Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.194
      1  1.194   msaitoh /*	$NetBSD: cpu.c,v 1.194 2020/06/15 09:09:24 msaitoh Exp $	*/
      2    1.2        ad 
      3  1.134      maxv /*
      4  1.190        ad  * Copyright (c) 2000-2020 NetBSD Foundation, Inc.
      5    1.2        ad  * All rights reserved.
      6    1.2        ad  *
      7    1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.11        ad  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9    1.2        ad  *
     10    1.2        ad  * Redistribution and use in source and binary forms, with or without
     11    1.2        ad  * modification, are permitted provided that the following conditions
     12    1.2        ad  * are met:
     13    1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14    1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15    1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17    1.2        ad  *    documentation and/or other materials provided with the distribution.
     18    1.2        ad  *
     19    1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30    1.2        ad  */
     31    1.2        ad 
     32    1.2        ad /*
     33    1.2        ad  * Copyright (c) 1999 Stefan Grefen
     34    1.2        ad  *
     35    1.2        ad  * Redistribution and use in source and binary forms, with or without
     36    1.2        ad  * modification, are permitted provided that the following conditions
     37    1.2        ad  * are met:
     38    1.2        ad  * 1. Redistributions of source code must retain the above copyright
     39    1.2        ad  *    notice, this list of conditions and the following disclaimer.
     40    1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     41    1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     42    1.2        ad  *    documentation and/or other materials provided with the distribution.
     43    1.2        ad  * 3. All advertising materials mentioning features or use of this software
     44    1.2        ad  *    must display the following acknowledgement:
     45    1.2        ad  *      This product includes software developed by the NetBSD
     46    1.2        ad  *      Foundation, Inc. and its contributors.
     47    1.2        ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48    1.2        ad  *    contributors may be used to endorse or promote products derived
     49    1.2        ad  *    from this software without specific prior written permission.
     50    1.2        ad  *
     51    1.2        ad  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52    1.2        ad  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53    1.2        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54    1.2        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55    1.2        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56    1.2        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57    1.2        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58    1.2        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59    1.2        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60    1.2        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61    1.2        ad  * SUCH DAMAGE.
     62    1.2        ad  */
     63    1.2        ad 
     64    1.2        ad #include <sys/cdefs.h>
     65  1.194   msaitoh __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.194 2020/06/15 09:09:24 msaitoh Exp $");
     66    1.2        ad 
     67    1.2        ad #include "opt_ddb.h"
     68    1.2        ad #include "opt_mpbios.h"		/* for MPDEBUG */
     69    1.2        ad #include "opt_mtrr.h"
     70  1.101  kiyohara #include "opt_multiprocessor.h"
     71  1.144      maxv #include "opt_svs.h"
     72    1.2        ad 
     73    1.2        ad #include "lapic.h"
     74    1.2        ad #include "ioapic.h"
     75  1.179        ad #include "acpica.h"
     76  1.190        ad #include "hpet.h"
     77    1.2        ad 
     78    1.2        ad #include <sys/param.h>
     79    1.2        ad #include <sys/proc.h>
     80    1.2        ad #include <sys/systm.h>
     81    1.2        ad #include <sys/device.h>
     82    1.9        ad #include <sys/cpu.h>
     83   1.93    jruoho #include <sys/cpufreq.h>
     84   1.98     rmind #include <sys/idle.h>
     85    1.9        ad #include <sys/atomic.h>
     86   1.35        ad #include <sys/reboot.h>
     87  1.174      maxv #include <sys/csan.h>
     88    1.2        ad 
     89   1.78  uebayasi #include <uvm/uvm.h>
     90    1.2        ad 
     91  1.102  pgoyette #include "acpica.h"		/* for NACPICA, for mp_verbose */
     92  1.102  pgoyette 
     93  1.187    bouyer #include <x86/machdep.h>
     94    1.2        ad #include <machine/cpufunc.h>
     95    1.2        ad #include <machine/cpuvar.h>
     96    1.2        ad #include <machine/pmap.h>
     97    1.2        ad #include <machine/vmparam.h>
     98  1.102  pgoyette #if defined(MULTIPROCESSOR)
     99    1.2        ad #include <machine/mpbiosvar.h>
    100  1.101  kiyohara #endif
    101  1.102  pgoyette #include <machine/mpconfig.h>		/* for mp_verbose */
    102    1.2        ad #include <machine/pcb.h>
    103    1.2        ad #include <machine/specialreg.h>
    104    1.2        ad #include <machine/segments.h>
    105    1.2        ad #include <machine/gdt.h>
    106    1.2        ad #include <machine/mtrr.h>
    107    1.2        ad #include <machine/pio.h>
    108   1.38        ad #include <machine/cpu_counter.h>
    109    1.2        ad 
    110  1.109       dsl #include <x86/fpu.h>
    111  1.109       dsl 
    112  1.179        ad #if NACPICA > 0
    113  1.179        ad #include <dev/acpi/acpi_srat.h>
    114  1.179        ad #endif
    115  1.179        ad 
    116  1.101  kiyohara #if NLAPIC > 0
    117    1.2        ad #include <machine/apicvar.h>
    118    1.2        ad #include <machine/i82489reg.h>
    119    1.2        ad #include <machine/i82489var.h>
    120  1.101  kiyohara #endif
    121    1.2        ad 
    122    1.2        ad #include <dev/ic/mc146818reg.h>
    123  1.190        ad #include <dev/ic/hpetvar.h>
    124    1.2        ad #include <i386/isa/nvram.h>
    125    1.2        ad #include <dev/isa/isareg.h>
    126    1.2        ad 
    127   1.38        ad #include "tsc.h"
    128   1.38        ad 
    129  1.187    bouyer #ifndef XENPV
    130  1.178    nonaka #include "hyperv.h"
    131  1.178    nonaka #if NHYPERV > 0
    132  1.178    nonaka #include <x86/x86/hypervvar.h>
    133  1.178    nonaka #endif
    134  1.178    nonaka #endif
    135  1.178    nonaka 
    136  1.187    bouyer #ifdef XEN
    137  1.187    bouyer #include <xen/hypervisor.h>
    138  1.187    bouyer #endif
    139  1.187    bouyer 
    140   1.87    jruoho static int	cpu_match(device_t, cfdata_t, void *);
    141   1.87    jruoho static void	cpu_attach(device_t, device_t, void *);
    142   1.87    jruoho static void	cpu_defer(device_t);
    143   1.87    jruoho static int	cpu_rescan(device_t, const char *, const int *);
    144   1.87    jruoho static void	cpu_childdetached(device_t, device_t);
    145   1.96    jruoho static bool	cpu_stop(device_t);
    146   1.69    dyoung static bool	cpu_suspend(device_t, const pmf_qual_t *);
    147   1.69    dyoung static bool	cpu_resume(device_t, const pmf_qual_t *);
    148   1.79    jruoho static bool	cpu_shutdown(device_t, int);
    149   1.12  jmcneill 
    150    1.2        ad struct cpu_softc {
    151   1.23      cube 	device_t sc_dev;		/* device tree glue */
    152    1.2        ad 	struct cpu_info *sc_info;	/* pointer to CPU info */
    153   1.20  jmcneill 	bool sc_wasonline;
    154    1.2        ad };
    155    1.2        ad 
    156  1.101  kiyohara #ifdef MULTIPROCESSOR
    157  1.120   msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
    158    1.2        ad void mp_cpu_start_cleanup(struct cpu_info *);
    159    1.2        ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    160    1.2        ad 					    mp_cpu_start_cleanup };
    161  1.101  kiyohara #endif
    162    1.2        ad 
    163    1.2        ad 
    164   1.81  jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    165   1.81  jmcneill     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    166    1.2        ad 
    167    1.2        ad /*
    168    1.2        ad  * Statically-allocated CPU info for the primary CPU (or the only
    169    1.2        ad  * CPU, on uniprocessors).  The CPU info list is initialized to
    170    1.2        ad  * point at it.
    171    1.2        ad  */
    172   1.21        ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    173    1.2        ad 	.ci_dev = 0,
    174    1.2        ad 	.ci_self = &cpu_info_primary,
    175    1.2        ad 	.ci_idepth = -1,
    176    1.2        ad 	.ci_curlwp = &lwp0,
    177   1.43        ad 	.ci_curldt = -1,
    178    1.2        ad };
    179    1.2        ad 
    180    1.2        ad struct cpu_info *cpu_info_list = &cpu_info_primary;
    181    1.2        ad 
    182    1.2        ad #ifdef i386
    183  1.134      maxv void		cpu_set_tss_gates(struct cpu_info *);
    184    1.2        ad #endif
    185    1.2        ad 
    186   1.12  jmcneill static void	cpu_init_idle_lwp(struct cpu_info *);
    187   1.12  jmcneill 
    188  1.122      maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
    189  1.117      maxv 			/* [0] basic features cpuid.1:%edx
    190  1.117      maxv 			 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
    191  1.117      maxv 			 * [2] extended features cpuid:80000001:%edx
    192  1.117      maxv 			 * [3] extended features cpuid:80000001:%ecx
    193  1.117      maxv 			 * [4] VIA padlock features
    194  1.117      maxv 			 * [5] structured extended features cpuid.7:%ebx
    195  1.117      maxv 			 * [6] structured extended features cpuid.7:%ecx
    196  1.117      maxv 			 */
    197   1.70       jym 
    198  1.101  kiyohara #ifdef MULTIPROCESSOR
    199   1.12  jmcneill bool x86_mp_online;
    200   1.12  jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    201  1.101  kiyohara #endif
    202  1.101  kiyohara #if NLAPIC > 0
    203   1.14     joerg static vaddr_t cmos_data_mapping;
    204  1.101  kiyohara #endif
    205   1.45        ad struct cpu_info *cpu_starting;
    206    1.2        ad 
    207  1.101  kiyohara #ifdef MULTIPROCESSOR
    208  1.184   msaitoh void		cpu_hatch(void *);
    209  1.184   msaitoh static void	cpu_boot_secondary(struct cpu_info *ci);
    210  1.184   msaitoh static void	cpu_start_secondary(struct cpu_info *ci);
    211  1.101  kiyohara #if NLAPIC > 0
    212  1.136      maxv static void	cpu_copy_trampoline(paddr_t);
    213  1.101  kiyohara #endif
    214  1.164    cherry #endif /* MULTIPROCESSOR */
    215    1.2        ad 
    216    1.2        ad /*
    217    1.2        ad  * Runs once per boot once multiprocessor goo has been detected and
    218    1.2        ad  * the local APIC on the boot processor has been mapped.
    219    1.2        ad  *
    220    1.2        ad  * Called from lapic_boot_init() (from mpbios_scan()).
    221    1.2        ad  */
    222  1.101  kiyohara #if NLAPIC > 0
    223    1.2        ad void
    224    1.9        ad cpu_init_first(void)
    225    1.2        ad {
    226    1.2        ad 
    227   1.45        ad 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    228   1.14     joerg 
    229   1.14     joerg 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    230   1.14     joerg 	if (cmos_data_mapping == 0)
    231   1.14     joerg 		panic("No KVA for page 0");
    232   1.64    cegger 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    233   1.14     joerg 	pmap_update(pmap_kernel());
    234    1.2        ad }
    235  1.101  kiyohara #endif
    236    1.2        ad 
    237   1.87    jruoho static int
    238   1.23      cube cpu_match(device_t parent, cfdata_t match, void *aux)
    239    1.2        ad {
    240    1.2        ad 
    241    1.2        ad 	return 1;
    242    1.2        ad }
    243    1.2        ad 
    244  1.142      maxv #ifdef __HAVE_PCPU_AREA
    245  1.142      maxv void
    246  1.142      maxv cpu_pcpuarea_init(struct cpu_info *ci)
    247  1.142      maxv {
    248  1.142      maxv 	struct vm_page *pg;
    249  1.142      maxv 	size_t i, npages;
    250  1.142      maxv 	vaddr_t base, va;
    251  1.142      maxv 	paddr_t pa;
    252  1.142      maxv 
    253  1.142      maxv 	CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
    254  1.142      maxv 
    255  1.142      maxv 	npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
    256  1.142      maxv 	base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
    257  1.142      maxv 
    258  1.142      maxv 	for (i = 0; i < npages; i++) {
    259  1.142      maxv 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
    260  1.142      maxv 		if (pg == NULL) {
    261  1.142      maxv 			panic("failed to allocate pcpu PA");
    262  1.142      maxv 		}
    263  1.142      maxv 
    264  1.142      maxv 		va = base + i * PAGE_SIZE;
    265  1.142      maxv 		pa = VM_PAGE_TO_PHYS(pg);
    266  1.142      maxv 
    267  1.142      maxv 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
    268  1.142      maxv 	}
    269  1.142      maxv 
    270  1.142      maxv 	pmap_update(pmap_kernel());
    271  1.142      maxv }
    272  1.142      maxv #endif
    273  1.142      maxv 
    274    1.2        ad static void
    275    1.2        ad cpu_vm_init(struct cpu_info *ci)
    276    1.2        ad {
    277    1.2        ad 	int ncolors = 2, i;
    278    1.2        ad 
    279    1.2        ad 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    280    1.2        ad 		struct x86_cache_info *cai;
    281    1.2        ad 		int tcolors;
    282    1.2        ad 
    283    1.2        ad 		cai = &ci->ci_cinfo[i];
    284    1.2        ad 
    285    1.2        ad 		tcolors = atop(cai->cai_totalsize);
    286  1.184   msaitoh 		switch (cai->cai_associativity) {
    287    1.2        ad 		case 0xff:
    288    1.2        ad 			tcolors = 1; /* fully associative */
    289    1.2        ad 			break;
    290    1.2        ad 		case 0:
    291    1.2        ad 		case 1:
    292    1.2        ad 			break;
    293    1.2        ad 		default:
    294    1.2        ad 			tcolors /= cai->cai_associativity;
    295    1.2        ad 		}
    296  1.161  riastrad 		ncolors = uimax(ncolors, tcolors);
    297   1.32       tls 		/*
    298   1.32       tls 		 * If the desired number of colors is not a power of
    299   1.32       tls 		 * two, it won't be good.  Find the greatest power of
    300   1.32       tls 		 * two which is an even divisor of the number of colors,
    301   1.32       tls 		 * to preserve even coloring of pages.
    302   1.32       tls 		 */
    303   1.32       tls 		if (ncolors & (ncolors - 1) ) {
    304   1.32       tls 			int try, picked = 1;
    305   1.32       tls 			for (try = 1; try < ncolors; try *= 2) {
    306   1.32       tls 				if (ncolors % try == 0) picked = try;
    307   1.32       tls 			}
    308   1.32       tls 			if (picked == 1) {
    309   1.32       tls 				panic("desired number of cache colors %d is "
    310  1.184   msaitoh 				" > 1, but not even!", ncolors);
    311   1.32       tls 			}
    312   1.32       tls 			ncolors = picked;
    313   1.32       tls 		}
    314    1.2        ad 	}
    315    1.2        ad 
    316    1.2        ad 	/*
    317   1.94       mrg 	 * Knowing the size of the largest cache on this CPU, potentially
    318   1.94       mrg 	 * re-color our pages.
    319    1.2        ad 	 */
    320   1.52        ad 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    321    1.2        ad 	uvm_page_recolor(ncolors);
    322   1.98     rmind 
    323   1.98     rmind 	pmap_tlb_cpu_init(ci);
    324  1.123      maxv #ifndef __HAVE_DIRECT_MAP
    325  1.123      maxv 	pmap_vpage_cpu_init(ci);
    326  1.123      maxv #endif
    327    1.2        ad }
    328    1.2        ad 
    329   1.87    jruoho static void
    330   1.23      cube cpu_attach(device_t parent, device_t self, void *aux)
    331    1.2        ad {
    332   1.23      cube 	struct cpu_softc *sc = device_private(self);
    333    1.2        ad 	struct cpu_attach_args *caa = aux;
    334    1.2        ad 	struct cpu_info *ci;
    335   1.21        ad 	uintptr_t ptr;
    336  1.101  kiyohara #if NLAPIC > 0
    337    1.2        ad 	int cpunum = caa->cpu_number;
    338  1.101  kiyohara #endif
    339   1.51        ad 	static bool again;
    340    1.2        ad 
    341   1.23      cube 	sc->sc_dev = self;
    342   1.23      cube 
    343  1.163    cherry 	if (ncpu > maxcpus) {
    344   1.98     rmind #ifndef _LP64
    345   1.98     rmind 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    346   1.98     rmind #else
    347   1.98     rmind 		aprint_error(": too many CPUs\n");
    348   1.98     rmind #endif
    349   1.48        ad 		return;
    350   1.48        ad 	}
    351   1.48        ad 
    352    1.2        ad 	/*
    353    1.2        ad 	 * If we're an Application Processor, allocate a cpu_info
    354    1.2        ad 	 * structure, otherwise use the primary's.
    355    1.2        ad 	 */
    356    1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    357   1.36        ad 		if ((boothowto & RB_MD1) != 0) {
    358   1.35        ad 			aprint_error(": multiprocessor boot disabled\n");
    359   1.56  jmcneill 			if (!pmf_device_register(self, NULL, NULL))
    360   1.56  jmcneill 				aprint_error_dev(self,
    361   1.56  jmcneill 				    "couldn't establish power handler\n");
    362   1.35        ad 			return;
    363   1.35        ad 		}
    364    1.2        ad 		aprint_naive(": Application Processor\n");
    365  1.143      maxv 		ptr = (uintptr_t)uvm_km_alloc(kernel_map,
    366  1.143      maxv 		    sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
    367  1.143      maxv 		    UVM_KMF_WIRED|UVM_KMF_ZERO);
    368   1.67       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    369   1.43        ad 		ci->ci_curldt = -1;
    370    1.2        ad 	} else {
    371    1.2        ad 		aprint_naive(": %s Processor\n",
    372    1.2        ad 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    373    1.2        ad 		ci = &cpu_info_primary;
    374  1.101  kiyohara #if NLAPIC > 0
    375    1.2        ad 		if (cpunum != lapic_cpu_number()) {
    376   1.51        ad 			/* XXX should be done earlier. */
    377   1.39        ad 			uint32_t reg;
    378   1.39        ad 			aprint_verbose("\n");
    379   1.47        ad 			aprint_verbose_dev(self, "running CPU at apic %d"
    380   1.47        ad 			    " instead of at expected %d", lapic_cpu_number(),
    381   1.23      cube 			    cpunum);
    382  1.125    nonaka 			reg = lapic_readreg(LAPIC_ID);
    383  1.125    nonaka 			lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    384   1.39        ad 			    (cpunum << LAPIC_ID_SHIFT));
    385    1.2        ad 		}
    386   1.47        ad 		if (cpunum != lapic_cpu_number()) {
    387   1.47        ad 			aprint_error_dev(self, "unable to reset apic id\n");
    388   1.47        ad 		}
    389  1.101  kiyohara #endif
    390    1.2        ad 	}
    391    1.2        ad 
    392    1.2        ad 	ci->ci_self = ci;
    393    1.2        ad 	sc->sc_info = ci;
    394    1.2        ad 	ci->ci_dev = self;
    395   1.74    jruoho 	ci->ci_acpiid = caa->cpu_id;
    396   1.42        ad 	ci->ci_cpuid = caa->cpu_number;
    397    1.2        ad 	ci->ci_func = caa->cpu_func;
    398  1.177      maxv 	ci->ci_kfpu_spl = -1;
    399  1.112   msaitoh 	aprint_normal("\n");
    400    1.2        ad 
    401   1.55        ad 	/* Must be before mi_cpu_attach(). */
    402   1.55        ad 	cpu_vm_init(ci);
    403   1.55        ad 
    404    1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    405    1.2        ad 		int error;
    406    1.2        ad 
    407    1.2        ad 		error = mi_cpu_attach(ci);
    408    1.2        ad 		if (error != 0) {
    409   1.47        ad 			aprint_error_dev(self,
    410   1.30    cegger 			    "mi_cpu_attach failed with %d\n", error);
    411    1.2        ad 			return;
    412    1.2        ad 		}
    413  1.142      maxv #ifdef __HAVE_PCPU_AREA
    414  1.142      maxv 		cpu_pcpuarea_init(ci);
    415  1.142      maxv #endif
    416   1.15      yamt 		cpu_init_tss(ci);
    417    1.2        ad 	} else {
    418    1.2        ad 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    419  1.179        ad #if NACPICA > 0
    420  1.179        ad 		/* Parse out NUMA info for cpu_identify(). */
    421  1.179        ad 		acpisrat_init();
    422  1.179        ad #endif
    423    1.2        ad 	}
    424    1.2        ad 
    425  1.146      maxv #ifdef SVS
    426  1.146      maxv 	cpu_svs_init(ci);
    427  1.146      maxv #endif
    428  1.146      maxv 
    429    1.2        ad 	pmap_reference(pmap_kernel());
    430    1.2        ad 	ci->ci_pmap = pmap_kernel();
    431    1.2        ad 	ci->ci_tlbstate = TLBSTATE_STALE;
    432    1.2        ad 
    433   1.51        ad 	/*
    434   1.51        ad 	 * Boot processor may not be attached first, but the below
    435   1.51        ad 	 * must be done to allow booting other processors.
    436   1.51        ad 	 */
    437   1.51        ad 	if (!again) {
    438  1.190        ad 		/* Make sure DELAY() (likely i8254_delay()) is initialized. */
    439  1.190        ad 		DELAY(1);
    440  1.190        ad 
    441  1.190        ad 		/*
    442  1.190        ad 		 * Basic init.  Compute an approximate frequency for the TSC
    443  1.190        ad 		 * using the i8254.  If there's a HPET we'll redo it later.
    444  1.190        ad 		 */
    445  1.188        ad 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    446    1.2        ad 		cpu_intr_init(ci);
    447  1.194   msaitoh 		tsc_setfunc(ci);
    448   1.40        ad 		cpu_get_tsc_freq(ci);
    449    1.2        ad 		cpu_init(ci);
    450  1.134      maxv #ifdef i386
    451    1.2        ad 		cpu_set_tss_gates(ci);
    452  1.134      maxv #endif
    453    1.2        ad 		pmap_cpu_init_late(ci);
    454  1.101  kiyohara #if NLAPIC > 0
    455   1.51        ad 		if (caa->cpu_role != CPU_ROLE_SP) {
    456   1.51        ad 			/* Enable lapic. */
    457   1.51        ad 			lapic_enable();
    458   1.51        ad 			lapic_set_lvt();
    459  1.189    bouyer 			if (!vm_guest_is_xenpvh_or_pvhvm())
    460  1.192        ad 				lapic_calibrate_timer(false);
    461   1.51        ad 		}
    462  1.101  kiyohara #endif
    463  1.174      maxv 		kcsan_cpu_init(ci);
    464   1.51        ad 		again = true;
    465   1.51        ad 	}
    466   1.51        ad 
    467   1.51        ad 	/* further PCB init done later. */
    468   1.51        ad 
    469   1.51        ad 	switch (caa->cpu_role) {
    470   1.51        ad 	case CPU_ROLE_SP:
    471   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    472   1.51        ad 		cpu_identify(ci);
    473   1.53        ad 		x86_errata();
    474   1.37     joerg 		x86_cpu_idle_init();
    475  1.187    bouyer #ifdef XENPVHVM
    476  1.187    bouyer 		xen_hvm_init_cpu(ci);
    477  1.187    bouyer #endif
    478    1.2        ad 		break;
    479    1.2        ad 
    480    1.2        ad 	case CPU_ROLE_BP:
    481   1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    482   1.40        ad 		cpu_identify(ci);
    483   1.53        ad 		x86_errata();
    484   1.37     joerg 		x86_cpu_idle_init();
    485  1.187    bouyer #ifdef XENPVHVM
    486  1.187    bouyer 		xen_hvm_init_cpu(ci);
    487  1.187    bouyer #endif
    488    1.2        ad 		break;
    489    1.2        ad 
    490  1.101  kiyohara #ifdef MULTIPROCESSOR
    491    1.2        ad 	case CPU_ROLE_AP:
    492    1.2        ad 		/*
    493    1.2        ad 		 * report on an AP
    494    1.2        ad 		 */
    495    1.2        ad 		cpu_intr_init(ci);
    496    1.2        ad 		gdt_alloc_cpu(ci);
    497  1.134      maxv #ifdef i386
    498    1.2        ad 		cpu_set_tss_gates(ci);
    499  1.134      maxv #endif
    500    1.2        ad 		pmap_cpu_init_late(ci);
    501    1.2        ad 		cpu_start_secondary(ci);
    502    1.2        ad 		if (ci->ci_flags & CPUF_PRESENT) {
    503   1.59    cegger 			struct cpu_info *tmp;
    504   1.59    cegger 
    505   1.40        ad 			cpu_identify(ci);
    506   1.59    cegger 			tmp = cpu_info_list;
    507   1.59    cegger 			while (tmp->ci_next)
    508   1.59    cegger 				tmp = tmp->ci_next;
    509   1.59    cegger 
    510   1.59    cegger 			tmp->ci_next = ci;
    511    1.2        ad 		}
    512    1.2        ad 		break;
    513  1.101  kiyohara #endif
    514    1.2        ad 
    515    1.2        ad 	default:
    516    1.2        ad 		panic("unknown processor type??\n");
    517    1.2        ad 	}
    518   1.51        ad 
    519   1.71    cegger 	pat_init(ci);
    520    1.2        ad 
    521   1.79    jruoho 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    522   1.12  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    523   1.12  jmcneill 
    524  1.101  kiyohara #ifdef MULTIPROCESSOR
    525    1.2        ad 	if (mp_verbose) {
    526    1.2        ad 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    527   1.65     rmind 		struct pcb *pcb = lwp_getpcb(l);
    528    1.2        ad 
    529   1.47        ad 		aprint_verbose_dev(self,
    530   1.28    cegger 		    "idle lwp at %p, idle sp at %p\n",
    531   1.28    cegger 		    l,
    532    1.2        ad #ifdef i386
    533   1.65     rmind 		    (void *)pcb->pcb_esp
    534    1.2        ad #else
    535   1.65     rmind 		    (void *)pcb->pcb_rsp
    536    1.2        ad #endif
    537    1.2        ad 		);
    538    1.2        ad 	}
    539  1.101  kiyohara #endif
    540   1.81  jmcneill 
    541   1.89    jruoho 	/*
    542   1.89    jruoho 	 * Postpone the "cpufeaturebus" scan.
    543   1.89    jruoho 	 * It is safe to scan the pseudo-bus
    544   1.89    jruoho 	 * only after all CPUs have attached.
    545   1.89    jruoho 	 */
    546   1.87    jruoho 	(void)config_defer(self, cpu_defer);
    547   1.87    jruoho }
    548   1.87    jruoho 
    549   1.87    jruoho static void
    550   1.87    jruoho cpu_defer(device_t self)
    551   1.87    jruoho {
    552   1.81  jmcneill 	cpu_rescan(self, NULL, NULL);
    553   1.81  jmcneill }
    554   1.81  jmcneill 
    555   1.87    jruoho static int
    556   1.81  jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
    557   1.81  jmcneill {
    558   1.83    jruoho 	struct cpu_softc *sc = device_private(self);
    559   1.81  jmcneill 	struct cpufeature_attach_args cfaa;
    560   1.81  jmcneill 	struct cpu_info *ci = sc->sc_info;
    561   1.81  jmcneill 
    562  1.181  pgoyette 	/*
    563  1.181  pgoyette 	 * If we booted with RB_MD1 to disable multiprocessor, the
    564  1.181  pgoyette 	 * auto-configuration data still contains the additional
    565  1.181  pgoyette 	 * CPUs.   But their initialization was mostly bypassed
    566  1.181  pgoyette 	 * during attach, so we have to make sure we don't look at
    567  1.181  pgoyette 	 * their featurebus info, since it wasn't retrieved.
    568  1.181  pgoyette 	 */
    569  1.181  pgoyette 	if (ci == NULL)
    570  1.181  pgoyette 		return 0;
    571  1.181  pgoyette 
    572   1.81  jmcneill 	memset(&cfaa, 0, sizeof(cfaa));
    573   1.81  jmcneill 	cfaa.ci = ci;
    574   1.81  jmcneill 
    575   1.81  jmcneill 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    576   1.83    jruoho 		if (ci->ci_frequency == NULL) {
    577   1.86    jruoho 			cfaa.name = "frequency";
    578   1.84    jruoho 			ci->ci_frequency = config_found_ia(self,
    579   1.84    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    580   1.84    jruoho 		}
    581   1.84    jruoho 
    582   1.81  jmcneill 		if (ci->ci_padlock == NULL) {
    583   1.81  jmcneill 			cfaa.name = "padlock";
    584   1.81  jmcneill 			ci->ci_padlock = config_found_ia(self,
    585   1.81  jmcneill 			    "cpufeaturebus", &cfaa, NULL);
    586   1.81  jmcneill 		}
    587   1.82    jruoho 
    588   1.86    jruoho 		if (ci->ci_temperature == NULL) {
    589   1.86    jruoho 			cfaa.name = "temperature";
    590   1.86    jruoho 			ci->ci_temperature = config_found_ia(self,
    591   1.85    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    592   1.85    jruoho 		}
    593   1.95  jmcneill 
    594   1.95  jmcneill 		if (ci->ci_vm == NULL) {
    595   1.95  jmcneill 			cfaa.name = "vm";
    596   1.95  jmcneill 			ci->ci_vm = config_found_ia(self,
    597   1.95  jmcneill 			    "cpufeaturebus", &cfaa, NULL);
    598   1.95  jmcneill 		}
    599   1.81  jmcneill 	}
    600   1.81  jmcneill 
    601   1.81  jmcneill 	return 0;
    602   1.81  jmcneill }
    603   1.81  jmcneill 
    604   1.87    jruoho static void
    605   1.81  jmcneill cpu_childdetached(device_t self, device_t child)
    606   1.81  jmcneill {
    607   1.81  jmcneill 	struct cpu_softc *sc = device_private(self);
    608   1.81  jmcneill 	struct cpu_info *ci = sc->sc_info;
    609   1.81  jmcneill 
    610   1.83    jruoho 	if (ci->ci_frequency == child)
    611   1.83    jruoho 		ci->ci_frequency = NULL;
    612   1.82    jruoho 
    613   1.81  jmcneill 	if (ci->ci_padlock == child)
    614   1.81  jmcneill 		ci->ci_padlock = NULL;
    615   1.83    jruoho 
    616   1.86    jruoho 	if (ci->ci_temperature == child)
    617   1.86    jruoho 		ci->ci_temperature = NULL;
    618   1.95  jmcneill 
    619   1.95  jmcneill 	if (ci->ci_vm == child)
    620   1.95  jmcneill 		ci->ci_vm = NULL;
    621    1.2        ad }
    622    1.2        ad 
    623    1.2        ad /*
    624    1.2        ad  * Initialize the processor appropriately.
    625    1.2        ad  */
    626    1.2        ad 
    627    1.2        ad void
    628    1.9        ad cpu_init(struct cpu_info *ci)
    629    1.2        ad {
    630  1.141      maxv 	extern int x86_fpu_save;
    631  1.113  christos 	uint32_t cr4 = 0;
    632    1.2        ad 
    633    1.2        ad 	lcr0(rcr0() | CR0_WP);
    634    1.2        ad 
    635  1.169      maxv 	/* If global TLB caching is supported, enable it */
    636   1.70       jym 	if (cpu_feature[0] & CPUID_PGE)
    637  1.169      maxv 		cr4 |= CR4_PGE;
    638    1.2        ad 
    639    1.2        ad 	/*
    640    1.2        ad 	 * If we have FXSAVE/FXRESTOR, use them.
    641    1.2        ad 	 */
    642   1.70       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    643  1.110       dsl 		cr4 |= CR4_OSFXSR;
    644    1.2        ad 
    645    1.2        ad 		/*
    646    1.2        ad 		 * If we have SSE/SSE2, enable XMM exceptions.
    647    1.2        ad 		 */
    648   1.70       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    649  1.110       dsl 			cr4 |= CR4_OSXMMEXCPT;
    650    1.2        ad 	}
    651    1.2        ad 
    652  1.110       dsl 	/* If xsave is supported, enable it */
    653  1.110       dsl 	if (cpu_feature[1] & CPUID2_XSAVE)
    654  1.110       dsl 		cr4 |= CR4_OSXSAVE;
    655  1.110       dsl 
    656  1.118      maxv 	/* If SMEP is supported, enable it */
    657  1.118      maxv 	if (cpu_feature[5] & CPUID_SEF_SMEP)
    658  1.118      maxv 		cr4 |= CR4_SMEP;
    659  1.118      maxv 
    660  1.137      maxv 	/* If SMAP is supported, enable it */
    661  1.137      maxv 	if (cpu_feature[5] & CPUID_SEF_SMAP)
    662  1.137      maxv 		cr4 |= CR4_SMAP;
    663  1.137      maxv 
    664  1.171      maxv #ifdef SVS
    665  1.171      maxv 	/* If PCID is supported, enable it */
    666  1.171      maxv 	if (svs_pcid)
    667  1.171      maxv 		cr4 |= CR4_PCIDE;
    668  1.171      maxv #endif
    669  1.171      maxv 
    670  1.113  christos 	if (cr4) {
    671  1.113  christos 		cr4 |= rcr4();
    672  1.113  christos 		lcr4(cr4);
    673  1.113  christos 	}
    674  1.110       dsl 
    675  1.145   msaitoh 	/*
    676  1.145   msaitoh 	 * Changing CR4 register may change cpuid values. For example, setting
    677  1.145   msaitoh 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
    678  1.145   msaitoh 	 * ci_feat_val[1], so update it.
    679  1.145   msaitoh 	 * XXX Other than ci_feat_val[1] might be changed.
    680  1.145   msaitoh 	 */
    681  1.145   msaitoh 	if (cpuid_level >= 1) {
    682  1.145   msaitoh 		u_int descs[4];
    683  1.145   msaitoh 
    684  1.145   msaitoh 		x86_cpuid(1, descs);
    685  1.145   msaitoh 		ci->ci_feat_val[1] = descs[2];
    686  1.145   msaitoh 	}
    687  1.145   msaitoh 
    688  1.141      maxv 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
    689  1.158      maxv 		fpuinit_mxcsr_mask();
    690  1.141      maxv 	}
    691  1.141      maxv 
    692  1.110       dsl 	/* If xsave is enabled, enable all fpu features */
    693  1.110       dsl 	if (cr4 & CR4_OSXSAVE)
    694  1.110       dsl 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    695  1.110       dsl 
    696    1.2        ad #ifdef MTRR
    697    1.2        ad 	/*
    698    1.2        ad 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    699    1.2        ad 	 */
    700   1.70       jym 	if (cpu_feature[0] & CPUID_MTRR) {
    701    1.2        ad 		if ((ci->ci_flags & CPUF_AP) == 0)
    702    1.2        ad 			i686_mtrr_init_first();
    703    1.2        ad 		mtrr_init_cpu(ci);
    704    1.2        ad 	}
    705    1.2        ad 
    706    1.2        ad #ifdef i386
    707    1.2        ad 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    708    1.2        ad 		/*
    709    1.2        ad 		 * Must be a K6-2 Step >= 7 or a K6-III.
    710    1.2        ad 		 */
    711  1.106   msaitoh 		if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
    712  1.106   msaitoh 			if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
    713  1.106   msaitoh 			    (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
    714  1.106   msaitoh 			     CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
    715    1.2        ad 				mtrr_funcs = &k6_mtrr_funcs;
    716    1.2        ad 				k6_mtrr_init_first();
    717    1.2        ad 				mtrr_init_cpu(ci);
    718    1.2        ad 			}
    719    1.2        ad 		}
    720    1.2        ad 	}
    721    1.2        ad #endif	/* i386 */
    722    1.2        ad #endif /* MTRR */
    723    1.2        ad 
    724   1.38        ad 	if (ci != &cpu_info_primary) {
    725  1.150      maxv 		/* Synchronize TSC */
    726   1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    727   1.38        ad 		tsc_sync_ap(ci);
    728   1.38        ad 	} else {
    729   1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    730   1.38        ad 	}
    731    1.2        ad }
    732    1.2        ad 
    733  1.101  kiyohara #ifdef MULTIPROCESSOR
    734    1.2        ad void
    735   1.12  jmcneill cpu_boot_secondary_processors(void)
    736    1.2        ad {
    737    1.2        ad 	struct cpu_info *ci;
    738  1.100       chs 	kcpuset_t *cpus;
    739    1.2        ad 	u_long i;
    740    1.2        ad 
    741    1.5        ad 	/* Now that we know the number of CPUs, patch the text segment. */
    742   1.60        ad 	x86_patch(false);
    743    1.5        ad 
    744  1.179        ad #if NACPICA > 0
    745  1.179        ad 	/* Finished with NUMA info for now. */
    746  1.179        ad 	acpisrat_exit();
    747  1.179        ad #endif
    748  1.179        ad 
    749  1.100       chs 	kcpuset_create(&cpus, true);
    750  1.100       chs 	kcpuset_set(cpus, cpu_index(curcpu()));
    751  1.100       chs 	for (i = 0; i < maxcpus; i++) {
    752   1.57        ad 		ci = cpu_lookup(i);
    753    1.2        ad 		if (ci == NULL)
    754    1.2        ad 			continue;
    755    1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    756    1.2        ad 			continue;
    757    1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    758    1.2        ad 			continue;
    759    1.2        ad 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    760    1.2        ad 			continue;
    761    1.2        ad 		cpu_boot_secondary(ci);
    762  1.100       chs 		kcpuset_set(cpus, cpu_index(ci));
    763    1.2        ad 	}
    764  1.100       chs 	while (!kcpuset_match(cpus, kcpuset_running))
    765  1.100       chs 		;
    766  1.100       chs 	kcpuset_destroy(cpus);
    767    1.2        ad 
    768    1.2        ad 	x86_mp_online = true;
    769   1.38        ad 
    770   1.38        ad 	/* Now that we know about the TSC, attach the timecounter. */
    771   1.38        ad 	tsc_tc_init();
    772    1.2        ad }
    773  1.101  kiyohara #endif
    774    1.2        ad 
    775    1.2        ad static void
    776    1.2        ad cpu_init_idle_lwp(struct cpu_info *ci)
    777    1.2        ad {
    778    1.2        ad 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    779   1.65     rmind 	struct pcb *pcb = lwp_getpcb(l);
    780    1.2        ad 
    781    1.2        ad 	pcb->pcb_cr0 = rcr0();
    782    1.2        ad }
    783    1.2        ad 
    784    1.2        ad void
    785   1.12  jmcneill cpu_init_idle_lwps(void)
    786    1.2        ad {
    787    1.2        ad 	struct cpu_info *ci;
    788    1.2        ad 	u_long i;
    789    1.2        ad 
    790   1.54        ad 	for (i = 0; i < maxcpus; i++) {
    791   1.57        ad 		ci = cpu_lookup(i);
    792    1.2        ad 		if (ci == NULL)
    793    1.2        ad 			continue;
    794    1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    795    1.2        ad 			continue;
    796    1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    797    1.2        ad 			continue;
    798    1.2        ad 		cpu_init_idle_lwp(ci);
    799    1.2        ad 	}
    800    1.2        ad }
    801    1.2        ad 
    802  1.101  kiyohara #ifdef MULTIPROCESSOR
    803    1.2        ad void
    804   1.12  jmcneill cpu_start_secondary(struct cpu_info *ci)
    805    1.2        ad {
    806   1.38        ad 	u_long psl;
    807    1.2        ad 	int i;
    808    1.2        ad 
    809  1.165    cherry #if NLAPIC > 0
    810  1.165    cherry 	paddr_t mp_pdirpa;
    811   1.12  jmcneill 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    812  1.136      maxv 	cpu_copy_trampoline(mp_pdirpa);
    813  1.165    cherry #endif
    814  1.136      maxv 
    815    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    816    1.2        ad 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    817   1.45        ad 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    818   1.25        ad 		return;
    819   1.45        ad 	}
    820    1.2        ad 
    821    1.2        ad 	/*
    822   1.50        ad 	 * Wait for it to become ready.   Setting cpu_starting opens the
    823   1.50        ad 	 * initial gate and allows the AP to start soft initialization.
    824    1.2        ad 	 */
    825   1.50        ad 	KASSERT(cpu_starting == NULL);
    826   1.50        ad 	cpu_starting = ci;
    827   1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    828  1.189    bouyer 		delay_func(10);
    829    1.2        ad 	}
    830   1.38        ad 
    831    1.9        ad 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    832   1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    833    1.2        ad #if defined(MPDEBUG) && defined(DDB)
    834    1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    835    1.2        ad 		Debugger();
    836    1.2        ad #endif
    837   1.38        ad 	} else {
    838   1.38        ad 		/*
    839   1.68       jym 		 * Synchronize time stamp counters. Invalidate cache and do
    840  1.150      maxv 		 * twice (in tsc_sync_bp) to minimize possible cache effects.
    841  1.150      maxv 		 * Disable interrupts to try and rule out any external
    842  1.150      maxv 		 * interference.
    843   1.38        ad 		 */
    844   1.38        ad 		psl = x86_read_psl();
    845   1.38        ad 		x86_disable_intr();
    846   1.38        ad 		tsc_sync_bp(ci);
    847   1.38        ad 		x86_write_psl(psl);
    848    1.2        ad 	}
    849    1.2        ad 
    850    1.2        ad 	CPU_START_CLEANUP(ci);
    851   1.45        ad 	cpu_starting = NULL;
    852    1.2        ad }
    853    1.2        ad 
    854    1.2        ad void
    855   1.12  jmcneill cpu_boot_secondary(struct cpu_info *ci)
    856    1.2        ad {
    857   1.38        ad 	int64_t drift;
    858   1.38        ad 	u_long psl;
    859    1.2        ad 	int i;
    860    1.2        ad 
    861    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    862   1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    863  1.189    bouyer 		delay_func(10);
    864    1.2        ad 	}
    865    1.9        ad 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    866   1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    867    1.2        ad #if defined(MPDEBUG) && defined(DDB)
    868    1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    869    1.2        ad 		Debugger();
    870    1.2        ad #endif
    871   1.38        ad 	} else {
    872   1.38        ad 		/* Synchronize TSC again, check for drift. */
    873   1.38        ad 		drift = ci->ci_data.cpu_cc_skew;
    874   1.38        ad 		psl = x86_read_psl();
    875   1.38        ad 		x86_disable_intr();
    876   1.38        ad 		tsc_sync_bp(ci);
    877   1.38        ad 		x86_write_psl(psl);
    878   1.38        ad 		drift -= ci->ci_data.cpu_cc_skew;
    879   1.38        ad 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    880   1.38        ad 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    881   1.38        ad 		tsc_sync_drift(drift);
    882    1.2        ad 	}
    883    1.2        ad }
    884    1.2        ad 
    885    1.2        ad /*
    886  1.117      maxv  * The CPU ends up here when it's ready to run.
    887    1.2        ad  * This is called from code in mptramp.s; at this point, we are running
    888    1.2        ad  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    889    1.2        ad  * this processor will enter the idle loop and start looking for work.
    890    1.2        ad  */
    891    1.2        ad void
    892    1.2        ad cpu_hatch(void *v)
    893    1.2        ad {
    894    1.2        ad 	struct cpu_info *ci = (struct cpu_info *)v;
    895   1.65     rmind 	struct pcb *pcb;
    896  1.130       kre 	int s, i;
    897    1.2        ad 
    898  1.162      maxv 	/* ------------------------------------------------------------- */
    899  1.162      maxv 
    900  1.162      maxv 	/*
    901  1.162      maxv 	 * This section of code must be compiled with SSP disabled, to
    902  1.162      maxv 	 * prevent a race against cpu0. See sys/conf/ssp.mk.
    903  1.162      maxv 	 */
    904  1.162      maxv 
    905   1.12  jmcneill 	cpu_init_msrs(ci, true);
    906   1.40        ad 	cpu_probe(ci);
    907  1.154      maxv 	cpu_speculation_init(ci);
    908  1.178    nonaka #if NHYPERV > 0
    909  1.178    nonaka 	hyperv_init_cpu(ci);
    910  1.178    nonaka #endif
    911   1.46        ad 
    912   1.46        ad 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    913  1.134      maxv 	/* cpu_get_tsc_freq(ci); */
    914   1.38        ad 
    915    1.8        ad 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    916   1.38        ad 
    917   1.38        ad 	/*
    918  1.150      maxv 	 * Synchronize the TSC for the first time. Note that interrupts are
    919  1.150      maxv 	 * off at this point.
    920   1.38        ad 	 */
    921    1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    922   1.38        ad 	tsc_sync_ap(ci);
    923   1.38        ad 
    924  1.162      maxv 	/* ------------------------------------------------------------- */
    925  1.162      maxv 
    926   1.38        ad 	/*
    927  1.150      maxv 	 * Wait to be brought online.
    928  1.150      maxv 	 *
    929  1.150      maxv 	 * Use MONITOR/MWAIT if available. These instructions put the CPU in
    930  1.150      maxv 	 * a low consumption mode (C-state), and if the TSC is not invariant,
    931  1.150      maxv 	 * this causes the TSC to drift. We want this to happen, so that we
    932  1.150      maxv 	 * can later detect (in tsc_tc_init) any abnormal drift with invariant
    933  1.150      maxv 	 * TSCs. That's just for safety; by definition such drifts should
    934  1.150      maxv 	 * never occur with invariant TSCs.
    935  1.150      maxv 	 *
    936  1.150      maxv 	 * If not available, try PAUSE. We'd like to use HLT, but we have
    937  1.150      maxv 	 * interrupts off.
    938   1.38        ad 	 */
    939    1.6        ad 	while ((ci->ci_flags & CPUF_GO) == 0) {
    940   1.70       jym 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    941   1.38        ad 			x86_monitor(&ci->ci_flags, 0, 0);
    942   1.38        ad 			if ((ci->ci_flags & CPUF_GO) != 0) {
    943   1.38        ad 				continue;
    944   1.38        ad 			}
    945   1.38        ad 			x86_mwait(0, 0);
    946   1.38        ad 		} else {
    947  1.131  pgoyette 	/*
    948  1.131  pgoyette 	 * XXX The loop repetition count could be a lot higher, but
    949  1.131  pgoyette 	 * XXX currently qemu emulator takes a _very_long_time_ to
    950  1.131  pgoyette 	 * XXX execute the pause instruction.  So for now, use a low
    951  1.131  pgoyette 	 * XXX value to allow the cpu to hatch before timing out.
    952  1.131  pgoyette 	 */
    953  1.131  pgoyette 			for (i = 50; i != 0; i--) {
    954  1.127  pgoyette 				x86_pause();
    955  1.127  pgoyette 			}
    956   1.38        ad 		}
    957    1.6        ad 	}
    958    1.5        ad 
    959   1.26    cegger 	/* Because the text may have been patched in x86_patch(). */
    960    1.5        ad 	wbinvd();
    961    1.5        ad 	x86_flush();
    962   1.88     rmind 	tlbflushg();
    963    1.5        ad 
    964    1.8        ad 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    965    1.2        ad 
    966   1.73       jym #ifdef PAE
    967   1.73       jym 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    968   1.73       jym 	for (i = 0 ; i < PDP_SIZE; i++) {
    969  1.168      maxv 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
    970   1.73       jym 	}
    971   1.73       jym 	lcr3(ci->ci_pae_l3_pdirpa);
    972   1.73       jym #else
    973   1.73       jym 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    974   1.73       jym #endif
    975   1.73       jym 
    976   1.65     rmind 	pcb = lwp_getpcb(curlwp);
    977   1.73       jym 	pcb->pcb_cr3 = rcr3();
    978   1.65     rmind 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    979   1.65     rmind 	lcr0(pcb->pcb_cr0);
    980   1.65     rmind 
    981    1.2        ad 	cpu_init_idt();
    982    1.8        ad 	gdt_init_cpu(ci);
    983  1.111     joerg #if NLAPIC > 0
    984    1.8        ad 	lapic_enable();
    985    1.2        ad 	lapic_set_lvt();
    986  1.111     joerg #endif
    987    1.2        ad 
    988    1.2        ad 	fpuinit(ci);
    989    1.2        ad 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    990   1.15      yamt 	ltr(ci->ci_tss_sel);
    991    1.2        ad 
    992  1.150      maxv 	/*
    993  1.150      maxv 	 * cpu_init will re-synchronize the TSC, and will detect any abnormal
    994  1.150      maxv 	 * drift that would have been caused by the use of MONITOR/MWAIT
    995  1.150      maxv 	 * above.
    996  1.150      maxv 	 */
    997    1.2        ad 	cpu_init(ci);
    998  1.187    bouyer #ifdef XENPVHVM
    999  1.187    bouyer 	xen_hvm_init_cpu(ci);
   1000  1.187    bouyer #endif
   1001  1.192        ad 	(*x86_initclock_func)();
   1002    1.7        ad 	cpu_get_tsc_freq(ci);
   1003    1.2        ad 
   1004    1.2        ad 	s = splhigh();
   1005  1.165    cherry #if NLAPIC > 0
   1006  1.124    nonaka 	lapic_write_tpri(0);
   1007  1.165    cherry #endif
   1008    1.3        ad 	x86_enable_intr();
   1009    1.2        ad 	splx(s);
   1010    1.6        ad 	x86_errata();
   1011    1.2        ad 
   1012   1.42        ad 	aprint_debug_dev(ci->ci_dev, "running\n");
   1013   1.98     rmind 
   1014  1.174      maxv 	kcsan_cpu_init(ci);
   1015  1.174      maxv 
   1016   1.98     rmind 	idle_loop(NULL);
   1017   1.98     rmind 	KASSERT(false);
   1018    1.2        ad }
   1019  1.101  kiyohara #endif
   1020    1.2        ad 
   1021    1.2        ad #if defined(DDB)
   1022    1.2        ad 
   1023    1.2        ad #include <ddb/db_output.h>
   1024    1.2        ad #include <machine/db_machdep.h>
   1025    1.2        ad 
   1026    1.2        ad /*
   1027    1.2        ad  * Dump CPU information from ddb.
   1028    1.2        ad  */
   1029    1.2        ad void
   1030    1.2        ad cpu_debug_dump(void)
   1031    1.2        ad {
   1032    1.2        ad 	struct cpu_info *ci;
   1033    1.2        ad 	CPU_INFO_ITERATOR cii;
   1034  1.184   msaitoh 	const char sixtyfour64space[] =
   1035  1.172       mrg #ifdef _LP64
   1036  1.172       mrg 			   "        "
   1037  1.172       mrg #endif
   1038  1.172       mrg 			   "";
   1039    1.2        ad 
   1040  1.180        ad 	db_printf("addr		%sdev	id	flags	ipis	spl curlwp 		"
   1041  1.173      maxv 		  "\n", sixtyfour64space);
   1042    1.2        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
   1043  1.180        ad 		db_printf("%p	%s	%ld	%x	%x	%d  %10p\n",
   1044    1.2        ad 		    ci,
   1045   1.27    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
   1046    1.2        ad 		    (long)ci->ci_cpuid,
   1047  1.180        ad 		    ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
   1048  1.173      maxv 		    ci->ci_curlwp);
   1049    1.2        ad 	}
   1050    1.2        ad }
   1051    1.2        ad #endif
   1052    1.2        ad 
   1053  1.164    cherry #ifdef MULTIPROCESSOR
   1054  1.101  kiyohara #if NLAPIC > 0
   1055    1.2        ad static void
   1056  1.136      maxv cpu_copy_trampoline(paddr_t pdir_pa)
   1057    1.2        ad {
   1058  1.136      maxv 	extern uint32_t nox_flag;
   1059    1.2        ad 	extern u_char cpu_spinup_trampoline[];
   1060    1.2        ad 	extern u_char cpu_spinup_trampoline_end[];
   1061   1.12  jmcneill 	vaddr_t mp_trampoline_vaddr;
   1062  1.136      maxv 	struct {
   1063  1.136      maxv 		uint32_t large;
   1064  1.136      maxv 		uint32_t nox;
   1065  1.136      maxv 		uint32_t pdir;
   1066  1.136      maxv 	} smp_data;
   1067  1.136      maxv 	CTASSERT(sizeof(smp_data) == 3 * 4);
   1068  1.136      maxv 
   1069  1.136      maxv 	smp_data.large = (pmap_largepages != 0);
   1070  1.136      maxv 	smp_data.nox = nox_flag;
   1071  1.136      maxv 	smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
   1072   1.12  jmcneill 
   1073  1.136      maxv 	/* Enter the physical address */
   1074   1.12  jmcneill 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1075   1.12  jmcneill 	    UVM_KMF_VAONLY);
   1076   1.12  jmcneill 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
   1077   1.64    cegger 	    VM_PROT_READ | VM_PROT_WRITE, 0);
   1078    1.2        ad 	pmap_update(pmap_kernel());
   1079  1.136      maxv 
   1080  1.136      maxv 	/* Copy boot code */
   1081   1.12  jmcneill 	memcpy((void *)mp_trampoline_vaddr,
   1082    1.2        ad 	    cpu_spinup_trampoline,
   1083   1.26    cegger 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
   1084   1.12  jmcneill 
   1085  1.136      maxv 	/* Copy smp_data at the end */
   1086  1.136      maxv 	memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
   1087  1.136      maxv 	    &smp_data, sizeof(smp_data));
   1088  1.136      maxv 
   1089   1.12  jmcneill 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
   1090   1.12  jmcneill 	pmap_update(pmap_kernel());
   1091   1.12  jmcneill 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
   1092    1.2        ad }
   1093  1.101  kiyohara #endif
   1094    1.2        ad 
   1095    1.2        ad int
   1096   1.14     joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
   1097    1.2        ad {
   1098    1.2        ad 	int error;
   1099   1.14     joerg 
   1100   1.14     joerg 	/*
   1101   1.14     joerg 	 * Bootstrap code must be addressable in real mode
   1102   1.14     joerg 	 * and it must be page aligned.
   1103   1.14     joerg 	 */
   1104   1.14     joerg 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
   1105    1.2        ad 
   1106    1.2        ad 	/*
   1107    1.2        ad 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
   1108    1.2        ad 	 */
   1109    1.2        ad 
   1110    1.2        ad 	outb(IO_RTC, NVRAM_RESET);
   1111    1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
   1112    1.2        ad 
   1113  1.165    cherry #if NLAPIC > 0
   1114    1.2        ad 	/*
   1115    1.2        ad 	 * "and the warm reset vector (DWORD based at 40:67) to point
   1116    1.2        ad 	 * to the AP startup code ..."
   1117    1.2        ad 	 */
   1118  1.165    cherry 	unsigned short dwordptr[2];
   1119    1.2        ad 	dwordptr[0] = 0;
   1120   1.14     joerg 	dwordptr[1] = target >> 4;
   1121    1.2        ad 
   1122   1.25        ad 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
   1123  1.111     joerg #endif
   1124    1.2        ad 
   1125   1.70       jym 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
   1126   1.25        ad 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1127   1.25        ad 		return ENODEV;
   1128   1.25        ad 	}
   1129   1.25        ad 
   1130    1.2        ad 	/*
   1131   1.51        ad 	 * ... prior to executing the following sequence:".  We'll also add in
   1132   1.51        ad 	 * local cache flush, in case the BIOS has left the AP with its cache
   1133   1.51        ad 	 * disabled.  It may not be able to cope with MP coherency.
   1134    1.2        ad 	 */
   1135   1.51        ad 	wbinvd();
   1136    1.2        ad 
   1137    1.2        ad 	if (ci->ci_flags & CPUF_AP) {
   1138   1.42        ad 		error = x86_ipi_init(ci->ci_cpuid);
   1139   1.26    cegger 		if (error != 0) {
   1140   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1141   1.50        ad 			    __func__);
   1142    1.2        ad 			return error;
   1143   1.25        ad 		}
   1144  1.189    bouyer 		delay_func(10000);
   1145    1.2        ad 
   1146   1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1147   1.26    cegger 		if (error != 0) {
   1148   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1149   1.50        ad 			    __func__);
   1150   1.25        ad 			return error;
   1151   1.25        ad 		}
   1152  1.189    bouyer 		delay_func(200);
   1153    1.2        ad 
   1154   1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1155   1.26    cegger 		if (error != 0) {
   1156   1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1157   1.50        ad 			    __func__);
   1158   1.25        ad 			return error;
   1159    1.2        ad 		}
   1160  1.189    bouyer 		delay_func(200);
   1161    1.2        ad 	}
   1162   1.44        ad 
   1163    1.2        ad 	return 0;
   1164    1.2        ad }
   1165    1.2        ad 
   1166    1.2        ad void
   1167    1.2        ad mp_cpu_start_cleanup(struct cpu_info *ci)
   1168    1.2        ad {
   1169    1.2        ad 	/*
   1170    1.2        ad 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1171    1.2        ad 	 */
   1172    1.2        ad 
   1173    1.2        ad 	outb(IO_RTC, NVRAM_RESET);
   1174    1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1175    1.2        ad }
   1176  1.101  kiyohara #endif
   1177    1.2        ad 
   1178    1.2        ad #ifdef __x86_64__
   1179    1.2        ad typedef void (vector)(void);
   1180  1.148      maxv extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
   1181   1.70       jym #endif
   1182    1.2        ad 
   1183    1.2        ad void
   1184   1.12  jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
   1185    1.2        ad {
   1186   1.70       jym #ifdef __x86_64__
   1187    1.2        ad 	wrmsr(MSR_STAR,
   1188    1.2        ad 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1189    1.2        ad 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1190    1.2        ad 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1191    1.2        ad 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1192  1.138      maxv 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
   1193    1.2        ad 
   1194  1.148      maxv #ifdef SVS
   1195  1.148      maxv 	if (svs_enabled)
   1196  1.148      maxv 		wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
   1197  1.148      maxv #endif
   1198  1.148      maxv 
   1199   1.12  jmcneill 	if (full) {
   1200   1.12  jmcneill 		wrmsr(MSR_FSBASE, 0);
   1201   1.27    cegger 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1202   1.12  jmcneill 		wrmsr(MSR_KERNELGSBASE, 0);
   1203   1.12  jmcneill 	}
   1204   1.70       jym #endif	/* __x86_64__ */
   1205    1.2        ad 
   1206   1.70       jym 	if (cpu_feature[2] & CPUID_NOX)
   1207    1.2        ad 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1208    1.2        ad }
   1209    1.7        ad 
   1210  1.107  christos void
   1211  1.107  christos cpu_offline_md(void)
   1212  1.107  christos {
   1213  1.173      maxv 	return;
   1214  1.107  christos }
   1215  1.107  christos 
   1216   1.12  jmcneill /* XXX joerg restructure and restart CPUs individually */
   1217   1.12  jmcneill static bool
   1218   1.96    jruoho cpu_stop(device_t dv)
   1219   1.12  jmcneill {
   1220   1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1221   1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1222   1.18     joerg 	int err;
   1223   1.12  jmcneill 
   1224   1.96    jruoho 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1225   1.93    jruoho 
   1226   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1227   1.93    jruoho 		return true;
   1228   1.93    jruoho 
   1229   1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1230   1.12  jmcneill 		return true;
   1231   1.12  jmcneill 
   1232   1.20  jmcneill 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1233   1.17     joerg 
   1234   1.20  jmcneill 	if (sc->sc_wasonline) {
   1235   1.20  jmcneill 		mutex_enter(&cpu_lock);
   1236   1.58     rmind 		err = cpu_setstate(ci, false);
   1237   1.20  jmcneill 		mutex_exit(&cpu_lock);
   1238   1.79    jruoho 
   1239   1.93    jruoho 		if (err != 0)
   1240   1.20  jmcneill 			return false;
   1241   1.20  jmcneill 	}
   1242   1.17     joerg 
   1243   1.17     joerg 	return true;
   1244   1.12  jmcneill }
   1245   1.12  jmcneill 
   1246   1.12  jmcneill static bool
   1247   1.96    jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1248   1.96    jruoho {
   1249   1.96    jruoho 	struct cpu_softc *sc = device_private(dv);
   1250   1.96    jruoho 	struct cpu_info *ci = sc->sc_info;
   1251   1.96    jruoho 
   1252   1.96    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1253   1.96    jruoho 		return true;
   1254   1.96    jruoho 	else {
   1255   1.96    jruoho 		cpufreq_suspend(ci);
   1256   1.96    jruoho 	}
   1257   1.96    jruoho 
   1258   1.96    jruoho 	return cpu_stop(dv);
   1259   1.96    jruoho }
   1260   1.96    jruoho 
   1261   1.96    jruoho static bool
   1262   1.69    dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
   1263   1.12  jmcneill {
   1264   1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1265   1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1266   1.20  jmcneill 	int err = 0;
   1267   1.12  jmcneill 
   1268   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1269   1.12  jmcneill 		return true;
   1270   1.93    jruoho 
   1271   1.93    jruoho 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1272   1.93    jruoho 		goto out;
   1273   1.93    jruoho 
   1274   1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1275   1.93    jruoho 		goto out;
   1276   1.12  jmcneill 
   1277   1.20  jmcneill 	if (sc->sc_wasonline) {
   1278   1.20  jmcneill 		mutex_enter(&cpu_lock);
   1279   1.58     rmind 		err = cpu_setstate(ci, true);
   1280   1.20  jmcneill 		mutex_exit(&cpu_lock);
   1281   1.20  jmcneill 	}
   1282   1.13     joerg 
   1283   1.93    jruoho out:
   1284   1.93    jruoho 	if (err != 0)
   1285   1.93    jruoho 		return false;
   1286   1.93    jruoho 
   1287   1.93    jruoho 	cpufreq_resume(ci);
   1288   1.93    jruoho 
   1289   1.93    jruoho 	return true;
   1290   1.12  jmcneill }
   1291   1.12  jmcneill 
   1292   1.79    jruoho static bool
   1293   1.79    jruoho cpu_shutdown(device_t dv, int how)
   1294   1.79    jruoho {
   1295   1.90    dyoung 	struct cpu_softc *sc = device_private(dv);
   1296   1.90    dyoung 	struct cpu_info *ci = sc->sc_info;
   1297   1.90    dyoung 
   1298   1.96    jruoho 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1299   1.90    dyoung 		return false;
   1300   1.90    dyoung 
   1301   1.96    jruoho 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1302   1.96    jruoho 		return true;
   1303   1.96    jruoho 
   1304   1.96    jruoho 	return cpu_stop(dv);
   1305   1.79    jruoho }
   1306   1.79    jruoho 
   1307  1.185   msaitoh /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
   1308    1.7        ad void
   1309    1.7        ad cpu_get_tsc_freq(struct cpu_info *ci)
   1310    1.7        ad {
   1311  1.191   msaitoh 	uint64_t freq = 0, freq_from_cpuid, t0, t1;
   1312  1.190        ad 	int64_t overhead;
   1313    1.7        ad 
   1314  1.190        ad 	if ((ci->ci_flags & CPUF_PRIMARY) != 0 && cpu_hascounter()) {
   1315  1.191   msaitoh 		/*
   1316  1.191   msaitoh 		 * If it's the first call of this function, try to get TSC
   1317  1.191   msaitoh 		 * freq from CPUID by calling cpu_tsc_freq_cpuid().
   1318  1.191   msaitoh 		 * The function also set lapic_per_second variable if it's
   1319  1.191   msaitoh 		 * known. This is required for Intel's Comet Lake and newer
   1320  1.191   msaitoh 		 * processors to set LAPIC timer correctly.
   1321  1.191   msaitoh 		 */
   1322  1.191   msaitoh 		if (ci->ci_data.cpu_cc_freq == 0)
   1323  1.191   msaitoh 			freq = freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
   1324  1.190        ad #if NHPET > 0
   1325  1.190        ad 		if (freq == 0)
   1326  1.190        ad 			freq = hpet_tsc_freq();
   1327  1.190        ad #endif
   1328  1.190        ad 		if (freq == 0) {
   1329  1.190        ad 			/*
   1330  1.190        ad 			 * Work out the approximate overhead involved below.
   1331  1.190        ad 			 * Discard the result of the first go around the
   1332  1.190        ad 			 * loop.
   1333  1.190        ad 			 */
   1334  1.190        ad 			overhead = 0;
   1335  1.190        ad 			for (int i = 0; i <= 8; i++) {
   1336  1.190        ad 				t0 = cpu_counter();
   1337  1.192        ad 				delay_func(0);
   1338  1.190        ad 				t1 = cpu_counter();
   1339  1.190        ad 				if (i > 0) {
   1340  1.190        ad 					overhead += (t1 - t0);
   1341  1.190        ad 				}
   1342  1.190        ad 			}
   1343  1.190        ad 			overhead >>= 3;
   1344  1.185   msaitoh 
   1345  1.190        ad 			/* Now do the calibration. */
   1346  1.190        ad 			t0 = cpu_counter();
   1347  1.192        ad 			delay_func(100000);
   1348  1.190        ad 			t1 = cpu_counter();
   1349  1.190        ad 			freq = (t1 - t0 - overhead) * 10;
   1350  1.190        ad 		}
   1351  1.191   msaitoh 		if (ci->ci_data.cpu_cc_freq != 0) {
   1352  1.191   msaitoh 			freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
   1353  1.191   msaitoh 			if ((freq_from_cpuid != 0)
   1354  1.191   msaitoh 			    && (freq != freq_from_cpuid))
   1355  1.191   msaitoh 				aprint_verbose_dev(ci->ci_dev, "TSC freq "
   1356  1.191   msaitoh 				    "calibrated %" PRIu64 " Hz\n", freq);
   1357  1.191   msaitoh 		}
   1358  1.185   msaitoh 	} else {
   1359  1.190        ad 		freq = cpu_info_primary.ci_data.cpu_cc_freq;
   1360    1.7        ad 	}
   1361  1.190        ad 
   1362  1.190        ad 	ci->ci_data.cpu_cc_freq = freq;
   1363    1.7        ad }
   1364   1.37     joerg 
   1365   1.37     joerg void
   1366   1.37     joerg x86_cpu_idle_mwait(void)
   1367   1.37     joerg {
   1368   1.37     joerg 	struct cpu_info *ci = curcpu();
   1369   1.37     joerg 
   1370   1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1371   1.37     joerg 
   1372   1.37     joerg 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1373   1.37     joerg 	if (__predict_false(ci->ci_want_resched)) {
   1374   1.37     joerg 		return;
   1375   1.37     joerg 	}
   1376   1.37     joerg 	x86_mwait(0, 0);
   1377   1.37     joerg }
   1378   1.37     joerg 
   1379   1.37     joerg void
   1380   1.37     joerg x86_cpu_idle_halt(void)
   1381   1.37     joerg {
   1382   1.37     joerg 	struct cpu_info *ci = curcpu();
   1383   1.37     joerg 
   1384   1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1385   1.37     joerg 
   1386   1.37     joerg 	x86_disable_intr();
   1387   1.37     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1388   1.37     joerg 		x86_stihlt();
   1389   1.37     joerg 	} else {
   1390   1.37     joerg 		x86_enable_intr();
   1391   1.37     joerg 	}
   1392   1.37     joerg }
   1393   1.73       jym 
   1394   1.73       jym /*
   1395   1.73       jym  * Loads pmap for the current CPU.
   1396   1.73       jym  */
   1397   1.73       jym void
   1398   1.97    bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1399   1.73       jym {
   1400  1.144      maxv #ifdef SVS
   1401  1.159      maxv 	if (svs_enabled) {
   1402  1.159      maxv 		svs_pdir_switch(pmap);
   1403  1.159      maxv 	}
   1404  1.144      maxv #endif
   1405  1.144      maxv 
   1406   1.73       jym #ifdef PAE
   1407   1.99      yamt 	struct cpu_info *ci = curcpu();
   1408  1.116       nat 	bool interrupts_enabled;
   1409   1.99      yamt 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1410   1.99      yamt 	int i;
   1411   1.73       jym 
   1412   1.99      yamt 	/*
   1413   1.99      yamt 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1414   1.99      yamt 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1415   1.99      yamt 	 * reload cr3.
   1416   1.99      yamt 	 */
   1417  1.116       nat 	interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
   1418  1.116       nat 	if (interrupts_enabled)
   1419  1.116       nat 		x86_disable_intr();
   1420  1.116       nat 
   1421   1.73       jym 	for (i = 0 ; i < PDP_SIZE; i++) {
   1422  1.168      maxv 		l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
   1423   1.73       jym 	}
   1424  1.134      maxv 
   1425  1.116       nat 	if (interrupts_enabled)
   1426  1.116       nat 		x86_enable_intr();
   1427   1.73       jym 	tlbflush();
   1428  1.160      maxv #else
   1429   1.73       jym 	lcr3(pmap_pdirpa(pmap, 0));
   1430  1.160      maxv #endif
   1431   1.73       jym }
   1432   1.91    cherry 
   1433   1.91    cherry /*
   1434   1.91    cherry  * Notify all other cpus to halt.
   1435   1.91    cherry  */
   1436   1.91    cherry 
   1437   1.91    cherry void
   1438   1.92    cherry cpu_broadcast_halt(void)
   1439   1.91    cherry {
   1440   1.91    cherry 	x86_broadcast_ipi(X86_IPI_HALT);
   1441   1.91    cherry }
   1442   1.91    cherry 
   1443   1.91    cherry /*
   1444  1.176        ad  * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
   1445  1.176        ad  * and trigger an AST on the running LWP.
   1446   1.91    cherry  */
   1447   1.91    cherry 
   1448   1.91    cherry void
   1449   1.91    cherry cpu_kick(struct cpu_info *ci)
   1450   1.91    cherry {
   1451  1.176        ad 	x86_send_ipi(ci, X86_IPI_AST);
   1452   1.91    cherry }
   1453