 ad * report on an AP
480 1.2 ad */
481 1.2 ad cpu_intr_init(ci);
482 1.2 ad gdt_alloc_cpu(ci);
483 1.134 maxv #ifdef i386
484 1.2 ad cpu_set_tss_gates(ci);
485 1.134 maxv #endif
486 1.2 ad pmap_cpu_init_late(ci);
487 1.2 ad cpu_start_secondary(ci);
488 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
489 1.59 cegger struct cpu_info *tmp;
490 1.59 cegger
491 1.40 ad cpu_identify(ci);
492 1.59 cegger tmp = cpu_info_list;
493 1.59 cegger while (tmp->ci_next)
494 1.59 cegger tmp = tmp->ci_next;
495 1.59 cegger
496 1.59 cegger tmp->ci_next = ci;
497 1.2 ad }
498 1.2 ad break;
499 1.101 kiyohara #endif
500 1.2 ad
501 1.2 ad default:
502 1.2 ad panic("unknown processor type??\n");
503 1.2 ad }
504 1.51 ad
505 1.71 cegger pat_init(ci);
506 1.2 ad
507 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
508 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
509 1.12 jmcneill
510 1.101 kiyohara #ifdef MULTIPROCESSOR
511 1.2 ad if (mp_verbose) {
512 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
513 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
514 1.2 ad
515 1.47 ad aprint_verbose_dev(self,
516 1.28 cegger "idle lwp at %p, idle sp at %p\n",
517 1.28 cegger l,
518 1.2 ad #ifdef i386
519 1.65 rmind (void *)pcb->pcb_esp
520 1.2 ad #else
521 1.65 rmind (void *)pcb->pcb_rsp
522 1.2 ad #endif
523 1.2 ad );
524 1.2 ad }
525 1.101 kiyohara #endif
526 1.81 jmcneill
527 1.89 jruoho /*
528 1.89 jruoho * Postpone the "cpufeaturebus" scan.
529 1.89 jruoho * It is safe to scan the pseudo-bus
530 1.89 jruoho * only after all CPUs have attached.
531 1.89 jruoho */
532 1.87 jruoho (void)config_defer(self, cpu_defer);
533 1.87 jruoho }
534 1.87 jruoho
535 1.87 jruoho static void
536 1.87 jruoho cpu_defer(device_t self)
537 1.87 jruoho {
538 1.81 jmcneill cpu_rescan(self, NULL, NULL);
539 1.81 jmcneill }
540 1.81 jmcneill
541 1.87 jruoho static int
542 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
543 1.81 jmcneill {
544 1.83 jruoho struct cpu_softc *sc = device_private(self);
545 1.81 jmcneill struct cpufeature_attach_args cfaa;
546 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
547 1.81 jmcneill
548 1.181 pgoyette /*
549 1.181 pgoyette * If we booted with RB_MD1 to disable multiprocessor, the
550 1.181 pgoyette * auto-configuration data still contains the additional
551 1.181 pgoyette * CPUs. But their initialization was mostly bypassed
552 1.181 pgoyette * during attach, so we have to make sure we don't look at
553 1.181 pgoyette * their featurebus info, since it wasn't retrieved.
554 1.181 pgoyette */
555 1.181 pgoyette if (ci == NULL)
556 1.181 pgoyette return 0;
557 1.181 pgoyette
558 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
559 1.81 jmcneill cfaa.ci = ci;
560 1.81 jmcneill
561 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
562 1.83 jruoho if (ci->ci_frequency == NULL) {
563 1.86 jruoho cfaa.name = "frequency";
564 1.84 jruoho ci->ci_frequency = config_found_ia(self,
565 1.84 jruoho "cpufeaturebus", &cfaa, NULL);
566 1.84 jruoho }
567 1.84 jruoho
568 1.81 jmcneill if (ci->ci_padlock == NULL) {
569 1.81 jmcneill cfaa.name = "padlock";
570 1.81 jmcneill ci->ci_padlock = config_found_ia(self,
571 1.81 jmcneill "cpufeaturebus", &cfaa, NULL);
572 1.81 jmcneill }
573 1.82 jruoho
574 1.86 jruoho if (ci->ci_temperature == NULL) {
575 1.86 jruoho cfaa.name = "temperature";
576 1.86 jruoho ci->ci_temperature = config_found_ia(self,
577 1.85 jruoho "cpufeaturebus", &cfaa, NULL);
578 1.85 jruoho }
579 1.95 jmcneill
580 1.95 jmcneill if (ci->ci_vm == NULL) {
581 1.95 jmcneill cfaa.name = "vm";
582 1.95 jmcneill ci->ci_vm = config_found_ia(self,
583 1.95 jmcneill "cpufeaturebus", &cfaa, NULL);
584 1.95 jmcneill }
585 1.81 jmcneill }
586 1.81 jmcneill
587 1.81 jmcneill return 0;
588 1.81 jmcneill }
589 1.81 jmcneill
590 1.87 jruoho static void
591 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
592 1.81 jmcneill {
593 1.81 jmcneill struct cpu_softc *sc = device_private(self);
594 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
595 1.81 jmcneill
596 1.83 jruoho if (ci->ci_frequency == child)
597 1.83 jruoho ci->ci_frequency = NULL;
598 1.82 jruoho
599 1.81 jmcneill if (ci->ci_padlock == child)
600 1.81 jmcneill ci->ci_padlock = NULL;
601 1.83 jruoho
602 1.86 jruoho if (ci->ci_temperature == child)
603 1.86 jruoho ci->ci_temperature = NULL;
604 1.95 jmcneill
605 1.95 jmcneill if (ci->ci_vm == child)
606 1.95 jmcneill ci->ci_vm = NULL;
607 1.2 ad }
608 1.2 ad
609 1.2 ad /*
610 1.2 ad * Initialize the processor appropriately.
611 1.2 ad */
612 1.2 ad
613 1.2 ad void
614 1.9 ad cpu_init(struct cpu_info *ci)
615 1.2 ad {
616 1.141 maxv extern int x86_fpu_save;
617 1.113 christos uint32_t cr4 = 0;
618 1.2 ad
619 1.2 ad lcr0(rcr0() | CR0_WP);
620 1.2 ad
621 1.169 maxv /* If global TLB caching is supported, enable it */
622 1.70 jym if (cpu_feature[0] & CPUID_PGE)
623 1.169 maxv cr4 |= CR4_PGE;
624 1.2 ad
625 1.2 ad /*
626 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
627 1.2 ad */
628 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
629 1.110 dsl cr4 |= CR4_OSFXSR;
630 1.2 ad
631 1.2 ad /*
632 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
633 1.2 ad */
634 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
635 1.110 dsl cr4 |= CR4_OSXMMEXCPT;
636 1.2 ad }
637 1.2 ad
638 1.110 dsl /* If xsave is supported, enable it */
639 1.110 dsl if (cpu_feature[1] & CPUID2_XSAVE)
640 1.110 dsl cr4 |= CR4_OSXSAVE;
641 1.110 dsl
642 1.118 maxv /* If SMEP is supported, enable it */
643 1.118 maxv if (cpu_feature[5] & CPUID_SEF_SMEP)
644 1.118 maxv cr4 |= CR4_SMEP;
645 1.118 maxv
646 1.137 maxv /* If SMAP is supported, enable it */
647 1.137 maxv if (cpu_feature[5] & CPUID_SEF_SMAP)
648 1.137 maxv cr4 |= CR4_SMAP;
649 1.137 maxv
650 1.171 maxv #ifdef SVS
651 1.171 maxv /* If PCID is supported, enable it */
652 1.171 maxv if (svs_pcid)
653 1.171 maxv cr4 |= CR4_PCIDE;
654 1.171 maxv #endif
655 1.171 maxv
656 1.113 christos if (cr4) {
657 1.113 christos cr4 |= rcr4();
658 1.113 christos lcr4(cr4);
659 1.113 christos }
660 1.110 dsl
661 1.145 msaitoh /*
662 1.145 msaitoh * Changing CR4 register may change cpuid values. For example, setting
663 1.145 msaitoh * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
664 1.145 msaitoh * ci_feat_val[1], so update it.
665 1.145 msaitoh * XXX Other than ci_feat_val[1] might be changed.
666 1.145 msaitoh */
667 1.145 msaitoh if (cpuid_level >= 1) {
668 1.145 msaitoh u_int descs[4];
669 1.145 msaitoh
670 1.145 msaitoh x86_cpuid(1, descs);
671 1.145 msaitoh ci->ci_feat_val[1] = descs[2];
672 1.145 msaitoh }
673 1.145 msaitoh
674 1.141 maxv if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
675 1.158 maxv fpuinit_mxcsr_mask();
676 1.141 maxv }
677 1.141 maxv
678 1.110 dsl /* If xsave is enabled, enable all fpu features */
679 1.110 dsl if (cr4 & CR4_OSXSAVE)
680 1.110 dsl wrxcr(0, x86_xsave_features & XCR0_FPU);
681 1.110 dsl
682 1.2 ad #ifdef MTRR
683 1.2 ad /*
684 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
685 1.2 ad */
686 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
687 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
688 1.2 ad i686_mtrr_init_first();
689 1.2 ad mtrr_init_cpu(ci);
690 1.2 ad }
691 1.2 ad
692 1.2 ad #ifdef i386
693 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
694 1.2 ad /*
695 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
696 1.2 ad */
697 1.106 msaitoh if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
698 1.106 msaitoh if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
699 1.106 msaitoh (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
700 1.106 msaitoh CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
701 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
702 1.2 ad k6_mtrr_init_first();
703 1.2 ad mtrr_init_cpu(ci);
704 1.2 ad }
705 1.2 ad }
706 1.2 ad }
707 1.2 ad #endif /* i386 */
708 1.2 ad #endif /* MTRR */
709 1.2 ad
710 1.38 ad if (ci != &cpu_info_primary) {
711 1.150 maxv /* Synchronize TSC */
712 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
713 1.38 ad tsc_sync_ap(ci);
714 1.38 ad } else {
715 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
716 1.38 ad }
717 1.2 ad }
718 1.2 ad
719 1.101 kiyohara #ifdef MULTIPROCESSOR
720 1.2 ad void
721 1.12 jmcneill cpu_boot_secondary_processors(void)
722 1.2 ad {
723 1.2 ad struct cpu_info *ci;
724 1.100 chs kcpuset_t *cpus;
725 1.2 ad u_long i;
726 1.2 ad
727 1.186 ad #if NHPET > 0
728 1.186 ad /* Use HPET delay, and re-calibrate TSC on boot CPU using HPET. */
729 1.186 ad if (hpet_delay_p() && x86_delay == i8254_delay) {
730 1.186 ad delay_func = x86_delay = hpet_delay;
731 1.186 ad cpu_get_tsc_freq(curcpu());
732 1.186 ad }
733 1.186 ad #endif
734 1.186 ad
735 1.183 bouyer #ifndef XEN
736 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
737 1.60 ad x86_patch(false);
738 1.183 bouyer #endif
739 1.5 ad
740 1.179 ad #if NACPICA > 0
741 1.179 ad /* Finished with NUMA info for now. */
742 1.179 ad acpisrat_exit();
743 1.179 ad #endif
744 1.179 ad
745 1.100 chs kcpuset_create(&cpus, true);
746 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
747 1.100 chs for (i = 0; i < maxcpus; i++) {
748 1.57 ad ci = cpu_lookup(i);
749 1.2 ad if (ci == NULL)
750 1.2 ad continue;
751 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
752 1.2 ad continue;
753 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
754 1.2 ad continue;
755 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
756 1.2 ad continue;
757 1.2 ad cpu_boot_secondary(ci);
758 1.100 chs kcpuset_set(cpus, cpu_index(ci));
759 1.2 ad }
760 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
761 1.100 chs ;
762 1.100 chs kcpuset_destroy(cpus);
763 1.2 ad
764 1.2 ad x86_mp_online = true;
765 1.38 ad
766 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
767 1.38 ad tsc_tc_init();
768 1.55 ad
769 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
770 1.175 ad vm_page_zero_enable = false; /* ((cpu_feature[0] & CPUID_SSE2) != 0); */
771 1.2 ad }
772 1.101 kiyohara #endif
773 1.2 ad
774 1.2 ad static void
775 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
776 1.2 ad {
777 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
778 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
779 1.2 ad
780 1.2 ad pcb->pcb_cr0 = rcr0();
781 1.2 ad }
782 1.2 ad
783 1.2 ad void
784 1.12 jmcneill cpu_init_idle_lwps(void)
785 1.2 ad {
786 1.2 ad struct cpu_info *ci;
787 1.2 ad u_long i;
788 1.2 ad
789 1.54 ad for (i = 0; i < maxcpus; i++) {
790 1.57 ad ci = cpu_lookup(i);
791 1.2 ad if (ci == NULL)
792 1.2 ad continue;
793 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
794 1.2 ad continue;
795 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
796 1.2 ad continue;
797 1.2 ad cpu_init_idle_lwp(ci);
798 1.2 ad }
799 1.2 ad }
800 1.2 ad
801 1.101 kiyohara #ifdef MULTIPROCESSOR
802 1.2 ad void
803 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
804 1.2 ad {
805 1.38 ad u_long psl;
806 1.2 ad int i;
807 1.2 ad
808 1.165 cherry #if NLAPIC > 0
809 1.165 cherry paddr_t mp_pdirpa;
810 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
811 1.136 maxv cpu_copy_trampoline(mp_pdirpa);
812 1.165 cherry #endif
813 1.136 maxv
814 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
815 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
816 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
817 1.25 ad return;
818 1.45 ad }
819 1.2 ad
820 1.2 ad /*
821 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
822 1.50 ad * initial gate and allows the AP to start soft initialization.
823 1.2 ad */
824 1.50 ad KASSERT(cpu_starting == NULL);
825 1.50 ad cpu_starting = ci;
826 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
827 1.167 nonaka x86_delay(10);
828 1.2 ad }
829 1.38 ad
830 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
831 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
832 1.2 ad #if defined(MPDEBUG) && defined(DDB)
833 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
834 1.2 ad Debugger();
835 1.2 ad #endif
836 1.38 ad } else {
837 1.38 ad /*
838 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
839 1.150 maxv * twice (in tsc_sync_bp) to minimize possible cache effects.
840 1.150 maxv * Disable interrupts to try and rule out any external
841 1.150 maxv * interference.
842 1.38 ad */
843 1.38 ad psl = x86_read_psl();
844 1.38 ad x86_disable_intr();
845 1.38 ad tsc_sync_bp(ci);
846 1.38 ad x86_write_psl(psl);
847 1.2 ad }
848 1.2 ad
849 1.2 ad CPU_START_CLEANUP(ci);
850 1.45 ad cpu_starting = NULL;
851 1.2 ad }
852 1.2 ad
853 1.2 ad void
854 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
855 1.2 ad {
856 1.38 ad int64_t drift;
857 1.38 ad u_long psl;
858 1.2 ad int i;
859 1.2 ad
860 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
861 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
862 1.167 nonaka x86_delay(10);
863 1.2 ad }
864 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
865 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
866 1.2 ad #if defined(MPDEBUG) && defined(DDB)
867 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
868 1.2 ad Debugger();
869 1.2 ad #endif
870 1.38 ad } else {
871 1.38 ad /* Synchronize TSC again, check for drift. */
872 1.38 ad drift = ci->ci_data.cpu_cc_skew;
873 1.38 ad psl = x86_read_psl();
874 1.38 ad x86_disable_intr();
875 1.38 ad tsc_sync_bp(ci);
876 1.38 ad x86_write_psl(psl);
877 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
878 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
879 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
880 1.38 ad tsc_sync_drift(drift);
881 1.2 ad }
882 1.2 ad }
883 1.2 ad
884 1.2 ad /*
885 1.117 maxv * The CPU ends up here when it's ready to run.
886 1.2 ad * This is called from code in mptramp.s; at this point, we are running
887 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
888 1.2 ad * this processor will enter the idle loop and start looking for work.
889 1.2 ad */
890 1.2 ad void
891 1.2 ad cpu_hatch(void *v)
892 1.2 ad {
893 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
894 1.65 rmind struct pcb *pcb;
895 1.130 kre int s, i;
896 1.2 ad
897 1.162 maxv /* ------------------------------------------------------------- */
898 1.162 maxv
899 1.162 maxv /*
900 1.162 maxv * This section of code must be compiled with SSP disabled, to
901 1.162 maxv * prevent a race against cpu0. See sys/conf/ssp.mk.
902 1.162 maxv */
903 1.162 maxv
904 1.12 jmcneill cpu_init_msrs(ci, true);
905 1.40 ad cpu_probe(ci);
906 1.154 maxv cpu_speculation_init(ci);
907 1.178 nonaka #if NHYPERV > 0
908 1.178 nonaka hyperv_init_cpu(ci);
909 1.178 nonaka #endif
910 1.46 ad
911 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
912 1.134 maxv /* cpu_get_tsc_freq(ci); */
913 1.38 ad
914 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
915 1.38 ad
916 1.38 ad /*
917 1.150 maxv * Synchronize the TSC for the first time. Note that interrupts are
918 1.150 maxv * off at this point.
919 1.38 ad */
920 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
921 1.38 ad tsc_sync_ap(ci);
922 1.38 ad
923 1.162 maxv /* ------------------------------------------------------------- */
924 1.162 maxv
925 1.38 ad /*
926 1.150 maxv * Wait to be brought online.
927 1.150 maxv *
928 1.150 maxv * Use MONITOR/MWAIT if available. These instructions put the CPU in
929 1.150 maxv * a low consumption mode (C-state), and if the TSC is not invariant,
930 1.150 maxv * this causes the TSC to drift. We want this to happen, so that we
931 1.150 maxv * can later detect (in tsc_tc_init) any abnormal drift with invariant
932 1.150 maxv * TSCs. That's just for safety; by definition such drifts should
933 1.150 maxv * never occur with invariant TSCs.
934 1.150 maxv *
935 1.150 maxv * If not available, try PAUSE. We'd like to use HLT, but we have
936 1.150 maxv * interrupts off.
937 1.38 ad */
938 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
939 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
940 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
941 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
942 1.38 ad continue;
943 1.38 ad }
944 1.38 ad x86_mwait(0, 0);
945 1.38 ad } else {
946 1.131 pgoyette /*
947 1.131 pgoyette * XXX The loop repetition count could be a lot higher, but
948 1.131 pgoyette * XXX currently qemu emulator takes a _very_long_time_ to
949 1.131 pgoyette * XXX execute the pause instruction. So for now, use a low
950 1.131 pgoyette * XXX value to allow the cpu to hatch before timing out.
951 1.131 pgoyette */
952 1.131 pgoyette for (i = 50; i != 0; i--) {
953 1.127 pgoyette x86_pause();
954 1.127 pgoyette }
955 1.38 ad }
956 1.6 ad }
957 1.5 ad
958 1.26 cegger /* Because the text may have been patched in x86_patch(). */
959 1.5 ad wbinvd();
960 1.5 ad x86_flush();
961 1.88 rmind tlbflushg();
962 1.5 ad
963 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
964 1.2 ad
965 1.73 jym #ifdef PAE
966 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
967 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
968 1.168 maxv l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
969 1.73 jym }
970 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
971 1.73 jym #else
972 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
973 1.73 jym #endif
974 1.73 jym
975 1.65 rmind pcb = lwp_getpcb(curlwp);
976 1.73 jym pcb->pcb_cr3 = rcr3();
977 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
978 1.65 rmind lcr0(pcb->pcb_cr0);
979 1.65 rmind
980 1.2 ad cpu_init_idt();
981 1.8 ad gdt_init_cpu(ci);
982 1.111 joerg #if NLAPIC > 0
983 1.8 ad lapic_enable();
984 1.2 ad lapic_set_lvt();
985 1.8 ad lapic_initclocks();
986 1.111 joerg #endif
987 1.2 ad
988 1.2 ad fpuinit(ci);
989 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
990 1.15 yamt ltr(ci->ci_tss_sel);
991 1.2 ad
992 1.150 maxv /*
993 1.150 maxv * cpu_init will re-synchronize the TSC, and will detect any abnormal
994 1.150 maxv * drift that would have been caused by the use of MONITOR/MWAIT
995 1.150 maxv * above.
996 1.150 maxv */
997 1.2 ad cpu_init(ci);
998 1.7 ad cpu_get_tsc_freq(ci);
999 1.2 ad
1000 1.2 ad s = splhigh();
1001 1.165 cherry #if NLAPIC > 0
1002 1.124 nonaka lapic_write_tpri(0);
1003 1.165 cherry #endif
1004 1.3 ad x86_enable_intr();
1005 1.2 ad splx(s);
1006 1.6 ad x86_errata();
1007 1.2 ad
1008 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
1009 1.98 rmind
1010 1.174 maxv kcsan_cpu_init(ci);
1011 1.174 maxv
1012 1.98 rmind idle_loop(NULL);
1013 1.98 rmind KASSERT(false);
1014 1.2 ad }
1015 1.101 kiyohara #endif
1016 1.2 ad
1017 1.2 ad #if defined(DDB)
1018 1.2 ad
1019 1.2 ad #include <ddb/db_output.h>
1020 1.2 ad #include <machine/db_machdep.h>
1021 1.2 ad
1022 1.2 ad /*
1023 1.2 ad * Dump CPU information from ddb.
1024 1.2 ad */
1025 1.2 ad void
1026 1.2 ad cpu_debug_dump(void)
1027 1.2 ad {
1028 1.2 ad struct cpu_info *ci;
1029 1.2 ad CPU_INFO_ITERATOR cii;
1030 1.184 msaitoh const char sixtyfour64space[] =
1031 1.172 mrg #ifdef _LP64
1032 1.172 mrg " "
1033 1.172 mrg #endif
1034 1.172 mrg "";
1035 1.2 ad
1036 1.180 ad db_printf("addr %sdev id flags ipis spl curlwp "
1037 1.173 maxv "\n", sixtyfour64space);
1038 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
1039 1.180 ad db_printf("%p %s %ld %x %x %d %10p\n",
1040 1.2 ad ci,
1041 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
1042 1.2 ad (long)ci->ci_cpuid,
1043 1.180 ad ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
1044 1.173 maxv ci->ci_curlwp);
1045 1.2 ad }
1046 1.2 ad }
1047 1.2 ad #endif
1048 1.2 ad
1049 1.164 cherry #ifdef MULTIPROCESSOR
1050 1.101 kiyohara #if NLAPIC > 0
1051 1.2 ad static void
1052 1.136 maxv cpu_copy_trampoline(paddr_t pdir_pa)
1053 1.2 ad {
1054 1.136 maxv extern uint32_t nox_flag;
1055 1.2 ad extern u_char cpu_spinup_trampoline[];
1056 1.2 ad extern u_char cpu_spinup_trampoline_end[];
1057 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
1058 1.136 maxv struct {
1059 1.136 maxv uint32_t large;
1060 1.136 maxv uint32_t nox;
1061 1.136 maxv uint32_t pdir;
1062 1.136 maxv } smp_data;
1063 1.136 maxv CTASSERT(sizeof(smp_data) == 3 * 4);
1064 1.136 maxv
1065 1.136 maxv smp_data.large = (pmap_largepages != 0);
1066 1.136 maxv smp_data.nox = nox_flag;
1067 1.136 maxv smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
1068 1.12 jmcneill
1069 1.136 maxv /* Enter the physical address */
1070 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1071 1.12 jmcneill UVM_KMF_VAONLY);
1072 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
1073 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
1074 1.2 ad pmap_update(pmap_kernel());
1075 1.136 maxv
1076 1.136 maxv /* Copy boot code */
1077 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
1078 1.2 ad cpu_spinup_trampoline,
1079 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
1080 1.12 jmcneill
1081 1.136 maxv /* Copy smp_data at the end */
1082 1.136 maxv memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
1083 1.136 maxv &smp_data, sizeof(smp_data));
1084 1.136 maxv
1085 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
1086 1.12 jmcneill pmap_update(pmap_kernel());
1087 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
1088 1.2 ad }
1089 1.101 kiyohara #endif
1090 1.2 ad
1091 1.2 ad int
1092 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
1093 1.2 ad {
1094 1.2 ad int error;
1095 1.14 joerg
1096 1.14 joerg /*
1097 1.14 joerg * Bootstrap code must be addressable in real mode
1098 1.14 joerg * and it must be page aligned.
1099 1.14 joerg */
1100 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1101 1.2 ad
1102 1.2 ad /*
1103 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1104 1.2 ad */
1105 1.2 ad
1106 1.2 ad outb(IO_RTC, NVRAM_RESET);
1107 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
1108 1.2 ad
1109 1.165 cherry #if NLAPIC > 0
1110 1.2 ad /*
1111 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
1112 1.2 ad * to the AP startup code ..."
1113 1.2 ad */
1114 1.165 cherry unsigned short dwordptr[2];
1115 1.2 ad dwordptr[0] = 0;
1116 1.14 joerg dwordptr[1] = target >> 4;
1117 1.2 ad
1118 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1119 1.111 joerg #endif
1120 1.2 ad
1121 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
1122 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
1123 1.25 ad return ENODEV;
1124 1.25 ad }
1125 1.25 ad
1126 1.2 ad /*
1127 1.51 ad * ... prior to executing the following sequence:". We'll also add in
1128 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
1129 1.51 ad * disabled. It may not be able to cope with MP coherency.
1130 1.2 ad */
1131 1.51 ad wbinvd();
1132 1.2 ad
1133 1.2 ad if (ci->ci_flags & CPUF_AP) {
1134 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
1135 1.26 cegger if (error != 0) {
1136 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1137 1.50 ad __func__);
1138 1.2 ad return error;
1139 1.25 ad }
1140 1.167 nonaka x86_delay(10000);
1141 1.2 ad
1142 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1143 1.26 cegger if (error != 0) {
1144 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1145 1.50 ad __func__);
1146 1.25 ad return error;
1147 1.25 ad }
1148 1.167 nonaka x86_delay(200);
1149 1.2 ad
1150 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1151 1.26 cegger if (error != 0) {
1152 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1153 1.50 ad __func__);
1154 1.25 ad return error;
1155 1.2 ad }
1156 1.167 nonaka x86_delay(200);
1157 1.2 ad }
1158 1.44 ad
1159 1.2 ad return 0;
1160 1.2 ad }
1161 1.2 ad
1162 1.2 ad void
1163 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1164 1.2 ad {
1165 1.2 ad /*
1166 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1167 1.2 ad */
1168 1.2 ad
1169 1.2 ad outb(IO_RTC, NVRAM_RESET);
1170 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1171 1.2 ad }
1172 1.101 kiyohara #endif
1173 1.2 ad
1174 1.2 ad #ifdef __x86_64__
1175 1.2 ad typedef void (vector)(void);
1176 1.148 maxv extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
1177 1.70 jym #endif
1178 1.2 ad
1179 1.2 ad void
1180 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1181 1.2 ad {
1182 1.70 jym #ifdef __x86_64__
1183 1.2 ad wrmsr(MSR_STAR,
1184 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1185 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1186 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1187 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1188 1.138 maxv wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1189 1.2 ad
1190 1.148 maxv #ifdef SVS
1191 1.148 maxv if (svs_enabled)
1192 1.148 maxv wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
1193 1.148 maxv #endif
1194 1.148 maxv
1195 1.12 jmcneill if (full) {
1196 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1197 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1198 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1199 1.12 jmcneill }
1200 1.70 jym #endif /* __x86_64__ */
1201 1.2 ad
1202 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1203 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1204 1.2 ad }
1205 1.7 ad
1206 1.107 christos void
1207 1.107 christos cpu_offline_md(void)
1208 1.107 christos {
1209 1.173 maxv return;
1210 1.107 christos }
1211 1.107 christos
1212 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1213 1.12 jmcneill static bool
1214 1.96 jruoho cpu_stop(device_t dv)
1215 1.12 jmcneill {
1216 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1217 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1218 1.18 joerg int err;
1219 1.12 jmcneill
1220 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1221 1.93 jruoho
1222 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1223 1.93 jruoho return true;
1224 1.93 jruoho
1225 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1226 1.12 jmcneill return true;
1227 1.12 jmcneill
1228 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1229 1.17 joerg
1230 1.20 jmcneill if (sc->sc_wasonline) {
1231 1.20 jmcneill mutex_enter(&cpu_lock);
1232 1.58 rmind err = cpu_setstate(ci, false);
1233 1.20 jmcneill mutex_exit(&cpu_lock);
1234 1.79 jruoho
1235 1.93 jruoho if (err != 0)
1236 1.20 jmcneill return false;
1237 1.20 jmcneill }
1238 1.17 joerg
1239 1.17 joerg return true;
1240 1.12 jmcneill }
1241 1.12 jmcneill
1242 1.12 jmcneill static bool
1243 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1244 1.96 jruoho {
1245 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1246 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1247 1.96 jruoho
1248 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1249 1.96 jruoho return true;
1250 1.96 jruoho else {
1251 1.96 jruoho cpufreq_suspend(ci);
1252 1.96 jruoho }
1253 1.96 jruoho
1254 1.96 jruoho return cpu_stop(dv);
1255 1.96 jruoho }
1256 1.96 jruoho
1257 1.96 jruoho static bool
1258 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1259 1.12 jmcneill {
1260 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1261 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1262 1.20 jmcneill int err = 0;
1263 1.12 jmcneill
1264 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1265 1.12 jmcneill return true;
1266 1.93 jruoho
1267 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1268 1.93 jruoho goto out;
1269 1.93 jruoho
1270 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1271 1.93 jruoho goto out;
1272 1.12 jmcneill
1273 1.20 jmcneill if (sc->sc_wasonline) {
1274 1.20 jmcneill mutex_enter(&cpu_lock);
1275 1.58 rmind err = cpu_setstate(ci, true);
1276 1.20 jmcneill mutex_exit(&cpu_lock);
1277 1.20 jmcneill }
1278 1.13 joerg
1279 1.93 jruoho out:
1280 1.93 jruoho if (err != 0)
1281 1.93 jruoho return false;
1282 1.93 jruoho
1283 1.93 jruoho cpufreq_resume(ci);
1284 1.93 jruoho
1285 1.93 jruoho return true;
1286 1.12 jmcneill }
1287 1.12 jmcneill
1288 1.79 jruoho static bool
1289 1.79 jruoho cpu_shutdown(device_t dv, int how)
1290 1.79 jruoho {
1291 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1292 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1293 1.90 dyoung
1294 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1295 1.90 dyoung return false;
1296 1.90 dyoung
1297 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1298 1.96 jruoho return true;
1299 1.96 jruoho
1300 1.96 jruoho return cpu_stop(dv);
1301 1.79 jruoho }
1302 1.79 jruoho
1303 1.185 msaitoh /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
1304 1.7 ad void
1305 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1306 1.7 ad {
1307 1.186 ad uint64_t freq = 0, t0, t1;
1308 1.186 ad int64_t overhead;
1309 1.7 ad
1310 1.185 msaitoh if (cpu_hascounter())
1311 1.185 msaitoh freq = cpu_tsc_freq_cpuid(ci);
1312 1.185 msaitoh
1313 1.185 msaitoh if (freq != 0) {
1314 1.185 msaitoh /* Use TSC frequency taken from CPUID. */
1315 1.185 msaitoh ci->ci_data.cpu_cc_freq = freq;
1316 1.185 msaitoh } else {
1317 1.186 ad /*
1318 1.186 ad * Work out the approximate overhead involved below.
1319 1.186 ad * Discard the result of the first go around the loop.
1320 1.186 ad */
1321 1.186 ad overhead = 0;
1322 1.186 ad for (int i = 0; i <= 8; i++) {
1323 1.186 ad __insn_barrier();
1324 1.186 ad t0 = cpu_counter_serializing();
1325 1.186 ad (*cpu_nullop_ptr)(NULL);
1326 1.186 ad t1 = cpu_counter_serializing();
1327 1.186 ad __insn_barrier();
1328 1.186 ad if (i > 0) {
1329 1.186 ad overhead += (t1 - t0);
1330 1.186 ad }
1331 1.186 ad }
1332 1.186 ad overhead >>= 3;
1333 1.186 ad
1334 1.186 ad /* Now warm up x86_delay() and do the calibration. */
1335 1.186 ad x86_delay(1);
1336 1.186 ad __insn_barrier();
1337 1.186 ad t0 = cpu_counter_serializing();
1338 1.167 nonaka x86_delay(100000);
1339 1.186 ad t1 = cpu_counter_serializing();
1340 1.186 ad __insn_barrier();
1341 1.186 ad ci->ci_data.cpu_cc_freq = (t1 - t0 - overhead) * 10;
1342 1.7 ad }
1343 1.7 ad }
1344 1.37 joerg
1345 1.37 joerg void
1346 1.37 joerg x86_cpu_idle_mwait(void)
1347 1.37 joerg {
1348 1.37 joerg struct cpu_info *ci = curcpu();
1349 1.37 joerg
1350 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1351 1.37 joerg
1352 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1353 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1354 1.37 joerg return;
1355 1.37 joerg }
1356 1.37 joerg x86_mwait(0, 0);
1357 1.37 joerg }
1358 1.37 joerg
1359 1.37 joerg void
1360 1.37 joerg x86_cpu_idle_halt(void)
1361 1.37 joerg {
1362 1.37 joerg struct cpu_info *ci = curcpu();
1363 1.37 joerg
1364 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1365 1.37 joerg
1366 1.37 joerg x86_disable_intr();
1367 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1368 1.37 joerg x86_stihlt();
1369 1.37 joerg } else {
1370 1.37 joerg x86_enable_intr();
1371 1.37 joerg }
1372 1.37 joerg }
1373 1.73 jym
1374 1.73 jym /*
1375 1.73 jym * Loads pmap for the current CPU.
1376 1.73 jym */
1377 1.73 jym void
1378 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1379 1.73 jym {
1380 1.144 maxv #ifdef SVS
1381 1.159 maxv if (svs_enabled) {
1382 1.159 maxv svs_pdir_switch(pmap);
1383 1.159 maxv }
1384 1.144 maxv #endif
1385 1.144 maxv
1386 1.73 jym #ifdef PAE
1387 1.99 yamt struct cpu_info *ci = curcpu();
1388 1.116 nat bool interrupts_enabled;
1389 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1390 1.99 yamt int i;
1391 1.73 jym
1392 1.99 yamt /*
1393 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1394 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1395 1.99 yamt * reload cr3.
1396 1.99 yamt */
1397 1.116 nat interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1398 1.116 nat if (interrupts_enabled)
1399 1.116 nat x86_disable_intr();
1400 1.116 nat
1401 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1402 1.168 maxv l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
1403 1.73 jym }
1404 1.134 maxv
1405 1.116 nat if (interrupts_enabled)
1406 1.116 nat x86_enable_intr();
1407 1.73 jym tlbflush();
1408 1.160 maxv #else
1409 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1410 1.160 maxv #endif
1411 1.73 jym }
1412 1.91 cherry
1413 1.91 cherry /*
1414 1.91 cherry * Notify all other cpus to halt.
1415 1.91 cherry */
1416 1.91 cherry
1417 1.91 cherry void
1418 1.92 cherry cpu_broadcast_halt(void)
1419 1.91 cherry {
1420 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1421 1.91 cherry }
1422 1.91 cherry
1423 1.91 cherry /*
1424 1.176 ad * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
1425 1.176 ad * and trigger an AST on the running LWP.
1426 1.91 cherry */
1427 1.91 cherry
1428 1.91 cherry void
1429 1.91 cherry cpu_kick(struct cpu_info *ci)
1430 1.91 cherry {
1431 1.176 ad x86_send_ipi(ci, X86_IPI_AST);
1432 1.91 cherry }
1433