cpu.c revision 1.189 1 1.189 bouyer /* $NetBSD: cpu.c,v 1.189 2020/05/02 16:44:36 bouyer Exp $ */
2 1.2 ad
3 1.134 maxv /*
4 1.188 ad * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.189 bouyer __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.189 2020/05/02 16:44:36 bouyer Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.101 kiyohara #include "opt_multiprocessor.h"
71 1.144 maxv #include "opt_svs.h"
72 1.2 ad
73 1.2 ad #include "lapic.h"
74 1.2 ad #include "ioapic.h"
75 1.179 ad #include "acpica.h"
76 1.2 ad
77 1.2 ad #include <sys/param.h>
78 1.2 ad #include <sys/proc.h>
79 1.2 ad #include <sys/systm.h>
80 1.2 ad #include <sys/device.h>
81 1.9 ad #include <sys/cpu.h>
82 1.93 jruoho #include <sys/cpufreq.h>
83 1.98 rmind #include <sys/idle.h>
84 1.9 ad #include <sys/atomic.h>
85 1.35 ad #include <sys/reboot.h>
86 1.174 maxv #include <sys/csan.h>
87 1.2 ad
88 1.78 uebayasi #include <uvm/uvm.h>
89 1.2 ad
90 1.102 pgoyette #include "acpica.h" /* for NACPICA, for mp_verbose */
91 1.102 pgoyette
92 1.187 bouyer #include <x86/machdep.h>
93 1.2 ad #include <machine/cpufunc.h>
94 1.2 ad #include <machine/cpuvar.h>
95 1.2 ad #include <machine/pmap.h>
96 1.2 ad #include <machine/vmparam.h>
97 1.102 pgoyette #if defined(MULTIPROCESSOR)
98 1.2 ad #include <machine/mpbiosvar.h>
99 1.101 kiyohara #endif
100 1.102 pgoyette #include <machine/mpconfig.h> /* for mp_verbose */
101 1.2 ad #include <machine/pcb.h>
102 1.2 ad #include <machine/specialreg.h>
103 1.2 ad #include <machine/segments.h>
104 1.2 ad #include <machine/gdt.h>
105 1.2 ad #include <machine/mtrr.h>
106 1.2 ad #include <machine/pio.h>
107 1.38 ad #include <machine/cpu_counter.h>
108 1.2 ad
109 1.109 dsl #include <x86/fpu.h>
110 1.109 dsl
111 1.179 ad #if NACPICA > 0
112 1.179 ad #include <dev/acpi/acpi_srat.h>
113 1.179 ad #endif
114 1.179 ad
115 1.101 kiyohara #if NLAPIC > 0
116 1.2 ad #include <machine/apicvar.h>
117 1.2 ad #include <machine/i82489reg.h>
118 1.2 ad #include <machine/i82489var.h>
119 1.101 kiyohara #endif
120 1.2 ad
121 1.2 ad #include <dev/ic/mc146818reg.h>
122 1.2 ad #include <i386/isa/nvram.h>
123 1.2 ad #include <dev/isa/isareg.h>
124 1.2 ad
125 1.38 ad #include "tsc.h"
126 1.38 ad
127 1.187 bouyer #ifndef XENPV
128 1.178 nonaka #include "hyperv.h"
129 1.178 nonaka #if NHYPERV > 0
130 1.178 nonaka #include <x86/x86/hypervvar.h>
131 1.178 nonaka #endif
132 1.178 nonaka #endif
133 1.178 nonaka
134 1.187 bouyer #ifdef XEN
135 1.187 bouyer #include <xen/hypervisor.h>
136 1.187 bouyer #endif
137 1.187 bouyer
138 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
139 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
140 1.87 jruoho static void cpu_defer(device_t);
141 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
142 1.87 jruoho static void cpu_childdetached(device_t, device_t);
143 1.96 jruoho static bool cpu_stop(device_t);
144 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
145 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
146 1.79 jruoho static bool cpu_shutdown(device_t, int);
147 1.12 jmcneill
148 1.2 ad struct cpu_softc {
149 1.23 cube device_t sc_dev; /* device tree glue */
150 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
151 1.20 jmcneill bool sc_wasonline;
152 1.2 ad };
153 1.2 ad
154 1.101 kiyohara #ifdef MULTIPROCESSOR
155 1.120 msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
156 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
157 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
158 1.2 ad mp_cpu_start_cleanup };
159 1.101 kiyohara #endif
160 1.2 ad
161 1.2 ad
162 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
163 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
164 1.2 ad
165 1.2 ad /*
166 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
167 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
168 1.2 ad * point at it.
169 1.2 ad */
170 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
171 1.2 ad .ci_dev = 0,
172 1.2 ad .ci_self = &cpu_info_primary,
173 1.2 ad .ci_idepth = -1,
174 1.2 ad .ci_curlwp = &lwp0,
175 1.43 ad .ci_curldt = -1,
176 1.2 ad };
177 1.2 ad
178 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
179 1.2 ad
180 1.2 ad #ifdef i386
181 1.134 maxv void cpu_set_tss_gates(struct cpu_info *);
182 1.2 ad #endif
183 1.2 ad
184 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
185 1.12 jmcneill
186 1.122 maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
187 1.117 maxv /* [0] basic features cpuid.1:%edx
188 1.117 maxv * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
189 1.117 maxv * [2] extended features cpuid:80000001:%edx
190 1.117 maxv * [3] extended features cpuid:80000001:%ecx
191 1.117 maxv * [4] VIA padlock features
192 1.117 maxv * [5] structured extended features cpuid.7:%ebx
193 1.117 maxv * [6] structured extended features cpuid.7:%ecx
194 1.117 maxv */
195 1.70 jym
196 1.101 kiyohara #ifdef MULTIPROCESSOR
197 1.12 jmcneill bool x86_mp_online;
198 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
199 1.101 kiyohara #endif
200 1.101 kiyohara #if NLAPIC > 0
201 1.14 joerg static vaddr_t cmos_data_mapping;
202 1.101 kiyohara #endif
203 1.45 ad struct cpu_info *cpu_starting;
204 1.2 ad
205 1.101 kiyohara #ifdef MULTIPROCESSOR
206 1.184 msaitoh void cpu_hatch(void *);
207 1.184 msaitoh static void cpu_boot_secondary(struct cpu_info *ci);
208 1.184 msaitoh static void cpu_start_secondary(struct cpu_info *ci);
209 1.101 kiyohara #if NLAPIC > 0
210 1.136 maxv static void cpu_copy_trampoline(paddr_t);
211 1.101 kiyohara #endif
212 1.164 cherry #endif /* MULTIPROCESSOR */
213 1.2 ad
214 1.2 ad /*
215 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
216 1.2 ad * the local APIC on the boot processor has been mapped.
217 1.2 ad *
218 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
219 1.2 ad */
220 1.101 kiyohara #if NLAPIC > 0
221 1.2 ad void
222 1.9 ad cpu_init_first(void)
223 1.2 ad {
224 1.2 ad
225 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
226 1.14 joerg
227 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
228 1.14 joerg if (cmos_data_mapping == 0)
229 1.14 joerg panic("No KVA for page 0");
230 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
231 1.14 joerg pmap_update(pmap_kernel());
232 1.2 ad }
233 1.101 kiyohara #endif
234 1.2 ad
235 1.87 jruoho static int
236 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
237 1.2 ad {
238 1.2 ad
239 1.2 ad return 1;
240 1.2 ad }
241 1.2 ad
242 1.142 maxv #ifdef __HAVE_PCPU_AREA
243 1.142 maxv void
244 1.142 maxv cpu_pcpuarea_init(struct cpu_info *ci)
245 1.142 maxv {
246 1.142 maxv struct vm_page *pg;
247 1.142 maxv size_t i, npages;
248 1.142 maxv vaddr_t base, va;
249 1.142 maxv paddr_t pa;
250 1.142 maxv
251 1.142 maxv CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
252 1.142 maxv
253 1.142 maxv npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
254 1.142 maxv base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
255 1.142 maxv
256 1.142 maxv for (i = 0; i < npages; i++) {
257 1.142 maxv pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
258 1.142 maxv if (pg == NULL) {
259 1.142 maxv panic("failed to allocate pcpu PA");
260 1.142 maxv }
261 1.142 maxv
262 1.142 maxv va = base + i * PAGE_SIZE;
263 1.142 maxv pa = VM_PAGE_TO_PHYS(pg);
264 1.142 maxv
265 1.142 maxv pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
266 1.142 maxv }
267 1.142 maxv
268 1.142 maxv pmap_update(pmap_kernel());
269 1.142 maxv }
270 1.142 maxv #endif
271 1.142 maxv
272 1.2 ad static void
273 1.2 ad cpu_vm_init(struct cpu_info *ci)
274 1.2 ad {
275 1.2 ad int ncolors = 2, i;
276 1.2 ad
277 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
278 1.2 ad struct x86_cache_info *cai;
279 1.2 ad int tcolors;
280 1.2 ad
281 1.2 ad cai = &ci->ci_cinfo[i];
282 1.2 ad
283 1.2 ad tcolors = atop(cai->cai_totalsize);
284 1.184 msaitoh switch (cai->cai_associativity) {
285 1.2 ad case 0xff:
286 1.2 ad tcolors = 1; /* fully associative */
287 1.2 ad break;
288 1.2 ad case 0:
289 1.2 ad case 1:
290 1.2 ad break;
291 1.2 ad default:
292 1.2 ad tcolors /= cai->cai_associativity;
293 1.2 ad }
294 1.161 riastrad ncolors = uimax(ncolors, tcolors);
295 1.32 tls /*
296 1.32 tls * If the desired number of colors is not a power of
297 1.32 tls * two, it won't be good. Find the greatest power of
298 1.32 tls * two which is an even divisor of the number of colors,
299 1.32 tls * to preserve even coloring of pages.
300 1.32 tls */
301 1.32 tls if (ncolors & (ncolors - 1) ) {
302 1.32 tls int try, picked = 1;
303 1.32 tls for (try = 1; try < ncolors; try *= 2) {
304 1.32 tls if (ncolors % try == 0) picked = try;
305 1.32 tls }
306 1.32 tls if (picked == 1) {
307 1.32 tls panic("desired number of cache colors %d is "
308 1.184 msaitoh " > 1, but not even!", ncolors);
309 1.32 tls }
310 1.32 tls ncolors = picked;
311 1.32 tls }
312 1.2 ad }
313 1.2 ad
314 1.2 ad /*
315 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
316 1.94 mrg * re-color our pages.
317 1.2 ad */
318 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
319 1.2 ad uvm_page_recolor(ncolors);
320 1.98 rmind
321 1.98 rmind pmap_tlb_cpu_init(ci);
322 1.123 maxv #ifndef __HAVE_DIRECT_MAP
323 1.123 maxv pmap_vpage_cpu_init(ci);
324 1.123 maxv #endif
325 1.2 ad }
326 1.2 ad
327 1.87 jruoho static void
328 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
329 1.2 ad {
330 1.23 cube struct cpu_softc *sc = device_private(self);
331 1.2 ad struct cpu_attach_args *caa = aux;
332 1.2 ad struct cpu_info *ci;
333 1.21 ad uintptr_t ptr;
334 1.101 kiyohara #if NLAPIC > 0
335 1.2 ad int cpunum = caa->cpu_number;
336 1.101 kiyohara #endif
337 1.51 ad static bool again;
338 1.2 ad
339 1.23 cube sc->sc_dev = self;
340 1.23 cube
341 1.163 cherry if (ncpu > maxcpus) {
342 1.98 rmind #ifndef _LP64
343 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
344 1.98 rmind #else
345 1.98 rmind aprint_error(": too many CPUs\n");
346 1.98 rmind #endif
347 1.48 ad return;
348 1.48 ad }
349 1.48 ad
350 1.2 ad /*
351 1.2 ad * If we're an Application Processor, allocate a cpu_info
352 1.2 ad * structure, otherwise use the primary's.
353 1.2 ad */
354 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
355 1.36 ad if ((boothowto & RB_MD1) != 0) {
356 1.35 ad aprint_error(": multiprocessor boot disabled\n");
357 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
358 1.56 jmcneill aprint_error_dev(self,
359 1.56 jmcneill "couldn't establish power handler\n");
360 1.35 ad return;
361 1.35 ad }
362 1.2 ad aprint_naive(": Application Processor\n");
363 1.143 maxv ptr = (uintptr_t)uvm_km_alloc(kernel_map,
364 1.143 maxv sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
365 1.143 maxv UVM_KMF_WIRED|UVM_KMF_ZERO);
366 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
367 1.43 ad ci->ci_curldt = -1;
368 1.2 ad } else {
369 1.2 ad aprint_naive(": %s Processor\n",
370 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
371 1.2 ad ci = &cpu_info_primary;
372 1.101 kiyohara #if NLAPIC > 0
373 1.2 ad if (cpunum != lapic_cpu_number()) {
374 1.51 ad /* XXX should be done earlier. */
375 1.39 ad uint32_t reg;
376 1.39 ad aprint_verbose("\n");
377 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
378 1.47 ad " instead of at expected %d", lapic_cpu_number(),
379 1.23 cube cpunum);
380 1.125 nonaka reg = lapic_readreg(LAPIC_ID);
381 1.125 nonaka lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
382 1.39 ad (cpunum << LAPIC_ID_SHIFT));
383 1.2 ad }
384 1.47 ad if (cpunum != lapic_cpu_number()) {
385 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
386 1.47 ad }
387 1.101 kiyohara #endif
388 1.2 ad }
389 1.2 ad
390 1.2 ad ci->ci_self = ci;
391 1.2 ad sc->sc_info = ci;
392 1.2 ad ci->ci_dev = self;
393 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
394 1.42 ad ci->ci_cpuid = caa->cpu_number;
395 1.2 ad ci->ci_func = caa->cpu_func;
396 1.177 maxv ci->ci_kfpu_spl = -1;
397 1.112 msaitoh aprint_normal("\n");
398 1.2 ad
399 1.55 ad /* Must be before mi_cpu_attach(). */
400 1.55 ad cpu_vm_init(ci);
401 1.55 ad
402 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
403 1.2 ad int error;
404 1.2 ad
405 1.2 ad error = mi_cpu_attach(ci);
406 1.2 ad if (error != 0) {
407 1.47 ad aprint_error_dev(self,
408 1.30 cegger "mi_cpu_attach failed with %d\n", error);
409 1.2 ad return;
410 1.2 ad }
411 1.142 maxv #ifdef __HAVE_PCPU_AREA
412 1.142 maxv cpu_pcpuarea_init(ci);
413 1.142 maxv #endif
414 1.15 yamt cpu_init_tss(ci);
415 1.2 ad } else {
416 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
417 1.179 ad #if NACPICA > 0
418 1.179 ad /* Parse out NUMA info for cpu_identify(). */
419 1.179 ad acpisrat_init();
420 1.179 ad #endif
421 1.2 ad }
422 1.2 ad
423 1.146 maxv #ifdef SVS
424 1.146 maxv cpu_svs_init(ci);
425 1.146 maxv #endif
426 1.146 maxv
427 1.2 ad pmap_reference(pmap_kernel());
428 1.2 ad ci->ci_pmap = pmap_kernel();
429 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
430 1.2 ad
431 1.51 ad /*
432 1.51 ad * Boot processor may not be attached first, but the below
433 1.51 ad * must be done to allow booting other processors.
434 1.51 ad */
435 1.51 ad if (!again) {
436 1.188 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
437 1.186 ad /* Basic init. */
438 1.2 ad cpu_intr_init(ci);
439 1.40 ad cpu_get_tsc_freq(ci);
440 1.2 ad cpu_init(ci);
441 1.134 maxv #ifdef i386
442 1.2 ad cpu_set_tss_gates(ci);
443 1.134 maxv #endif
444 1.2 ad pmap_cpu_init_late(ci);
445 1.101 kiyohara #if NLAPIC > 0
446 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
447 1.51 ad /* Enable lapic. */
448 1.51 ad lapic_enable();
449 1.51 ad lapic_set_lvt();
450 1.189 bouyer if (!vm_guest_is_xenpvh_or_pvhvm())
451 1.187 bouyer lapic_calibrate_timer(ci);
452 1.51 ad }
453 1.101 kiyohara #endif
454 1.188 ad /* Make sure DELAY() is initialized. */
455 1.188 ad DELAY(1);
456 1.174 maxv kcsan_cpu_init(ci);
457 1.51 ad again = true;
458 1.51 ad }
459 1.51 ad
460 1.51 ad /* further PCB init done later. */
461 1.51 ad
462 1.51 ad switch (caa->cpu_role) {
463 1.51 ad case CPU_ROLE_SP:
464 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
465 1.51 ad cpu_identify(ci);
466 1.53 ad x86_errata();
467 1.37 joerg x86_cpu_idle_init();
468 1.187 bouyer (*x86_cpu_initclock_func)();
469 1.187 bouyer #ifdef XENPVHVM
470 1.187 bouyer xen_hvm_init_cpu(ci);
471 1.187 bouyer #endif
472 1.2 ad break;
473 1.2 ad
474 1.2 ad case CPU_ROLE_BP:
475 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
476 1.40 ad cpu_identify(ci);
477 1.53 ad x86_errata();
478 1.37 joerg x86_cpu_idle_init();
479 1.187 bouyer #ifdef XENPVHVM
480 1.187 bouyer xen_hvm_init_cpu(ci);
481 1.187 bouyer #endif
482 1.187 bouyer (*x86_cpu_initclock_func)();
483 1.2 ad break;
484 1.2 ad
485 1.101 kiyohara #ifdef MULTIPROCESSOR
486 1.2 ad case CPU_ROLE_AP:
487 1.2 ad /*
488 1.2 ad * report on an AP
489 1.2 ad */
490 1.2 ad cpu_intr_init(ci);
491 1.2 ad gdt_alloc_cpu(ci);
492 1.134 maxv #ifdef i386
493 1.2 ad cpu_set_tss_gates(ci);
494 1.134 maxv #endif
495 1.2 ad pmap_cpu_init_late(ci);
496 1.2 ad cpu_start_secondary(ci);
497 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
498 1.59 cegger struct cpu_info *tmp;
499 1.59 cegger
500 1.40 ad cpu_identify(ci);
501 1.59 cegger tmp = cpu_info_list;
502 1.59 cegger while (tmp->ci_next)
503 1.59 cegger tmp = tmp->ci_next;
504 1.59 cegger
505 1.59 cegger tmp->ci_next = ci;
506 1.2 ad }
507 1.2 ad break;
508 1.101 kiyohara #endif
509 1.2 ad
510 1.2 ad default:
511 1.2 ad panic("unknown processor type??\n");
512 1.2 ad }
513 1.51 ad
514 1.71 cegger pat_init(ci);
515 1.2 ad
516 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
517 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
518 1.12 jmcneill
519 1.101 kiyohara #ifdef MULTIPROCESSOR
520 1.2 ad if (mp_verbose) {
521 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
522 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
523 1.2 ad
524 1.47 ad aprint_verbose_dev(self,
525 1.28 cegger "idle lwp at %p, idle sp at %p\n",
526 1.28 cegger l,
527 1.2 ad #ifdef i386
528 1.65 rmind (void *)pcb->pcb_esp
529 1.2 ad #else
530 1.65 rmind (void *)pcb->pcb_rsp
531 1.2 ad #endif
532 1.2 ad );
533 1.2 ad }
534 1.101 kiyohara #endif
535 1.81 jmcneill
536 1.89 jruoho /*
537 1.89 jruoho * Postpone the "cpufeaturebus" scan.
538 1.89 jruoho * It is safe to scan the pseudo-bus
539 1.89 jruoho * only after all CPUs have attached.
540 1.89 jruoho */
541 1.87 jruoho (void)config_defer(self, cpu_defer);
542 1.87 jruoho }
543 1.87 jruoho
544 1.87 jruoho static void
545 1.87 jruoho cpu_defer(device_t self)
546 1.87 jruoho {
547 1.81 jmcneill cpu_rescan(self, NULL, NULL);
548 1.81 jmcneill }
549 1.81 jmcneill
550 1.87 jruoho static int
551 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
552 1.81 jmcneill {
553 1.83 jruoho struct cpu_softc *sc = device_private(self);
554 1.81 jmcneill struct cpufeature_attach_args cfaa;
555 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
556 1.81 jmcneill
557 1.181 pgoyette /*
558 1.181 pgoyette * If we booted with RB_MD1 to disable multiprocessor, the
559 1.181 pgoyette * auto-configuration data still contains the additional
560 1.181 pgoyette * CPUs. But their initialization was mostly bypassed
561 1.181 pgoyette * during attach, so we have to make sure we don't look at
562 1.181 pgoyette * their featurebus info, since it wasn't retrieved.
563 1.181 pgoyette */
564 1.181 pgoyette if (ci == NULL)
565 1.181 pgoyette return 0;
566 1.181 pgoyette
567 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
568 1.81 jmcneill cfaa.ci = ci;
569 1.81 jmcneill
570 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
571 1.83 jruoho if (ci->ci_frequency == NULL) {
572 1.86 jruoho cfaa.name = "frequency";
573 1.84 jruoho ci->ci_frequency = config_found_ia(self,
574 1.84 jruoho "cpufeaturebus", &cfaa, NULL);
575 1.84 jruoho }
576 1.84 jruoho
577 1.81 jmcneill if (ci->ci_padlock == NULL) {
578 1.81 jmcneill cfaa.name = "padlock";
579 1.81 jmcneill ci->ci_padlock = config_found_ia(self,
580 1.81 jmcneill "cpufeaturebus", &cfaa, NULL);
581 1.81 jmcneill }
582 1.82 jruoho
583 1.86 jruoho if (ci->ci_temperature == NULL) {
584 1.86 jruoho cfaa.name = "temperature";
585 1.86 jruoho ci->ci_temperature = config_found_ia(self,
586 1.85 jruoho "cpufeaturebus", &cfaa, NULL);
587 1.85 jruoho }
588 1.95 jmcneill
589 1.95 jmcneill if (ci->ci_vm == NULL) {
590 1.95 jmcneill cfaa.name = "vm";
591 1.95 jmcneill ci->ci_vm = config_found_ia(self,
592 1.95 jmcneill "cpufeaturebus", &cfaa, NULL);
593 1.95 jmcneill }
594 1.81 jmcneill }
595 1.81 jmcneill
596 1.81 jmcneill return 0;
597 1.81 jmcneill }
598 1.81 jmcneill
599 1.87 jruoho static void
600 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
601 1.81 jmcneill {
602 1.81 jmcneill struct cpu_softc *sc = device_private(self);
603 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
604 1.81 jmcneill
605 1.83 jruoho if (ci->ci_frequency == child)
606 1.83 jruoho ci->ci_frequency = NULL;
607 1.82 jruoho
608 1.81 jmcneill if (ci->ci_padlock == child)
609 1.81 jmcneill ci->ci_padlock = NULL;
610 1.83 jruoho
611 1.86 jruoho if (ci->ci_temperature == child)
612 1.86 jruoho ci->ci_temperature = NULL;
613 1.95 jmcneill
614 1.95 jmcneill if (ci->ci_vm == child)
615 1.95 jmcneill ci->ci_vm = NULL;
616 1.2 ad }
617 1.2 ad
618 1.2 ad /*
619 1.2 ad * Initialize the processor appropriately.
620 1.2 ad */
621 1.2 ad
622 1.2 ad void
623 1.9 ad cpu_init(struct cpu_info *ci)
624 1.2 ad {
625 1.141 maxv extern int x86_fpu_save;
626 1.113 christos uint32_t cr4 = 0;
627 1.2 ad
628 1.2 ad lcr0(rcr0() | CR0_WP);
629 1.2 ad
630 1.169 maxv /* If global TLB caching is supported, enable it */
631 1.70 jym if (cpu_feature[0] & CPUID_PGE)
632 1.169 maxv cr4 |= CR4_PGE;
633 1.2 ad
634 1.2 ad /*
635 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
636 1.2 ad */
637 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
638 1.110 dsl cr4 |= CR4_OSFXSR;
639 1.2 ad
640 1.2 ad /*
641 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
642 1.2 ad */
643 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
644 1.110 dsl cr4 |= CR4_OSXMMEXCPT;
645 1.2 ad }
646 1.2 ad
647 1.110 dsl /* If xsave is supported, enable it */
648 1.110 dsl if (cpu_feature[1] & CPUID2_XSAVE)
649 1.110 dsl cr4 |= CR4_OSXSAVE;
650 1.110 dsl
651 1.118 maxv /* If SMEP is supported, enable it */
652 1.118 maxv if (cpu_feature[5] & CPUID_SEF_SMEP)
653 1.118 maxv cr4 |= CR4_SMEP;
654 1.118 maxv
655 1.137 maxv /* If SMAP is supported, enable it */
656 1.137 maxv if (cpu_feature[5] & CPUID_SEF_SMAP)
657 1.137 maxv cr4 |= CR4_SMAP;
658 1.137 maxv
659 1.171 maxv #ifdef SVS
660 1.171 maxv /* If PCID is supported, enable it */
661 1.171 maxv if (svs_pcid)
662 1.171 maxv cr4 |= CR4_PCIDE;
663 1.171 maxv #endif
664 1.171 maxv
665 1.113 christos if (cr4) {
666 1.113 christos cr4 |= rcr4();
667 1.113 christos lcr4(cr4);
668 1.113 christos }
669 1.110 dsl
670 1.145 msaitoh /*
671 1.145 msaitoh * Changing CR4 register may change cpuid values. For example, setting
672 1.145 msaitoh * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
673 1.145 msaitoh * ci_feat_val[1], so update it.
674 1.145 msaitoh * XXX Other than ci_feat_val[1] might be changed.
675 1.145 msaitoh */
676 1.145 msaitoh if (cpuid_level >= 1) {
677 1.145 msaitoh u_int descs[4];
678 1.145 msaitoh
679 1.145 msaitoh x86_cpuid(1, descs);
680 1.145 msaitoh ci->ci_feat_val[1] = descs[2];
681 1.145 msaitoh }
682 1.145 msaitoh
683 1.141 maxv if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
684 1.158 maxv fpuinit_mxcsr_mask();
685 1.141 maxv }
686 1.141 maxv
687 1.110 dsl /* If xsave is enabled, enable all fpu features */
688 1.110 dsl if (cr4 & CR4_OSXSAVE)
689 1.110 dsl wrxcr(0, x86_xsave_features & XCR0_FPU);
690 1.110 dsl
691 1.2 ad #ifdef MTRR
692 1.2 ad /*
693 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
694 1.2 ad */
695 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
696 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
697 1.2 ad i686_mtrr_init_first();
698 1.2 ad mtrr_init_cpu(ci);
699 1.2 ad }
700 1.2 ad
701 1.2 ad #ifdef i386
702 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
703 1.2 ad /*
704 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
705 1.2 ad */
706 1.106 msaitoh if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
707 1.106 msaitoh if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
708 1.106 msaitoh (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
709 1.106 msaitoh CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
710 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
711 1.2 ad k6_mtrr_init_first();
712 1.2 ad mtrr_init_cpu(ci);
713 1.2 ad }
714 1.2 ad }
715 1.2 ad }
716 1.2 ad #endif /* i386 */
717 1.2 ad #endif /* MTRR */
718 1.2 ad
719 1.38 ad if (ci != &cpu_info_primary) {
720 1.150 maxv /* Synchronize TSC */
721 1.188 ad wbinvd();
722 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
723 1.38 ad tsc_sync_ap(ci);
724 1.38 ad } else {
725 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
726 1.38 ad }
727 1.2 ad }
728 1.2 ad
729 1.101 kiyohara #ifdef MULTIPROCESSOR
730 1.2 ad void
731 1.12 jmcneill cpu_boot_secondary_processors(void)
732 1.2 ad {
733 1.2 ad struct cpu_info *ci;
734 1.100 chs kcpuset_t *cpus;
735 1.2 ad u_long i;
736 1.2 ad
737 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
738 1.60 ad x86_patch(false);
739 1.5 ad
740 1.179 ad #if NACPICA > 0
741 1.179 ad /* Finished with NUMA info for now. */
742 1.179 ad acpisrat_exit();
743 1.179 ad #endif
744 1.179 ad
745 1.100 chs kcpuset_create(&cpus, true);
746 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
747 1.100 chs for (i = 0; i < maxcpus; i++) {
748 1.57 ad ci = cpu_lookup(i);
749 1.2 ad if (ci == NULL)
750 1.2 ad continue;
751 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
752 1.2 ad continue;
753 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
754 1.2 ad continue;
755 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
756 1.2 ad continue;
757 1.2 ad cpu_boot_secondary(ci);
758 1.100 chs kcpuset_set(cpus, cpu_index(ci));
759 1.2 ad }
760 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
761 1.100 chs ;
762 1.100 chs kcpuset_destroy(cpus);
763 1.2 ad
764 1.2 ad x86_mp_online = true;
765 1.38 ad
766 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
767 1.38 ad tsc_tc_init();
768 1.55 ad
769 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
770 1.175 ad vm_page_zero_enable = false; /* ((cpu_feature[0] & CPUID_SSE2) != 0); */
771 1.2 ad }
772 1.101 kiyohara #endif
773 1.2 ad
774 1.2 ad static void
775 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
776 1.2 ad {
777 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
778 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
779 1.2 ad
780 1.2 ad pcb->pcb_cr0 = rcr0();
781 1.2 ad }
782 1.2 ad
783 1.2 ad void
784 1.12 jmcneill cpu_init_idle_lwps(void)
785 1.2 ad {
786 1.2 ad struct cpu_info *ci;
787 1.2 ad u_long i;
788 1.2 ad
789 1.54 ad for (i = 0; i < maxcpus; i++) {
790 1.57 ad ci = cpu_lookup(i);
791 1.2 ad if (ci == NULL)
792 1.2 ad continue;
793 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
794 1.2 ad continue;
795 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
796 1.2 ad continue;
797 1.2 ad cpu_init_idle_lwp(ci);
798 1.2 ad }
799 1.2 ad }
800 1.2 ad
801 1.101 kiyohara #ifdef MULTIPROCESSOR
802 1.2 ad void
803 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
804 1.2 ad {
805 1.38 ad u_long psl;
806 1.2 ad int i;
807 1.2 ad
808 1.165 cherry #if NLAPIC > 0
809 1.165 cherry paddr_t mp_pdirpa;
810 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
811 1.136 maxv cpu_copy_trampoline(mp_pdirpa);
812 1.165 cherry #endif
813 1.136 maxv
814 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
815 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
816 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
817 1.25 ad return;
818 1.45 ad }
819 1.2 ad
820 1.2 ad /*
821 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
822 1.50 ad * initial gate and allows the AP to start soft initialization.
823 1.2 ad */
824 1.50 ad KASSERT(cpu_starting == NULL);
825 1.50 ad cpu_starting = ci;
826 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
827 1.189 bouyer delay_func(10);
828 1.2 ad }
829 1.38 ad
830 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
831 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
832 1.2 ad #if defined(MPDEBUG) && defined(DDB)
833 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
834 1.2 ad Debugger();
835 1.2 ad #endif
836 1.38 ad } else {
837 1.38 ad /*
838 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
839 1.150 maxv * twice (in tsc_sync_bp) to minimize possible cache effects.
840 1.150 maxv * Disable interrupts to try and rule out any external
841 1.150 maxv * interference.
842 1.38 ad */
843 1.38 ad psl = x86_read_psl();
844 1.38 ad x86_disable_intr();
845 1.188 ad wbinvd();
846 1.38 ad tsc_sync_bp(ci);
847 1.38 ad x86_write_psl(psl);
848 1.2 ad }
849 1.2 ad
850 1.2 ad CPU_START_CLEANUP(ci);
851 1.45 ad cpu_starting = NULL;
852 1.2 ad }
853 1.2 ad
854 1.2 ad void
855 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
856 1.2 ad {
857 1.38 ad int64_t drift;
858 1.38 ad u_long psl;
859 1.2 ad int i;
860 1.2 ad
861 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
862 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
863 1.189 bouyer delay_func(10);
864 1.2 ad }
865 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
866 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
867 1.2 ad #if defined(MPDEBUG) && defined(DDB)
868 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
869 1.2 ad Debugger();
870 1.2 ad #endif
871 1.38 ad } else {
872 1.38 ad /* Synchronize TSC again, check for drift. */
873 1.38 ad drift = ci->ci_data.cpu_cc_skew;
874 1.38 ad psl = x86_read_psl();
875 1.38 ad x86_disable_intr();
876 1.188 ad wbinvd();
877 1.38 ad tsc_sync_bp(ci);
878 1.38 ad x86_write_psl(psl);
879 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
880 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
881 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
882 1.38 ad tsc_sync_drift(drift);
883 1.2 ad }
884 1.2 ad }
885 1.2 ad
886 1.2 ad /*
887 1.117 maxv * The CPU ends up here when it's ready to run.
888 1.2 ad * This is called from code in mptramp.s; at this point, we are running
889 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
890 1.2 ad * this processor will enter the idle loop and start looking for work.
891 1.2 ad */
892 1.2 ad void
893 1.2 ad cpu_hatch(void *v)
894 1.2 ad {
895 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
896 1.65 rmind struct pcb *pcb;
897 1.130 kre int s, i;
898 1.2 ad
899 1.162 maxv /* ------------------------------------------------------------- */
900 1.162 maxv
901 1.162 maxv /*
902 1.162 maxv * This section of code must be compiled with SSP disabled, to
903 1.162 maxv * prevent a race against cpu0. See sys/conf/ssp.mk.
904 1.162 maxv */
905 1.162 maxv
906 1.12 jmcneill cpu_init_msrs(ci, true);
907 1.40 ad cpu_probe(ci);
908 1.154 maxv cpu_speculation_init(ci);
909 1.178 nonaka #if NHYPERV > 0
910 1.178 nonaka hyperv_init_cpu(ci);
911 1.178 nonaka #endif
912 1.46 ad
913 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
914 1.134 maxv /* cpu_get_tsc_freq(ci); */
915 1.38 ad
916 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
917 1.38 ad
918 1.38 ad /*
919 1.150 maxv * Synchronize the TSC for the first time. Note that interrupts are
920 1.150 maxv * off at this point.
921 1.38 ad */
922 1.188 ad wbinvd();
923 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
924 1.38 ad tsc_sync_ap(ci);
925 1.38 ad
926 1.162 maxv /* ------------------------------------------------------------- */
927 1.162 maxv
928 1.38 ad /*
929 1.150 maxv * Wait to be brought online.
930 1.150 maxv *
931 1.150 maxv * Use MONITOR/MWAIT if available. These instructions put the CPU in
932 1.150 maxv * a low consumption mode (C-state), and if the TSC is not invariant,
933 1.150 maxv * this causes the TSC to drift. We want this to happen, so that we
934 1.150 maxv * can later detect (in tsc_tc_init) any abnormal drift with invariant
935 1.150 maxv * TSCs. That's just for safety; by definition such drifts should
936 1.150 maxv * never occur with invariant TSCs.
937 1.150 maxv *
938 1.150 maxv * If not available, try PAUSE. We'd like to use HLT, but we have
939 1.150 maxv * interrupts off.
940 1.38 ad */
941 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
942 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
943 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
944 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
945 1.38 ad continue;
946 1.38 ad }
947 1.38 ad x86_mwait(0, 0);
948 1.38 ad } else {
949 1.131 pgoyette /*
950 1.131 pgoyette * XXX The loop repetition count could be a lot higher, but
951 1.131 pgoyette * XXX currently qemu emulator takes a _very_long_time_ to
952 1.131 pgoyette * XXX execute the pause instruction. So for now, use a low
953 1.131 pgoyette * XXX value to allow the cpu to hatch before timing out.
954 1.131 pgoyette */
955 1.131 pgoyette for (i = 50; i != 0; i--) {
956 1.127 pgoyette x86_pause();
957 1.127 pgoyette }
958 1.38 ad }
959 1.6 ad }
960 1.5 ad
961 1.26 cegger /* Because the text may have been patched in x86_patch(). */
962 1.5 ad wbinvd();
963 1.5 ad x86_flush();
964 1.88 rmind tlbflushg();
965 1.5 ad
966 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
967 1.2 ad
968 1.73 jym #ifdef PAE
969 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
970 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
971 1.168 maxv l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
972 1.73 jym }
973 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
974 1.73 jym #else
975 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
976 1.73 jym #endif
977 1.73 jym
978 1.65 rmind pcb = lwp_getpcb(curlwp);
979 1.73 jym pcb->pcb_cr3 = rcr3();
980 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
981 1.65 rmind lcr0(pcb->pcb_cr0);
982 1.65 rmind
983 1.2 ad cpu_init_idt();
984 1.8 ad gdt_init_cpu(ci);
985 1.111 joerg #if NLAPIC > 0
986 1.8 ad lapic_enable();
987 1.2 ad lapic_set_lvt();
988 1.111 joerg #endif
989 1.2 ad
990 1.2 ad fpuinit(ci);
991 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
992 1.15 yamt ltr(ci->ci_tss_sel);
993 1.2 ad
994 1.150 maxv /*
995 1.150 maxv * cpu_init will re-synchronize the TSC, and will detect any abnormal
996 1.150 maxv * drift that would have been caused by the use of MONITOR/MWAIT
997 1.150 maxv * above.
998 1.150 maxv */
999 1.2 ad cpu_init(ci);
1000 1.187 bouyer #ifdef XENPVHVM
1001 1.187 bouyer xen_hvm_init_cpu(ci);
1002 1.187 bouyer #endif
1003 1.187 bouyer (*x86_cpu_initclock_func)();
1004 1.7 ad cpu_get_tsc_freq(ci);
1005 1.2 ad
1006 1.2 ad s = splhigh();
1007 1.165 cherry #if NLAPIC > 0
1008 1.124 nonaka lapic_write_tpri(0);
1009 1.165 cherry #endif
1010 1.3 ad x86_enable_intr();
1011 1.2 ad splx(s);
1012 1.6 ad x86_errata();
1013 1.2 ad
1014 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
1015 1.98 rmind
1016 1.174 maxv kcsan_cpu_init(ci);
1017 1.174 maxv
1018 1.98 rmind idle_loop(NULL);
1019 1.98 rmind KASSERT(false);
1020 1.2 ad }
1021 1.101 kiyohara #endif
1022 1.2 ad
1023 1.2 ad #if defined(DDB)
1024 1.2 ad
1025 1.2 ad #include <ddb/db_output.h>
1026 1.2 ad #include <machine/db_machdep.h>
1027 1.2 ad
1028 1.2 ad /*
1029 1.2 ad * Dump CPU information from ddb.
1030 1.2 ad */
1031 1.2 ad void
1032 1.2 ad cpu_debug_dump(void)
1033 1.2 ad {
1034 1.2 ad struct cpu_info *ci;
1035 1.2 ad CPU_INFO_ITERATOR cii;
1036 1.184 msaitoh const char sixtyfour64space[] =
1037 1.172 mrg #ifdef _LP64
1038 1.172 mrg " "
1039 1.172 mrg #endif
1040 1.172 mrg "";
1041 1.2 ad
1042 1.180 ad db_printf("addr %sdev id flags ipis spl curlwp "
1043 1.173 maxv "\n", sixtyfour64space);
1044 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
1045 1.180 ad db_printf("%p %s %ld %x %x %d %10p\n",
1046 1.2 ad ci,
1047 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
1048 1.2 ad (long)ci->ci_cpuid,
1049 1.180 ad ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
1050 1.173 maxv ci->ci_curlwp);
1051 1.2 ad }
1052 1.2 ad }
1053 1.2 ad #endif
1054 1.2 ad
1055 1.164 cherry #ifdef MULTIPROCESSOR
1056 1.101 kiyohara #if NLAPIC > 0
1057 1.2 ad static void
1058 1.136 maxv cpu_copy_trampoline(paddr_t pdir_pa)
1059 1.2 ad {
1060 1.136 maxv extern uint32_t nox_flag;
1061 1.2 ad extern u_char cpu_spinup_trampoline[];
1062 1.2 ad extern u_char cpu_spinup_trampoline_end[];
1063 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
1064 1.136 maxv struct {
1065 1.136 maxv uint32_t large;
1066 1.136 maxv uint32_t nox;
1067 1.136 maxv uint32_t pdir;
1068 1.136 maxv } smp_data;
1069 1.136 maxv CTASSERT(sizeof(smp_data) == 3 * 4);
1070 1.136 maxv
1071 1.136 maxv smp_data.large = (pmap_largepages != 0);
1072 1.136 maxv smp_data.nox = nox_flag;
1073 1.136 maxv smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
1074 1.12 jmcneill
1075 1.136 maxv /* Enter the physical address */
1076 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1077 1.12 jmcneill UVM_KMF_VAONLY);
1078 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
1079 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
1080 1.2 ad pmap_update(pmap_kernel());
1081 1.136 maxv
1082 1.136 maxv /* Copy boot code */
1083 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
1084 1.2 ad cpu_spinup_trampoline,
1085 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
1086 1.12 jmcneill
1087 1.136 maxv /* Copy smp_data at the end */
1088 1.136 maxv memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
1089 1.136 maxv &smp_data, sizeof(smp_data));
1090 1.136 maxv
1091 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
1092 1.12 jmcneill pmap_update(pmap_kernel());
1093 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
1094 1.2 ad }
1095 1.101 kiyohara #endif
1096 1.2 ad
1097 1.2 ad int
1098 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
1099 1.2 ad {
1100 1.2 ad int error;
1101 1.14 joerg
1102 1.14 joerg /*
1103 1.14 joerg * Bootstrap code must be addressable in real mode
1104 1.14 joerg * and it must be page aligned.
1105 1.14 joerg */
1106 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1107 1.2 ad
1108 1.2 ad /*
1109 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1110 1.2 ad */
1111 1.2 ad
1112 1.2 ad outb(IO_RTC, NVRAM_RESET);
1113 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
1114 1.2 ad
1115 1.165 cherry #if NLAPIC > 0
1116 1.2 ad /*
1117 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
1118 1.2 ad * to the AP startup code ..."
1119 1.2 ad */
1120 1.165 cherry unsigned short dwordptr[2];
1121 1.2 ad dwordptr[0] = 0;
1122 1.14 joerg dwordptr[1] = target >> 4;
1123 1.2 ad
1124 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1125 1.111 joerg #endif
1126 1.2 ad
1127 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
1128 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
1129 1.25 ad return ENODEV;
1130 1.25 ad }
1131 1.25 ad
1132 1.2 ad /*
1133 1.51 ad * ... prior to executing the following sequence:". We'll also add in
1134 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
1135 1.51 ad * disabled. It may not be able to cope with MP coherency.
1136 1.2 ad */
1137 1.51 ad wbinvd();
1138 1.2 ad
1139 1.2 ad if (ci->ci_flags & CPUF_AP) {
1140 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
1141 1.26 cegger if (error != 0) {
1142 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1143 1.50 ad __func__);
1144 1.2 ad return error;
1145 1.25 ad }
1146 1.189 bouyer delay_func(10000);
1147 1.2 ad
1148 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1149 1.26 cegger if (error != 0) {
1150 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1151 1.50 ad __func__);
1152 1.25 ad return error;
1153 1.25 ad }
1154 1.189 bouyer delay_func(200);
1155 1.2 ad
1156 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1157 1.26 cegger if (error != 0) {
1158 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1159 1.50 ad __func__);
1160 1.25 ad return error;
1161 1.2 ad }
1162 1.189 bouyer delay_func(200);
1163 1.2 ad }
1164 1.44 ad
1165 1.2 ad return 0;
1166 1.2 ad }
1167 1.2 ad
1168 1.2 ad void
1169 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1170 1.2 ad {
1171 1.2 ad /*
1172 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1173 1.2 ad */
1174 1.2 ad
1175 1.2 ad outb(IO_RTC, NVRAM_RESET);
1176 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1177 1.2 ad }
1178 1.101 kiyohara #endif
1179 1.2 ad
1180 1.2 ad #ifdef __x86_64__
1181 1.2 ad typedef void (vector)(void);
1182 1.148 maxv extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
1183 1.70 jym #endif
1184 1.2 ad
1185 1.2 ad void
1186 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1187 1.2 ad {
1188 1.70 jym #ifdef __x86_64__
1189 1.2 ad wrmsr(MSR_STAR,
1190 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1191 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1192 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1193 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1194 1.138 maxv wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1195 1.2 ad
1196 1.148 maxv #ifdef SVS
1197 1.148 maxv if (svs_enabled)
1198 1.148 maxv wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
1199 1.148 maxv #endif
1200 1.148 maxv
1201 1.12 jmcneill if (full) {
1202 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1203 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1204 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1205 1.12 jmcneill }
1206 1.70 jym #endif /* __x86_64__ */
1207 1.2 ad
1208 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1209 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1210 1.2 ad }
1211 1.7 ad
1212 1.107 christos void
1213 1.107 christos cpu_offline_md(void)
1214 1.107 christos {
1215 1.173 maxv return;
1216 1.107 christos }
1217 1.107 christos
1218 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1219 1.12 jmcneill static bool
1220 1.96 jruoho cpu_stop(device_t dv)
1221 1.12 jmcneill {
1222 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1223 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1224 1.18 joerg int err;
1225 1.12 jmcneill
1226 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1227 1.93 jruoho
1228 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1229 1.93 jruoho return true;
1230 1.93 jruoho
1231 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1232 1.12 jmcneill return true;
1233 1.12 jmcneill
1234 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1235 1.17 joerg
1236 1.20 jmcneill if (sc->sc_wasonline) {
1237 1.20 jmcneill mutex_enter(&cpu_lock);
1238 1.58 rmind err = cpu_setstate(ci, false);
1239 1.20 jmcneill mutex_exit(&cpu_lock);
1240 1.79 jruoho
1241 1.93 jruoho if (err != 0)
1242 1.20 jmcneill return false;
1243 1.20 jmcneill }
1244 1.17 joerg
1245 1.17 joerg return true;
1246 1.12 jmcneill }
1247 1.12 jmcneill
1248 1.12 jmcneill static bool
1249 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1250 1.96 jruoho {
1251 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1252 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1253 1.96 jruoho
1254 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1255 1.96 jruoho return true;
1256 1.96 jruoho else {
1257 1.96 jruoho cpufreq_suspend(ci);
1258 1.96 jruoho }
1259 1.96 jruoho
1260 1.96 jruoho return cpu_stop(dv);
1261 1.96 jruoho }
1262 1.96 jruoho
1263 1.96 jruoho static bool
1264 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1265 1.12 jmcneill {
1266 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1267 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1268 1.20 jmcneill int err = 0;
1269 1.12 jmcneill
1270 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1271 1.12 jmcneill return true;
1272 1.93 jruoho
1273 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1274 1.93 jruoho goto out;
1275 1.93 jruoho
1276 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1277 1.93 jruoho goto out;
1278 1.12 jmcneill
1279 1.20 jmcneill if (sc->sc_wasonline) {
1280 1.20 jmcneill mutex_enter(&cpu_lock);
1281 1.58 rmind err = cpu_setstate(ci, true);
1282 1.20 jmcneill mutex_exit(&cpu_lock);
1283 1.20 jmcneill }
1284 1.13 joerg
1285 1.93 jruoho out:
1286 1.93 jruoho if (err != 0)
1287 1.93 jruoho return false;
1288 1.93 jruoho
1289 1.93 jruoho cpufreq_resume(ci);
1290 1.93 jruoho
1291 1.93 jruoho return true;
1292 1.12 jmcneill }
1293 1.12 jmcneill
1294 1.79 jruoho static bool
1295 1.79 jruoho cpu_shutdown(device_t dv, int how)
1296 1.79 jruoho {
1297 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1298 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1299 1.90 dyoung
1300 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1301 1.90 dyoung return false;
1302 1.90 dyoung
1303 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1304 1.96 jruoho return true;
1305 1.96 jruoho
1306 1.96 jruoho return cpu_stop(dv);
1307 1.79 jruoho }
1308 1.79 jruoho
1309 1.185 msaitoh /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
1310 1.7 ad void
1311 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1312 1.7 ad {
1313 1.188 ad uint64_t freq = 0, last_tsc;
1314 1.7 ad
1315 1.185 msaitoh if (cpu_hascounter())
1316 1.185 msaitoh freq = cpu_tsc_freq_cpuid(ci);
1317 1.185 msaitoh
1318 1.185 msaitoh if (freq != 0) {
1319 1.185 msaitoh /* Use TSC frequency taken from CPUID. */
1320 1.185 msaitoh ci->ci_data.cpu_cc_freq = freq;
1321 1.185 msaitoh } else {
1322 1.188 ad /* Calibrate TSC frequency. */
1323 1.188 ad last_tsc = cpu_counter_serializing();
1324 1.189 bouyer delay_func(100000);
1325 1.188 ad ci->ci_data.cpu_cc_freq =
1326 1.188 ad (cpu_counter_serializing() - last_tsc) * 10;
1327 1.7 ad }
1328 1.7 ad }
1329 1.37 joerg
1330 1.37 joerg void
1331 1.37 joerg x86_cpu_idle_mwait(void)
1332 1.37 joerg {
1333 1.37 joerg struct cpu_info *ci = curcpu();
1334 1.37 joerg
1335 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1336 1.37 joerg
1337 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1338 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1339 1.37 joerg return;
1340 1.37 joerg }
1341 1.37 joerg x86_mwait(0, 0);
1342 1.37 joerg }
1343 1.37 joerg
1344 1.37 joerg void
1345 1.37 joerg x86_cpu_idle_halt(void)
1346 1.37 joerg {
1347 1.37 joerg struct cpu_info *ci = curcpu();
1348 1.37 joerg
1349 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1350 1.37 joerg
1351 1.37 joerg x86_disable_intr();
1352 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1353 1.37 joerg x86_stihlt();
1354 1.37 joerg } else {
1355 1.37 joerg x86_enable_intr();
1356 1.37 joerg }
1357 1.37 joerg }
1358 1.73 jym
1359 1.73 jym /*
1360 1.73 jym * Loads pmap for the current CPU.
1361 1.73 jym */
1362 1.73 jym void
1363 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1364 1.73 jym {
1365 1.144 maxv #ifdef SVS
1366 1.159 maxv if (svs_enabled) {
1367 1.159 maxv svs_pdir_switch(pmap);
1368 1.159 maxv }
1369 1.144 maxv #endif
1370 1.144 maxv
1371 1.73 jym #ifdef PAE
1372 1.99 yamt struct cpu_info *ci = curcpu();
1373 1.116 nat bool interrupts_enabled;
1374 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1375 1.99 yamt int i;
1376 1.73 jym
1377 1.99 yamt /*
1378 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1379 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1380 1.99 yamt * reload cr3.
1381 1.99 yamt */
1382 1.116 nat interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1383 1.116 nat if (interrupts_enabled)
1384 1.116 nat x86_disable_intr();
1385 1.116 nat
1386 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1387 1.168 maxv l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
1388 1.73 jym }
1389 1.134 maxv
1390 1.116 nat if (interrupts_enabled)
1391 1.116 nat x86_enable_intr();
1392 1.73 jym tlbflush();
1393 1.160 maxv #else
1394 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1395 1.160 maxv #endif
1396 1.73 jym }
1397 1.91 cherry
1398 1.91 cherry /*
1399 1.91 cherry * Notify all other cpus to halt.
1400 1.91 cherry */
1401 1.91 cherry
1402 1.91 cherry void
1403 1.92 cherry cpu_broadcast_halt(void)
1404 1.91 cherry {
1405 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1406 1.91 cherry }
1407 1.91 cherry
1408 1.91 cherry /*
1409 1.176 ad * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
1410 1.176 ad * and trigger an AST on the running LWP.
1411 1.91 cherry */
1412 1.91 cherry
1413 1.91 cherry void
1414 1.91 cherry cpu_kick(struct cpu_info *ci)
1415 1.91 cherry {
1416 1.176 ad x86_send_ipi(ci, X86_IPI_AST);
1417 1.91 cherry }
1418