cpu.c revision 1.20 1 1.20 jmcneill /* $NetBSD: cpu.c,v 1.20 2008/01/30 01:10:21 jmcneill Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.7 ad * Copyright (c) 2000, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad * 3. All advertising materials mentioning features or use of this software
19 1.2 ad * must display the following acknowledgement:
20 1.2 ad * This product includes software developed by the NetBSD
21 1.2 ad * Foundation, Inc. and its contributors.
22 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 ad * contributors may be used to endorse or promote products derived
24 1.2 ad * from this software without specific prior written permission.
25 1.2 ad *
26 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.2 ad */
38 1.2 ad
39 1.2 ad /*
40 1.2 ad * Copyright (c) 1999 Stefan Grefen
41 1.2 ad *
42 1.2 ad * Redistribution and use in source and binary forms, with or without
43 1.2 ad * modification, are permitted provided that the following conditions
44 1.2 ad * are met:
45 1.2 ad * 1. Redistributions of source code must retain the above copyright
46 1.2 ad * notice, this list of conditions and the following disclaimer.
47 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
48 1.2 ad * notice, this list of conditions and the following disclaimer in the
49 1.2 ad * documentation and/or other materials provided with the distribution.
50 1.2 ad * 3. All advertising materials mentioning features or use of this software
51 1.2 ad * must display the following acknowledgement:
52 1.2 ad * This product includes software developed by the NetBSD
53 1.2 ad * Foundation, Inc. and its contributors.
54 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
55 1.2 ad * contributors may be used to endorse or promote products derived
56 1.2 ad * from this software without specific prior written permission.
57 1.2 ad *
58 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
59 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
62 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.2 ad * SUCH DAMAGE.
69 1.2 ad */
70 1.2 ad
71 1.2 ad #include <sys/cdefs.h>
72 1.20 jmcneill __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.20 2008/01/30 01:10:21 jmcneill Exp $");
73 1.2 ad
74 1.2 ad #include "opt_ddb.h"
75 1.2 ad #include "opt_multiprocessor.h"
76 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
77 1.2 ad #include "opt_mtrr.h"
78 1.2 ad
79 1.2 ad #include "lapic.h"
80 1.2 ad #include "ioapic.h"
81 1.2 ad
82 1.2 ad #include <sys/param.h>
83 1.2 ad #include <sys/proc.h>
84 1.2 ad #include <sys/user.h>
85 1.2 ad #include <sys/systm.h>
86 1.2 ad #include <sys/device.h>
87 1.2 ad #include <sys/malloc.h>
88 1.9 ad #include <sys/cpu.h>
89 1.9 ad #include <sys/atomic.h>
90 1.2 ad
91 1.2 ad #include <uvm/uvm_extern.h>
92 1.2 ad
93 1.2 ad #include <machine/cpufunc.h>
94 1.2 ad #include <machine/cpuvar.h>
95 1.2 ad #include <machine/pmap.h>
96 1.2 ad #include <machine/vmparam.h>
97 1.2 ad #include <machine/mpbiosvar.h>
98 1.2 ad #include <machine/pcb.h>
99 1.2 ad #include <machine/specialreg.h>
100 1.2 ad #include <machine/segments.h>
101 1.2 ad #include <machine/gdt.h>
102 1.2 ad #include <machine/mtrr.h>
103 1.2 ad #include <machine/pio.h>
104 1.2 ad
105 1.2 ad #ifdef i386
106 1.2 ad #include <machine/tlog.h>
107 1.2 ad #endif
108 1.2 ad
109 1.2 ad #if NLAPIC > 0
110 1.2 ad #include <machine/apicvar.h>
111 1.2 ad #include <machine/i82489reg.h>
112 1.2 ad #include <machine/i82489var.h>
113 1.2 ad #endif
114 1.2 ad
115 1.2 ad #if NIOAPIC > 0
116 1.2 ad #include <machine/i82093var.h>
117 1.2 ad #endif
118 1.2 ad
119 1.2 ad #include <dev/ic/mc146818reg.h>
120 1.2 ad #include <i386/isa/nvram.h>
121 1.2 ad #include <dev/isa/isareg.h>
122 1.2 ad
123 1.2 ad int cpu_match(struct device *, struct cfdata *, void *);
124 1.2 ad void cpu_attach(struct device *, struct device *, void *);
125 1.2 ad
126 1.12 jmcneill static bool cpu_suspend(device_t);
127 1.12 jmcneill static bool cpu_resume(device_t);
128 1.12 jmcneill
129 1.2 ad struct cpu_softc {
130 1.2 ad struct device sc_dev; /* device tree glue */
131 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
132 1.20 jmcneill bool sc_wasonline;
133 1.2 ad };
134 1.2 ad
135 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
136 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
137 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
138 1.2 ad mp_cpu_start_cleanup };
139 1.2 ad
140 1.2 ad
141 1.2 ad CFATTACH_DECL(cpu, sizeof(struct cpu_softc),
142 1.2 ad cpu_match, cpu_attach, NULL, NULL);
143 1.2 ad
144 1.2 ad /*
145 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
146 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
147 1.2 ad * point at it.
148 1.2 ad */
149 1.2 ad #ifdef TRAPLOG
150 1.2 ad struct tlog tlog_primary;
151 1.2 ad #endif
152 1.2 ad struct cpu_info cpu_info_primary = {
153 1.2 ad .ci_dev = 0,
154 1.2 ad .ci_self = &cpu_info_primary,
155 1.2 ad .ci_idepth = -1,
156 1.2 ad .ci_curlwp = &lwp0,
157 1.2 ad #ifdef TRAPLOG
158 1.2 ad .ci_tlog_base = &tlog_primary,
159 1.2 ad #endif /* !TRAPLOG */
160 1.2 ad };
161 1.2 ad
162 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
163 1.2 ad
164 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
165 1.2 ad
166 1.2 ad #ifdef i386
167 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
168 1.2 ad #endif
169 1.2 ad
170 1.12 jmcneill #ifdef MULTIPROCESSOR
171 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
172 1.12 jmcneill #endif
173 1.12 jmcneill
174 1.2 ad uint32_t cpus_attached = 0;
175 1.9 ad uint32_t cpus_running = 0;
176 1.2 ad
177 1.2 ad extern char x86_64_doubleflt_stack[];
178 1.2 ad
179 1.12 jmcneill bool x86_mp_online;
180 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
181 1.12 jmcneill
182 1.14 joerg static vaddr_t cmos_data_mapping;
183 1.14 joerg
184 1.2 ad #ifdef MULTIPROCESSOR
185 1.2 ad /*
186 1.2 ad * Array of CPU info structures. Must be statically-allocated because
187 1.2 ad * curproc, etc. are used early.
188 1.2 ad */
189 1.2 ad struct cpu_info *cpu_info[X86_MAXPROCS] = { &cpu_info_primary, };
190 1.2 ad
191 1.2 ad void cpu_hatch(void *);
192 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
193 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
194 1.2 ad static void cpu_copy_trampoline(void);
195 1.2 ad
196 1.2 ad /*
197 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
198 1.2 ad * the local APIC on the boot processor has been mapped.
199 1.2 ad *
200 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
201 1.2 ad */
202 1.2 ad void
203 1.9 ad cpu_init_first(void)
204 1.2 ad {
205 1.2 ad int cpunum = lapic_cpu_number();
206 1.2 ad
207 1.2 ad if (cpunum != 0) {
208 1.2 ad cpu_info[0] = NULL;
209 1.2 ad cpu_info[cpunum] = &cpu_info_primary;
210 1.2 ad }
211 1.2 ad
212 1.2 ad cpu_info_primary.ci_cpuid = cpunum;
213 1.2 ad cpu_copy_trampoline();
214 1.14 joerg
215 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
216 1.14 joerg if (cmos_data_mapping == 0)
217 1.14 joerg panic("No KVA for page 0");
218 1.14 joerg pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
219 1.14 joerg pmap_update(pmap_kernel());
220 1.2 ad }
221 1.2 ad #endif
222 1.2 ad
223 1.2 ad int
224 1.2 ad cpu_match(struct device *parent, struct cfdata *match,
225 1.2 ad void *aux)
226 1.2 ad {
227 1.2 ad
228 1.2 ad return 1;
229 1.2 ad }
230 1.2 ad
231 1.2 ad static void
232 1.2 ad cpu_vm_init(struct cpu_info *ci)
233 1.2 ad {
234 1.2 ad int ncolors = 2, i;
235 1.2 ad
236 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
237 1.2 ad struct x86_cache_info *cai;
238 1.2 ad int tcolors;
239 1.2 ad
240 1.2 ad cai = &ci->ci_cinfo[i];
241 1.2 ad
242 1.2 ad tcolors = atop(cai->cai_totalsize);
243 1.2 ad switch(cai->cai_associativity) {
244 1.2 ad case 0xff:
245 1.2 ad tcolors = 1; /* fully associative */
246 1.2 ad break;
247 1.2 ad case 0:
248 1.2 ad case 1:
249 1.2 ad break;
250 1.2 ad default:
251 1.2 ad tcolors /= cai->cai_associativity;
252 1.2 ad }
253 1.2 ad ncolors = max(ncolors, tcolors);
254 1.2 ad }
255 1.2 ad
256 1.2 ad /*
257 1.2 ad * Knowing the size of the largest cache on this CPU, re-color
258 1.2 ad * our pages.
259 1.2 ad */
260 1.2 ad if (ncolors <= uvmexp.ncolors)
261 1.2 ad return;
262 1.2 ad aprint_verbose("%s: %d page colors\n", ci->ci_dev->dv_xname, ncolors);
263 1.2 ad uvm_page_recolor(ncolors);
264 1.2 ad }
265 1.2 ad
266 1.2 ad
267 1.2 ad void
268 1.2 ad cpu_attach(struct device *parent, struct device *self, void *aux)
269 1.2 ad {
270 1.2 ad struct cpu_softc *sc = (void *) self;
271 1.2 ad struct cpu_attach_args *caa = aux;
272 1.2 ad struct cpu_info *ci;
273 1.2 ad #if defined(MULTIPROCESSOR)
274 1.2 ad int cpunum = caa->cpu_number;
275 1.2 ad #endif
276 1.2 ad
277 1.2 ad /*
278 1.2 ad * If we're an Application Processor, allocate a cpu_info
279 1.2 ad * structure, otherwise use the primary's.
280 1.2 ad */
281 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
282 1.2 ad aprint_naive(": Application Processor\n");
283 1.2 ad ci = malloc(sizeof(*ci), M_DEVBUF, M_WAITOK);
284 1.2 ad memset(ci, 0, sizeof(*ci));
285 1.2 ad #if defined(MULTIPROCESSOR)
286 1.2 ad if (cpu_info[cpunum] != NULL) {
287 1.2 ad printf("\n");
288 1.2 ad panic("cpu at apic id %d already attached?", cpunum);
289 1.2 ad }
290 1.2 ad cpu_info[cpunum] = ci;
291 1.2 ad #endif
292 1.2 ad #ifdef TRAPLOG
293 1.2 ad ci->ci_tlog_base = malloc(sizeof(struct tlog),
294 1.2 ad M_DEVBUF, M_WAITOK);
295 1.2 ad #endif
296 1.2 ad } else {
297 1.2 ad aprint_naive(": %s Processor\n",
298 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
299 1.2 ad ci = &cpu_info_primary;
300 1.2 ad #if defined(MULTIPROCESSOR)
301 1.2 ad if (cpunum != lapic_cpu_number()) {
302 1.2 ad printf("\n");
303 1.2 ad panic("%s: running CPU is at apic %d"
304 1.2 ad " instead of at expected %d",
305 1.2 ad sc->sc_dev.dv_xname, lapic_cpu_number(), cpunum);
306 1.2 ad }
307 1.2 ad #endif
308 1.2 ad }
309 1.2 ad
310 1.2 ad ci->ci_self = ci;
311 1.2 ad sc->sc_info = ci;
312 1.2 ad
313 1.2 ad ci->ci_dev = self;
314 1.2 ad ci->ci_apicid = caa->cpu_number;
315 1.2 ad #ifdef MULTIPROCESSOR
316 1.2 ad ci->ci_cpuid = ci->ci_apicid;
317 1.2 ad #else
318 1.2 ad ci->ci_cpuid = 0; /* False for APs, but they're not used anyway */
319 1.2 ad #endif
320 1.2 ad ci->ci_cpumask = (1 << ci->ci_cpuid);
321 1.2 ad ci->ci_func = caa->cpu_func;
322 1.2 ad
323 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
324 1.2 ad #ifdef MULTIPROCESSOR
325 1.2 ad int error;
326 1.2 ad
327 1.2 ad error = mi_cpu_attach(ci);
328 1.2 ad if (error != 0) {
329 1.2 ad aprint_normal("\n");
330 1.2 ad aprint_error("%s: mi_cpu_attach failed with %d\n",
331 1.2 ad sc->sc_dev.dv_xname, error);
332 1.2 ad return;
333 1.2 ad }
334 1.2 ad #endif
335 1.15 yamt cpu_init_tss(ci);
336 1.2 ad } else {
337 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
338 1.2 ad }
339 1.2 ad
340 1.2 ad pmap_reference(pmap_kernel());
341 1.2 ad ci->ci_pmap = pmap_kernel();
342 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
343 1.2 ad
344 1.2 ad /* further PCB init done later. */
345 1.2 ad
346 1.2 ad switch (caa->cpu_role) {
347 1.2 ad case CPU_ROLE_SP:
348 1.2 ad aprint_normal(": (uniprocessor)\n");
349 1.9 ad atomic_or_32(&ci->ci_flags,
350 1.9 ad CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY);
351 1.2 ad cpu_intr_init(ci);
352 1.2 ad identifycpu(ci);
353 1.2 ad cpu_init(ci);
354 1.2 ad cpu_set_tss_gates(ci);
355 1.2 ad pmap_cpu_init_late(ci);
356 1.6 ad x86_errata();
357 1.2 ad break;
358 1.2 ad
359 1.2 ad case CPU_ROLE_BP:
360 1.2 ad aprint_normal(": (boot processor)\n");
361 1.9 ad atomic_or_32(&ci->ci_flags,
362 1.9 ad CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY);
363 1.2 ad cpu_intr_init(ci);
364 1.2 ad identifycpu(ci);
365 1.2 ad cpu_init(ci);
366 1.2 ad cpu_set_tss_gates(ci);
367 1.2 ad pmap_cpu_init_late(ci);
368 1.2 ad #if NLAPIC > 0
369 1.2 ad /*
370 1.2 ad * Enable local apic
371 1.2 ad */
372 1.2 ad lapic_enable();
373 1.19 joerg lapic_set_lvt();
374 1.2 ad lapic_calibrate_timer(ci);
375 1.2 ad #endif
376 1.2 ad #if NIOAPIC > 0
377 1.2 ad ioapic_bsp_id = caa->cpu_number;
378 1.2 ad #endif
379 1.6 ad x86_errata();
380 1.2 ad break;
381 1.2 ad
382 1.2 ad case CPU_ROLE_AP:
383 1.2 ad /*
384 1.2 ad * report on an AP
385 1.2 ad */
386 1.2 ad aprint_normal(": (application processor)\n");
387 1.2 ad
388 1.2 ad #if defined(MULTIPROCESSOR)
389 1.2 ad cpu_intr_init(ci);
390 1.2 ad gdt_alloc_cpu(ci);
391 1.2 ad cpu_set_tss_gates(ci);
392 1.2 ad pmap_cpu_init_early(ci);
393 1.2 ad pmap_cpu_init_late(ci);
394 1.2 ad cpu_start_secondary(ci);
395 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
396 1.2 ad identifycpu(ci);
397 1.2 ad ci->ci_next = cpu_info_list->ci_next;
398 1.2 ad cpu_info_list->ci_next = ci;
399 1.2 ad }
400 1.2 ad #else
401 1.2 ad aprint_normal("%s: not started\n", sc->sc_dev.dv_xname);
402 1.2 ad #endif
403 1.2 ad break;
404 1.2 ad
405 1.2 ad default:
406 1.2 ad printf("\n");
407 1.2 ad panic("unknown processor type??\n");
408 1.2 ad }
409 1.2 ad cpu_vm_init(ci);
410 1.2 ad
411 1.2 ad cpus_attached |= ci->ci_cpumask;
412 1.2 ad
413 1.12 jmcneill if (!pmf_device_register(self, cpu_suspend, cpu_resume))
414 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
415 1.12 jmcneill
416 1.2 ad #if defined(MULTIPROCESSOR)
417 1.2 ad if (mp_verbose) {
418 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
419 1.2 ad
420 1.2 ad aprint_verbose(
421 1.2 ad "%s: idle lwp at %p, idle sp at %p\n",
422 1.2 ad sc->sc_dev.dv_xname, l,
423 1.2 ad #ifdef i386
424 1.2 ad (void *)l->l_addr->u_pcb.pcb_esp
425 1.2 ad #else
426 1.2 ad (void *)l->l_addr->u_pcb.pcb_rsp
427 1.2 ad #endif
428 1.2 ad );
429 1.2 ad }
430 1.2 ad #endif
431 1.2 ad }
432 1.2 ad
433 1.2 ad /*
434 1.2 ad * Initialize the processor appropriately.
435 1.2 ad */
436 1.2 ad
437 1.2 ad void
438 1.9 ad cpu_init(struct cpu_info *ci)
439 1.2 ad {
440 1.2 ad /* configure the CPU if needed */
441 1.2 ad if (ci->cpu_setup != NULL)
442 1.2 ad (*ci->cpu_setup)(ci);
443 1.2 ad
444 1.2 ad #ifdef i386
445 1.2 ad /*
446 1.2 ad * On a 486 or above, enable ring 0 write protection.
447 1.2 ad */
448 1.2 ad if (ci->ci_cpu_class >= CPUCLASS_486)
449 1.2 ad lcr0(rcr0() | CR0_WP);
450 1.2 ad #else
451 1.2 ad lcr0(rcr0() | CR0_WP);
452 1.2 ad #endif
453 1.2 ad
454 1.2 ad /*
455 1.2 ad * On a P6 or above, enable global TLB caching if the
456 1.2 ad * hardware supports it.
457 1.2 ad */
458 1.2 ad if (cpu_feature & CPUID_PGE)
459 1.2 ad lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
460 1.2 ad
461 1.2 ad /*
462 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
463 1.2 ad */
464 1.2 ad if (cpu_feature & CPUID_FXSR) {
465 1.2 ad lcr4(rcr4() | CR4_OSFXSR);
466 1.2 ad
467 1.2 ad /*
468 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
469 1.2 ad */
470 1.2 ad if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
471 1.2 ad lcr4(rcr4() | CR4_OSXMMEXCPT);
472 1.2 ad }
473 1.2 ad
474 1.2 ad #ifdef MTRR
475 1.2 ad /*
476 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
477 1.2 ad */
478 1.2 ad if (cpu_feature & CPUID_MTRR) {
479 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
480 1.2 ad i686_mtrr_init_first();
481 1.2 ad mtrr_init_cpu(ci);
482 1.2 ad }
483 1.2 ad
484 1.2 ad #ifdef i386
485 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
486 1.2 ad /*
487 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
488 1.2 ad */
489 1.2 ad if (CPUID2FAMILY(ci->ci_signature) == 5) {
490 1.2 ad if (CPUID2MODEL(ci->ci_signature) > 8 ||
491 1.2 ad (CPUID2MODEL(ci->ci_signature) == 8 &&
492 1.2 ad CPUID2STEPPING(ci->ci_signature) >= 7)) {
493 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
494 1.2 ad k6_mtrr_init_first();
495 1.2 ad mtrr_init_cpu(ci);
496 1.2 ad }
497 1.2 ad }
498 1.2 ad }
499 1.2 ad #endif /* i386 */
500 1.2 ad #endif /* MTRR */
501 1.2 ad
502 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
503 1.9 ad atomic_or_32(&cpus_running, ci->ci_cpumask);
504 1.9 ad
505 1.9 ad #ifndef MULTIPROCESSOR
506 1.5 ad /* XXX */
507 1.5 ad x86_patch();
508 1.2 ad #endif
509 1.2 ad }
510 1.2 ad
511 1.2 ad #ifdef MULTIPROCESSOR
512 1.2 ad void
513 1.12 jmcneill cpu_boot_secondary_processors(void)
514 1.2 ad {
515 1.2 ad struct cpu_info *ci;
516 1.2 ad u_long i;
517 1.2 ad
518 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
519 1.5 ad x86_patch();
520 1.5 ad
521 1.2 ad for (i=0; i < X86_MAXPROCS; i++) {
522 1.2 ad ci = cpu_info[i];
523 1.2 ad if (ci == NULL)
524 1.2 ad continue;
525 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
526 1.2 ad continue;
527 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
528 1.2 ad continue;
529 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
530 1.2 ad continue;
531 1.2 ad cpu_boot_secondary(ci);
532 1.2 ad }
533 1.2 ad
534 1.2 ad x86_mp_online = true;
535 1.2 ad }
536 1.2 ad
537 1.2 ad static void
538 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
539 1.2 ad {
540 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
541 1.2 ad struct pcb *pcb = &l->l_addr->u_pcb;
542 1.2 ad
543 1.2 ad pcb->pcb_cr0 = rcr0();
544 1.2 ad }
545 1.2 ad
546 1.2 ad void
547 1.12 jmcneill cpu_init_idle_lwps(void)
548 1.2 ad {
549 1.2 ad struct cpu_info *ci;
550 1.2 ad u_long i;
551 1.2 ad
552 1.2 ad for (i = 0; i < X86_MAXPROCS; i++) {
553 1.2 ad ci = cpu_info[i];
554 1.2 ad if (ci == NULL)
555 1.2 ad continue;
556 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
557 1.2 ad continue;
558 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
559 1.2 ad continue;
560 1.2 ad cpu_init_idle_lwp(ci);
561 1.2 ad }
562 1.2 ad }
563 1.2 ad
564 1.2 ad void
565 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
566 1.2 ad {
567 1.2 ad int i;
568 1.2 ad extern paddr_t mp_pdirpa;
569 1.2 ad
570 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
571 1.2 ad
572 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
573 1.2 ad
574 1.2 ad aprint_debug("%s: starting\n", ci->ci_dev->dv_xname);
575 1.2 ad
576 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
577 1.14 joerg CPU_STARTUP(ci, mp_trampoline_paddr);
578 1.2 ad
579 1.2 ad /*
580 1.2 ad * wait for it to become ready
581 1.2 ad */
582 1.2 ad for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i>0;i--) {
583 1.11 ad i8254_delay(10);
584 1.2 ad }
585 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
586 1.2 ad aprint_error("%s: failed to become ready\n",
587 1.2 ad ci->ci_dev->dv_xname);
588 1.2 ad #if defined(MPDEBUG) && defined(DDB)
589 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
590 1.2 ad Debugger();
591 1.2 ad #endif
592 1.2 ad }
593 1.2 ad
594 1.2 ad CPU_START_CLEANUP(ci);
595 1.2 ad }
596 1.2 ad
597 1.2 ad void
598 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
599 1.2 ad {
600 1.2 ad int i;
601 1.2 ad
602 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
603 1.2 ad for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i>0;i--) {
604 1.11 ad i8254_delay(10);
605 1.2 ad }
606 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
607 1.2 ad aprint_error("%s: failed to start\n", ci->ci_dev->dv_xname);
608 1.2 ad #if defined(MPDEBUG) && defined(DDB)
609 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
610 1.2 ad Debugger();
611 1.2 ad #endif
612 1.2 ad }
613 1.2 ad }
614 1.2 ad
615 1.2 ad /*
616 1.2 ad * The CPU ends up here when its ready to run
617 1.2 ad * This is called from code in mptramp.s; at this point, we are running
618 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
619 1.2 ad * this processor will enter the idle loop and start looking for work.
620 1.2 ad */
621 1.2 ad void
622 1.2 ad cpu_hatch(void *v)
623 1.2 ad {
624 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
625 1.6 ad int s, i;
626 1.2 ad
627 1.2 ad #ifdef __x86_64__
628 1.12 jmcneill cpu_init_msrs(ci, true);
629 1.2 ad #endif
630 1.2 ad cpu_probe_features(ci);
631 1.2 ad cpu_feature &= ci->ci_feature_flags;
632 1.2 ad cpu_feature2 &= ci->ci_feature2_flags;
633 1.2 ad
634 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
635 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
636 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
637 1.6 ad /* Don't use delay, boot CPU may be patching the text. */
638 1.6 ad for (i = 10000; i != 0; i--)
639 1.6 ad x86_pause();
640 1.6 ad }
641 1.5 ad
642 1.5 ad /* Beacuse the text may have been patched in x86_patch(). */
643 1.5 ad wbinvd();
644 1.5 ad x86_flush();
645 1.5 ad
646 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
647 1.2 ad
648 1.12 jmcneill lcr3(pmap_kernel()->pm_pdirpa);
649 1.12 jmcneill curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
650 1.2 ad lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
651 1.2 ad cpu_init_idt();
652 1.8 ad gdt_init_cpu(ci);
653 1.8 ad lapic_enable();
654 1.2 ad lapic_set_lvt();
655 1.8 ad lapic_initclocks();
656 1.2 ad
657 1.2 ad #ifdef i386
658 1.2 ad npxinit(ci);
659 1.2 ad #else
660 1.2 ad fpuinit(ci);
661 1.4 yamt #endif
662 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
663 1.15 yamt ltr(ci->ci_tss_sel);
664 1.2 ad
665 1.2 ad cpu_init(ci);
666 1.7 ad cpu_get_tsc_freq(ci);
667 1.2 ad
668 1.2 ad s = splhigh();
669 1.2 ad #ifdef i386
670 1.2 ad lapic_tpr = 0;
671 1.2 ad #else
672 1.2 ad lcr8(0);
673 1.2 ad #endif
674 1.3 ad x86_enable_intr();
675 1.2 ad splx(s);
676 1.6 ad x86_errata();
677 1.2 ad
678 1.2 ad aprint_debug("%s: CPU %ld running\n", ci->ci_dev->dv_xname,
679 1.2 ad (long)ci->ci_cpuid);
680 1.2 ad }
681 1.2 ad
682 1.2 ad #if defined(DDB)
683 1.2 ad
684 1.2 ad #include <ddb/db_output.h>
685 1.2 ad #include <machine/db_machdep.h>
686 1.2 ad
687 1.2 ad /*
688 1.2 ad * Dump CPU information from ddb.
689 1.2 ad */
690 1.2 ad void
691 1.2 ad cpu_debug_dump(void)
692 1.2 ad {
693 1.2 ad struct cpu_info *ci;
694 1.2 ad CPU_INFO_ITERATOR cii;
695 1.2 ad
696 1.2 ad db_printf("addr dev id flags ipis curproc fpcurproc\n");
697 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
698 1.2 ad db_printf("%p %s %ld %x %x %10p %10p\n",
699 1.2 ad ci,
700 1.2 ad ci->ci_dev == NULL ? "BOOT" : ci->ci_dev->dv_xname,
701 1.2 ad (long)ci->ci_cpuid,
702 1.2 ad ci->ci_flags, ci->ci_ipis,
703 1.2 ad ci->ci_curlwp,
704 1.2 ad ci->ci_fpcurlwp);
705 1.2 ad }
706 1.2 ad }
707 1.2 ad #endif
708 1.2 ad
709 1.2 ad static void
710 1.12 jmcneill cpu_copy_trampoline(void)
711 1.2 ad {
712 1.2 ad /*
713 1.2 ad * Copy boot code.
714 1.2 ad */
715 1.2 ad extern u_char cpu_spinup_trampoline[];
716 1.2 ad extern u_char cpu_spinup_trampoline_end[];
717 1.12 jmcneill
718 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
719 1.12 jmcneill
720 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
721 1.12 jmcneill UVM_KMF_VAONLY);
722 1.12 jmcneill
723 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
724 1.12 jmcneill VM_PROT_READ | VM_PROT_WRITE);
725 1.2 ad pmap_update(pmap_kernel());
726 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
727 1.2 ad cpu_spinup_trampoline,
728 1.2 ad cpu_spinup_trampoline_end-cpu_spinup_trampoline);
729 1.12 jmcneill
730 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
731 1.12 jmcneill pmap_update(pmap_kernel());
732 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
733 1.2 ad }
734 1.2 ad
735 1.2 ad #endif
736 1.2 ad
737 1.2 ad #ifdef i386
738 1.2 ad static void
739 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
740 1.2 ad {
741 1.2 ad memset(tss, 0, sizeof *tss);
742 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
743 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
744 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
745 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
746 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
747 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
748 1.2 ad tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
749 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
750 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
751 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
752 1.2 ad tss->__tss_eip = (int)func;
753 1.2 ad }
754 1.2 ad
755 1.2 ad /* XXX */
756 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
757 1.2 ad typedef void (vector)(void);
758 1.2 ad extern vector IDTVEC(tss_trap08);
759 1.2 ad #ifdef DDB
760 1.2 ad extern vector Xintrddbipi;
761 1.2 ad extern int ddb_vec;
762 1.2 ad #endif
763 1.2 ad
764 1.2 ad static void
765 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
766 1.2 ad {
767 1.2 ad struct segment_descriptor sd;
768 1.2 ad
769 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
770 1.2 ad UVM_KMF_WIRED);
771 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
772 1.2 ad IDTVEC(tss_trap08));
773 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
774 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
775 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
776 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
777 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
778 1.2 ad
779 1.2 ad #if defined(DDB) && defined(MULTIPROCESSOR)
780 1.2 ad /*
781 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
782 1.2 ad * stomp on a possibly corrupted stack.
783 1.2 ad *
784 1.2 ad * XXX overwriting the gate set in db_machine_init.
785 1.2 ad * Should rearrange the code so that it's set only once.
786 1.2 ad */
787 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
788 1.2 ad UVM_KMF_WIRED);
789 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
790 1.2 ad
791 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
792 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
793 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
794 1.2 ad
795 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
796 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
797 1.2 ad #endif
798 1.2 ad }
799 1.2 ad #else
800 1.2 ad static void
801 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
802 1.2 ad {
803 1.2 ad
804 1.2 ad }
805 1.2 ad #endif /* i386 */
806 1.2 ad
807 1.2 ad int
808 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
809 1.2 ad {
810 1.2 ad #if NLAPIC > 0
811 1.2 ad int error;
812 1.2 ad #endif
813 1.2 ad unsigned short dwordptr[2];
814 1.14 joerg
815 1.14 joerg /*
816 1.14 joerg * Bootstrap code must be addressable in real mode
817 1.14 joerg * and it must be page aligned.
818 1.14 joerg */
819 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
820 1.2 ad
821 1.2 ad /*
822 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
823 1.2 ad */
824 1.2 ad
825 1.2 ad outb(IO_RTC, NVRAM_RESET);
826 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
827 1.2 ad
828 1.2 ad /*
829 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
830 1.2 ad * to the AP startup code ..."
831 1.2 ad */
832 1.2 ad
833 1.2 ad dwordptr[0] = 0;
834 1.14 joerg dwordptr[1] = target >> 4;
835 1.2 ad
836 1.14 joerg memcpy((uint8_t *)(cmos_data_mapping + 0x467), dwordptr, 4);
837 1.2 ad
838 1.2 ad #if NLAPIC > 0
839 1.2 ad /*
840 1.2 ad * ... prior to executing the following sequence:"
841 1.2 ad */
842 1.2 ad
843 1.2 ad if (ci->ci_flags & CPUF_AP) {
844 1.2 ad if ((error = x86_ipi_init(ci->ci_apicid)) != 0)
845 1.2 ad return error;
846 1.2 ad
847 1.11 ad i8254_delay(10000);
848 1.2 ad
849 1.2 ad if (cpu_feature & CPUID_APIC) {
850 1.2 ad
851 1.14 joerg if ((error = x86_ipi(target / PAGE_SIZE,
852 1.2 ad ci->ci_apicid,
853 1.2 ad LAPIC_DLMODE_STARTUP)) != 0)
854 1.2 ad return error;
855 1.11 ad i8254_delay(200);
856 1.2 ad
857 1.14 joerg if ((error = x86_ipi(target / PAGE_SIZE,
858 1.2 ad ci->ci_apicid,
859 1.2 ad LAPIC_DLMODE_STARTUP)) != 0)
860 1.2 ad return error;
861 1.11 ad i8254_delay(200);
862 1.2 ad }
863 1.2 ad }
864 1.2 ad #endif
865 1.2 ad return 0;
866 1.2 ad }
867 1.2 ad
868 1.2 ad void
869 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
870 1.2 ad {
871 1.2 ad /*
872 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
873 1.2 ad */
874 1.2 ad
875 1.2 ad outb(IO_RTC, NVRAM_RESET);
876 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
877 1.2 ad }
878 1.2 ad
879 1.2 ad #ifdef __x86_64__
880 1.2 ad typedef void (vector)(void);
881 1.2 ad extern vector Xsyscall, Xsyscall32;
882 1.2 ad
883 1.2 ad void
884 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
885 1.2 ad {
886 1.2 ad wrmsr(MSR_STAR,
887 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
888 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
889 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
890 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
891 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
892 1.2 ad
893 1.12 jmcneill if (full) {
894 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
895 1.12 jmcneill wrmsr(MSR_GSBASE, (u_int64_t)ci);
896 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
897 1.12 jmcneill }
898 1.2 ad
899 1.2 ad if (cpu_feature & CPUID_NOX)
900 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
901 1.2 ad }
902 1.2 ad #endif /* __x86_64__ */
903 1.7 ad
904 1.18 joerg void
905 1.18 joerg cpu_offline_md(void)
906 1.18 joerg {
907 1.18 joerg int s;
908 1.18 joerg
909 1.18 joerg s = splhigh();
910 1.18 joerg #ifdef __i386__
911 1.18 joerg npxsave_cpu(true);
912 1.18 joerg #else
913 1.18 joerg fpusave_cpu(true);
914 1.18 joerg #endif
915 1.18 joerg splx(s);
916 1.18 joerg }
917 1.18 joerg
918 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
919 1.12 jmcneill static bool
920 1.12 jmcneill cpu_suspend(device_t dv)
921 1.12 jmcneill {
922 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
923 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
924 1.18 joerg int err;
925 1.12 jmcneill
926 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
927 1.12 jmcneill return true;
928 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
929 1.12 jmcneill return true;
930 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
931 1.12 jmcneill return true;
932 1.12 jmcneill
933 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
934 1.17 joerg
935 1.20 jmcneill if (sc->sc_wasonline) {
936 1.20 jmcneill mutex_enter(&cpu_lock);
937 1.20 jmcneill err = cpu_setonline(ci, false);
938 1.20 jmcneill mutex_exit(&cpu_lock);
939 1.20 jmcneill
940 1.20 jmcneill if (err)
941 1.20 jmcneill return false;
942 1.20 jmcneill }
943 1.17 joerg
944 1.17 joerg return true;
945 1.12 jmcneill }
946 1.12 jmcneill
947 1.12 jmcneill static bool
948 1.12 jmcneill cpu_resume(device_t dv)
949 1.12 jmcneill {
950 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
951 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
952 1.20 jmcneill int err = 0;
953 1.12 jmcneill
954 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
955 1.12 jmcneill return true;
956 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
957 1.12 jmcneill return true;
958 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
959 1.12 jmcneill return true;
960 1.12 jmcneill
961 1.20 jmcneill if (sc->sc_wasonline) {
962 1.20 jmcneill mutex_enter(&cpu_lock);
963 1.20 jmcneill err = cpu_setonline(ci, true);
964 1.20 jmcneill mutex_exit(&cpu_lock);
965 1.20 jmcneill }
966 1.13 joerg
967 1.13 joerg return err == 0;
968 1.12 jmcneill }
969 1.12 jmcneill
970 1.7 ad void
971 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
972 1.7 ad {
973 1.7 ad uint64_t last_tsc;
974 1.7 ad u_int junk[4];
975 1.7 ad
976 1.7 ad if (ci->ci_feature_flags & CPUID_TSC) {
977 1.7 ad /* Serialize. */
978 1.7 ad x86_cpuid(0, junk);
979 1.7 ad last_tsc = rdtsc();
980 1.7 ad i8254_delay(100000);
981 1.7 ad ci->ci_tsc_freq = (rdtsc() - last_tsc) * 10;
982 1.7 ad }
983 1.7 ad }
984