cpu.c revision 1.201 1 1.201 thorpej /* $NetBSD: cpu.c,v 1.201 2021/08/07 16:19:08 thorpej Exp $ */
2 1.2 ad
3 1.134 maxv /*
4 1.190 ad * Copyright (c) 2000-2020 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.201 thorpej __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.201 2021/08/07 16:19:08 thorpej Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.101 kiyohara #include "opt_multiprocessor.h"
71 1.144 maxv #include "opt_svs.h"
72 1.2 ad
73 1.2 ad #include "lapic.h"
74 1.2 ad #include "ioapic.h"
75 1.179 ad #include "acpica.h"
76 1.190 ad #include "hpet.h"
77 1.2 ad
78 1.2 ad #include <sys/param.h>
79 1.2 ad #include <sys/proc.h>
80 1.2 ad #include <sys/systm.h>
81 1.2 ad #include <sys/device.h>
82 1.9 ad #include <sys/cpu.h>
83 1.93 jruoho #include <sys/cpufreq.h>
84 1.98 rmind #include <sys/idle.h>
85 1.9 ad #include <sys/atomic.h>
86 1.35 ad #include <sys/reboot.h>
87 1.174 maxv #include <sys/csan.h>
88 1.2 ad
89 1.78 uebayasi #include <uvm/uvm.h>
90 1.2 ad
91 1.102 pgoyette #include "acpica.h" /* for NACPICA, for mp_verbose */
92 1.102 pgoyette
93 1.187 bouyer #include <x86/machdep.h>
94 1.2 ad #include <machine/cpufunc.h>
95 1.2 ad #include <machine/cpuvar.h>
96 1.2 ad #include <machine/pmap.h>
97 1.2 ad #include <machine/vmparam.h>
98 1.102 pgoyette #if defined(MULTIPROCESSOR)
99 1.2 ad #include <machine/mpbiosvar.h>
100 1.101 kiyohara #endif
101 1.102 pgoyette #include <machine/mpconfig.h> /* for mp_verbose */
102 1.2 ad #include <machine/pcb.h>
103 1.2 ad #include <machine/specialreg.h>
104 1.2 ad #include <machine/segments.h>
105 1.2 ad #include <machine/gdt.h>
106 1.2 ad #include <machine/mtrr.h>
107 1.2 ad #include <machine/pio.h>
108 1.38 ad #include <machine/cpu_counter.h>
109 1.2 ad
110 1.109 dsl #include <x86/fpu.h>
111 1.109 dsl
112 1.179 ad #if NACPICA > 0
113 1.179 ad #include <dev/acpi/acpi_srat.h>
114 1.179 ad #endif
115 1.179 ad
116 1.101 kiyohara #if NLAPIC > 0
117 1.2 ad #include <machine/apicvar.h>
118 1.2 ad #include <machine/i82489reg.h>
119 1.2 ad #include <machine/i82489var.h>
120 1.101 kiyohara #endif
121 1.2 ad
122 1.2 ad #include <dev/ic/mc146818reg.h>
123 1.190 ad #include <dev/ic/hpetvar.h>
124 1.2 ad #include <i386/isa/nvram.h>
125 1.2 ad #include <dev/isa/isareg.h>
126 1.2 ad
127 1.38 ad #include "tsc.h"
128 1.38 ad
129 1.187 bouyer #ifndef XENPV
130 1.178 nonaka #include "hyperv.h"
131 1.178 nonaka #if NHYPERV > 0
132 1.178 nonaka #include <x86/x86/hypervvar.h>
133 1.178 nonaka #endif
134 1.178 nonaka #endif
135 1.178 nonaka
136 1.187 bouyer #ifdef XEN
137 1.187 bouyer #include <xen/hypervisor.h>
138 1.187 bouyer #endif
139 1.187 bouyer
140 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
141 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
142 1.87 jruoho static void cpu_defer(device_t);
143 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
144 1.87 jruoho static void cpu_childdetached(device_t, device_t);
145 1.96 jruoho static bool cpu_stop(device_t);
146 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
147 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
148 1.79 jruoho static bool cpu_shutdown(device_t, int);
149 1.12 jmcneill
150 1.2 ad struct cpu_softc {
151 1.23 cube device_t sc_dev; /* device tree glue */
152 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
153 1.20 jmcneill bool sc_wasonline;
154 1.2 ad };
155 1.2 ad
156 1.101 kiyohara #ifdef MULTIPROCESSOR
157 1.120 msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
158 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
159 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
160 1.2 ad mp_cpu_start_cleanup };
161 1.101 kiyohara #endif
162 1.2 ad
163 1.2 ad
164 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
165 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
166 1.2 ad
167 1.2 ad /*
168 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
169 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
170 1.2 ad * point at it.
171 1.2 ad */
172 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
173 1.2 ad .ci_dev = 0,
174 1.2 ad .ci_self = &cpu_info_primary,
175 1.2 ad .ci_idepth = -1,
176 1.2 ad .ci_curlwp = &lwp0,
177 1.43 ad .ci_curldt = -1,
178 1.2 ad };
179 1.2 ad
180 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
181 1.2 ad
182 1.2 ad #ifdef i386
183 1.134 maxv void cpu_set_tss_gates(struct cpu_info *);
184 1.2 ad #endif
185 1.2 ad
186 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
187 1.12 jmcneill
188 1.122 maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
189 1.117 maxv /* [0] basic features cpuid.1:%edx
190 1.117 maxv * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
191 1.117 maxv * [2] extended features cpuid:80000001:%edx
192 1.117 maxv * [3] extended features cpuid:80000001:%ecx
193 1.117 maxv * [4] VIA padlock features
194 1.117 maxv * [5] structured extended features cpuid.7:%ebx
195 1.117 maxv * [6] structured extended features cpuid.7:%ecx
196 1.117 maxv */
197 1.70 jym
198 1.101 kiyohara #ifdef MULTIPROCESSOR
199 1.12 jmcneill bool x86_mp_online;
200 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
201 1.101 kiyohara #endif
202 1.101 kiyohara #if NLAPIC > 0
203 1.14 joerg static vaddr_t cmos_data_mapping;
204 1.101 kiyohara #endif
205 1.45 ad struct cpu_info *cpu_starting;
206 1.2 ad
207 1.101 kiyohara #ifdef MULTIPROCESSOR
208 1.184 msaitoh void cpu_hatch(void *);
209 1.184 msaitoh static void cpu_boot_secondary(struct cpu_info *ci);
210 1.184 msaitoh static void cpu_start_secondary(struct cpu_info *ci);
211 1.101 kiyohara #if NLAPIC > 0
212 1.136 maxv static void cpu_copy_trampoline(paddr_t);
213 1.101 kiyohara #endif
214 1.164 cherry #endif /* MULTIPROCESSOR */
215 1.2 ad
216 1.2 ad /*
217 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
218 1.2 ad * the local APIC on the boot processor has been mapped.
219 1.2 ad *
220 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
221 1.2 ad */
222 1.101 kiyohara #if NLAPIC > 0
223 1.2 ad void
224 1.9 ad cpu_init_first(void)
225 1.2 ad {
226 1.2 ad
227 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
228 1.14 joerg
229 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
230 1.14 joerg if (cmos_data_mapping == 0)
231 1.14 joerg panic("No KVA for page 0");
232 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
233 1.14 joerg pmap_update(pmap_kernel());
234 1.2 ad }
235 1.101 kiyohara #endif
236 1.2 ad
237 1.87 jruoho static int
238 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
239 1.2 ad {
240 1.2 ad
241 1.2 ad return 1;
242 1.2 ad }
243 1.2 ad
244 1.142 maxv #ifdef __HAVE_PCPU_AREA
245 1.142 maxv void
246 1.142 maxv cpu_pcpuarea_init(struct cpu_info *ci)
247 1.142 maxv {
248 1.142 maxv struct vm_page *pg;
249 1.142 maxv size_t i, npages;
250 1.142 maxv vaddr_t base, va;
251 1.142 maxv paddr_t pa;
252 1.142 maxv
253 1.142 maxv CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
254 1.142 maxv
255 1.142 maxv npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
256 1.142 maxv base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
257 1.142 maxv
258 1.142 maxv for (i = 0; i < npages; i++) {
259 1.142 maxv pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
260 1.142 maxv if (pg == NULL) {
261 1.142 maxv panic("failed to allocate pcpu PA");
262 1.142 maxv }
263 1.142 maxv
264 1.142 maxv va = base + i * PAGE_SIZE;
265 1.142 maxv pa = VM_PAGE_TO_PHYS(pg);
266 1.142 maxv
267 1.142 maxv pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
268 1.142 maxv }
269 1.142 maxv
270 1.142 maxv pmap_update(pmap_kernel());
271 1.142 maxv }
272 1.142 maxv #endif
273 1.142 maxv
274 1.2 ad static void
275 1.2 ad cpu_vm_init(struct cpu_info *ci)
276 1.2 ad {
277 1.199 christos unsigned int ncolors = 2;
278 1.2 ad
279 1.199 christos /*
280 1.199 christos * XXX: for AP's the cache info has not been initialized yet
281 1.199 christos * but that does not matter because uvm only pays attention at
282 1.199 christos * the maximum only. We should fix it once cpus have different
283 1.199 christos * cache sizes.
284 1.199 christos */
285 1.199 christos for (unsigned int i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
286 1.2 ad struct x86_cache_info *cai;
287 1.199 christos unsigned int tcolors;
288 1.2 ad
289 1.2 ad cai = &ci->ci_cinfo[i];
290 1.2 ad
291 1.2 ad tcolors = atop(cai->cai_totalsize);
292 1.184 msaitoh switch (cai->cai_associativity) {
293 1.2 ad case 0xff:
294 1.2 ad tcolors = 1; /* fully associative */
295 1.2 ad break;
296 1.2 ad case 0:
297 1.2 ad case 1:
298 1.2 ad break;
299 1.2 ad default:
300 1.2 ad tcolors /= cai->cai_associativity;
301 1.2 ad }
302 1.199 christos if (tcolors <= ncolors)
303 1.199 christos continue;
304 1.199 christos ncolors = tcolors;
305 1.199 christos }
306 1.199 christos
307 1.199 christos /*
308 1.199 christos * If the desired number of colors is not a power of
309 1.199 christos * two, it won't be good. Find the greatest power of
310 1.199 christos * two which is an even divisor of the number of colors,
311 1.199 christos * to preserve even coloring of pages.
312 1.199 christos */
313 1.199 christos if (ncolors & (ncolors - 1) ) {
314 1.199 christos unsigned int try, picked = 1;
315 1.199 christos for (try = 1; try < ncolors; try *= 2) {
316 1.199 christos if (ncolors % try == 0) picked = try;
317 1.199 christos }
318 1.199 christos if (picked == 1) {
319 1.199 christos panic("desired number of cache colors %u is "
320 1.199 christos " > 1, but not even!", ncolors);
321 1.32 tls }
322 1.199 christos ncolors = picked;
323 1.2 ad }
324 1.2 ad
325 1.2 ad /*
326 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
327 1.94 mrg * re-color our pages.
328 1.2 ad */
329 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
330 1.2 ad uvm_page_recolor(ncolors);
331 1.98 rmind
332 1.98 rmind pmap_tlb_cpu_init(ci);
333 1.123 maxv #ifndef __HAVE_DIRECT_MAP
334 1.123 maxv pmap_vpage_cpu_init(ci);
335 1.123 maxv #endif
336 1.2 ad }
337 1.2 ad
338 1.87 jruoho static void
339 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
340 1.2 ad {
341 1.23 cube struct cpu_softc *sc = device_private(self);
342 1.2 ad struct cpu_attach_args *caa = aux;
343 1.2 ad struct cpu_info *ci;
344 1.21 ad uintptr_t ptr;
345 1.101 kiyohara #if NLAPIC > 0
346 1.2 ad int cpunum = caa->cpu_number;
347 1.101 kiyohara #endif
348 1.51 ad static bool again;
349 1.2 ad
350 1.23 cube sc->sc_dev = self;
351 1.23 cube
352 1.163 cherry if (ncpu > maxcpus) {
353 1.98 rmind #ifndef _LP64
354 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
355 1.98 rmind #else
356 1.98 rmind aprint_error(": too many CPUs\n");
357 1.98 rmind #endif
358 1.48 ad return;
359 1.48 ad }
360 1.48 ad
361 1.2 ad /*
362 1.2 ad * If we're an Application Processor, allocate a cpu_info
363 1.2 ad * structure, otherwise use the primary's.
364 1.2 ad */
365 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
366 1.36 ad if ((boothowto & RB_MD1) != 0) {
367 1.35 ad aprint_error(": multiprocessor boot disabled\n");
368 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
369 1.56 jmcneill aprint_error_dev(self,
370 1.56 jmcneill "couldn't establish power handler\n");
371 1.35 ad return;
372 1.35 ad }
373 1.2 ad aprint_naive(": Application Processor\n");
374 1.143 maxv ptr = (uintptr_t)uvm_km_alloc(kernel_map,
375 1.143 maxv sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
376 1.143 maxv UVM_KMF_WIRED|UVM_KMF_ZERO);
377 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
378 1.43 ad ci->ci_curldt = -1;
379 1.2 ad } else {
380 1.2 ad aprint_naive(": %s Processor\n",
381 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
382 1.2 ad ci = &cpu_info_primary;
383 1.101 kiyohara #if NLAPIC > 0
384 1.2 ad if (cpunum != lapic_cpu_number()) {
385 1.51 ad /* XXX should be done earlier. */
386 1.39 ad uint32_t reg;
387 1.39 ad aprint_verbose("\n");
388 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
389 1.47 ad " instead of at expected %d", lapic_cpu_number(),
390 1.23 cube cpunum);
391 1.125 nonaka reg = lapic_readreg(LAPIC_ID);
392 1.125 nonaka lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
393 1.39 ad (cpunum << LAPIC_ID_SHIFT));
394 1.2 ad }
395 1.47 ad if (cpunum != lapic_cpu_number()) {
396 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
397 1.47 ad }
398 1.101 kiyohara #endif
399 1.2 ad }
400 1.2 ad
401 1.2 ad ci->ci_self = ci;
402 1.2 ad sc->sc_info = ci;
403 1.2 ad ci->ci_dev = self;
404 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
405 1.42 ad ci->ci_cpuid = caa->cpu_number;
406 1.2 ad ci->ci_func = caa->cpu_func;
407 1.177 maxv ci->ci_kfpu_spl = -1;
408 1.112 msaitoh aprint_normal("\n");
409 1.2 ad
410 1.55 ad /* Must be before mi_cpu_attach(). */
411 1.55 ad cpu_vm_init(ci);
412 1.55 ad
413 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
414 1.2 ad int error;
415 1.2 ad
416 1.2 ad error = mi_cpu_attach(ci);
417 1.2 ad if (error != 0) {
418 1.47 ad aprint_error_dev(self,
419 1.30 cegger "mi_cpu_attach failed with %d\n", error);
420 1.2 ad return;
421 1.2 ad }
422 1.142 maxv #ifdef __HAVE_PCPU_AREA
423 1.142 maxv cpu_pcpuarea_init(ci);
424 1.142 maxv #endif
425 1.15 yamt cpu_init_tss(ci);
426 1.2 ad } else {
427 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
428 1.179 ad #if NACPICA > 0
429 1.179 ad /* Parse out NUMA info for cpu_identify(). */
430 1.179 ad acpisrat_init();
431 1.179 ad #endif
432 1.2 ad }
433 1.2 ad
434 1.146 maxv #ifdef SVS
435 1.146 maxv cpu_svs_init(ci);
436 1.146 maxv #endif
437 1.146 maxv
438 1.2 ad pmap_reference(pmap_kernel());
439 1.2 ad ci->ci_pmap = pmap_kernel();
440 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
441 1.2 ad
442 1.51 ad /*
443 1.51 ad * Boot processor may not be attached first, but the below
444 1.51 ad * must be done to allow booting other processors.
445 1.51 ad */
446 1.51 ad if (!again) {
447 1.190 ad /* Make sure DELAY() (likely i8254_delay()) is initialized. */
448 1.190 ad DELAY(1);
449 1.190 ad
450 1.190 ad /*
451 1.190 ad * Basic init. Compute an approximate frequency for the TSC
452 1.190 ad * using the i8254. If there's a HPET we'll redo it later.
453 1.190 ad */
454 1.188 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
455 1.2 ad cpu_intr_init(ci);
456 1.194 msaitoh tsc_setfunc(ci);
457 1.40 ad cpu_get_tsc_freq(ci);
458 1.2 ad cpu_init(ci);
459 1.134 maxv #ifdef i386
460 1.2 ad cpu_set_tss_gates(ci);
461 1.134 maxv #endif
462 1.2 ad pmap_cpu_init_late(ci);
463 1.101 kiyohara #if NLAPIC > 0
464 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
465 1.51 ad /* Enable lapic. */
466 1.51 ad lapic_enable();
467 1.51 ad lapic_set_lvt();
468 1.189 bouyer if (!vm_guest_is_xenpvh_or_pvhvm())
469 1.192 ad lapic_calibrate_timer(false);
470 1.51 ad }
471 1.101 kiyohara #endif
472 1.174 maxv kcsan_cpu_init(ci);
473 1.51 ad again = true;
474 1.51 ad }
475 1.51 ad
476 1.51 ad /* further PCB init done later. */
477 1.51 ad
478 1.51 ad switch (caa->cpu_role) {
479 1.51 ad case CPU_ROLE_SP:
480 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
481 1.51 ad cpu_identify(ci);
482 1.53 ad x86_errata();
483 1.37 joerg x86_cpu_idle_init();
484 1.187 bouyer #ifdef XENPVHVM
485 1.187 bouyer xen_hvm_init_cpu(ci);
486 1.187 bouyer #endif
487 1.2 ad break;
488 1.2 ad
489 1.2 ad case CPU_ROLE_BP:
490 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
491 1.40 ad cpu_identify(ci);
492 1.53 ad x86_errata();
493 1.37 joerg x86_cpu_idle_init();
494 1.187 bouyer #ifdef XENPVHVM
495 1.187 bouyer xen_hvm_init_cpu(ci);
496 1.187 bouyer #endif
497 1.2 ad break;
498 1.2 ad
499 1.101 kiyohara #ifdef MULTIPROCESSOR
500 1.2 ad case CPU_ROLE_AP:
501 1.2 ad /*
502 1.2 ad * report on an AP
503 1.2 ad */
504 1.2 ad cpu_intr_init(ci);
505 1.195 yamaguch idt_vec_init_cpu_md(&ci->ci_idtvec, cpu_index(ci));
506 1.2 ad gdt_alloc_cpu(ci);
507 1.134 maxv #ifdef i386
508 1.2 ad cpu_set_tss_gates(ci);
509 1.134 maxv #endif
510 1.2 ad pmap_cpu_init_late(ci);
511 1.2 ad cpu_start_secondary(ci);
512 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
513 1.59 cegger struct cpu_info *tmp;
514 1.59 cegger
515 1.40 ad cpu_identify(ci);
516 1.59 cegger tmp = cpu_info_list;
517 1.59 cegger while (tmp->ci_next)
518 1.59 cegger tmp = tmp->ci_next;
519 1.59 cegger
520 1.59 cegger tmp->ci_next = ci;
521 1.2 ad }
522 1.2 ad break;
523 1.101 kiyohara #endif
524 1.2 ad
525 1.2 ad default:
526 1.2 ad panic("unknown processor type??\n");
527 1.2 ad }
528 1.51 ad
529 1.71 cegger pat_init(ci);
530 1.2 ad
531 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
532 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
533 1.12 jmcneill
534 1.101 kiyohara #ifdef MULTIPROCESSOR
535 1.2 ad if (mp_verbose) {
536 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
537 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
538 1.2 ad
539 1.47 ad aprint_verbose_dev(self,
540 1.28 cegger "idle lwp at %p, idle sp at %p\n",
541 1.28 cegger l,
542 1.2 ad #ifdef i386
543 1.65 rmind (void *)pcb->pcb_esp
544 1.2 ad #else
545 1.65 rmind (void *)pcb->pcb_rsp
546 1.2 ad #endif
547 1.2 ad );
548 1.2 ad }
549 1.101 kiyohara #endif
550 1.81 jmcneill
551 1.89 jruoho /*
552 1.89 jruoho * Postpone the "cpufeaturebus" scan.
553 1.89 jruoho * It is safe to scan the pseudo-bus
554 1.89 jruoho * only after all CPUs have attached.
555 1.89 jruoho */
556 1.87 jruoho (void)config_defer(self, cpu_defer);
557 1.87 jruoho }
558 1.87 jruoho
559 1.87 jruoho static void
560 1.87 jruoho cpu_defer(device_t self)
561 1.87 jruoho {
562 1.81 jmcneill cpu_rescan(self, NULL, NULL);
563 1.81 jmcneill }
564 1.81 jmcneill
565 1.87 jruoho static int
566 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
567 1.81 jmcneill {
568 1.83 jruoho struct cpu_softc *sc = device_private(self);
569 1.81 jmcneill struct cpufeature_attach_args cfaa;
570 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
571 1.81 jmcneill
572 1.181 pgoyette /*
573 1.181 pgoyette * If we booted with RB_MD1 to disable multiprocessor, the
574 1.181 pgoyette * auto-configuration data still contains the additional
575 1.181 pgoyette * CPUs. But their initialization was mostly bypassed
576 1.181 pgoyette * during attach, so we have to make sure we don't look at
577 1.181 pgoyette * their featurebus info, since it wasn't retrieved.
578 1.181 pgoyette */
579 1.181 pgoyette if (ci == NULL)
580 1.181 pgoyette return 0;
581 1.181 pgoyette
582 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
583 1.81 jmcneill cfaa.ci = ci;
584 1.81 jmcneill
585 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
586 1.83 jruoho if (ci->ci_frequency == NULL) {
587 1.86 jruoho cfaa.name = "frequency";
588 1.200 thorpej ci->ci_frequency =
589 1.200 thorpej config_found(self, &cfaa, NULL,
590 1.201 thorpej CFARGS(.iattr = "cpufeaturebus"));
591 1.84 jruoho }
592 1.84 jruoho
593 1.81 jmcneill if (ci->ci_padlock == NULL) {
594 1.81 jmcneill cfaa.name = "padlock";
595 1.200 thorpej ci->ci_padlock =
596 1.200 thorpej config_found(self, &cfaa, NULL,
597 1.201 thorpej CFARGS(.iattr = "cpufeaturebus"));
598 1.81 jmcneill }
599 1.82 jruoho
600 1.86 jruoho if (ci->ci_temperature == NULL) {
601 1.86 jruoho cfaa.name = "temperature";
602 1.200 thorpej ci->ci_temperature =
603 1.200 thorpej config_found(self, &cfaa, NULL,
604 1.201 thorpej CFARGS(.iattr = "cpufeaturebus"));
605 1.85 jruoho }
606 1.95 jmcneill
607 1.95 jmcneill if (ci->ci_vm == NULL) {
608 1.95 jmcneill cfaa.name = "vm";
609 1.200 thorpej ci->ci_vm =
610 1.200 thorpej config_found(self, &cfaa, NULL,
611 1.201 thorpej CFARGS(.iattr = "cpufeaturebus"));
612 1.95 jmcneill }
613 1.81 jmcneill }
614 1.81 jmcneill
615 1.81 jmcneill return 0;
616 1.81 jmcneill }
617 1.81 jmcneill
618 1.87 jruoho static void
619 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
620 1.81 jmcneill {
621 1.81 jmcneill struct cpu_softc *sc = device_private(self);
622 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
623 1.81 jmcneill
624 1.83 jruoho if (ci->ci_frequency == child)
625 1.83 jruoho ci->ci_frequency = NULL;
626 1.82 jruoho
627 1.81 jmcneill if (ci->ci_padlock == child)
628 1.81 jmcneill ci->ci_padlock = NULL;
629 1.83 jruoho
630 1.86 jruoho if (ci->ci_temperature == child)
631 1.86 jruoho ci->ci_temperature = NULL;
632 1.95 jmcneill
633 1.95 jmcneill if (ci->ci_vm == child)
634 1.95 jmcneill ci->ci_vm = NULL;
635 1.2 ad }
636 1.2 ad
637 1.2 ad /*
638 1.2 ad * Initialize the processor appropriately.
639 1.2 ad */
640 1.2 ad
641 1.2 ad void
642 1.9 ad cpu_init(struct cpu_info *ci)
643 1.2 ad {
644 1.141 maxv extern int x86_fpu_save;
645 1.113 christos uint32_t cr4 = 0;
646 1.2 ad
647 1.2 ad lcr0(rcr0() | CR0_WP);
648 1.2 ad
649 1.169 maxv /* If global TLB caching is supported, enable it */
650 1.70 jym if (cpu_feature[0] & CPUID_PGE)
651 1.169 maxv cr4 |= CR4_PGE;
652 1.2 ad
653 1.2 ad /*
654 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
655 1.2 ad */
656 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
657 1.110 dsl cr4 |= CR4_OSFXSR;
658 1.2 ad
659 1.2 ad /*
660 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
661 1.2 ad */
662 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
663 1.110 dsl cr4 |= CR4_OSXMMEXCPT;
664 1.2 ad }
665 1.2 ad
666 1.110 dsl /* If xsave is supported, enable it */
667 1.110 dsl if (cpu_feature[1] & CPUID2_XSAVE)
668 1.110 dsl cr4 |= CR4_OSXSAVE;
669 1.110 dsl
670 1.118 maxv /* If SMEP is supported, enable it */
671 1.118 maxv if (cpu_feature[5] & CPUID_SEF_SMEP)
672 1.118 maxv cr4 |= CR4_SMEP;
673 1.118 maxv
674 1.137 maxv /* If SMAP is supported, enable it */
675 1.137 maxv if (cpu_feature[5] & CPUID_SEF_SMAP)
676 1.137 maxv cr4 |= CR4_SMAP;
677 1.137 maxv
678 1.171 maxv #ifdef SVS
679 1.171 maxv /* If PCID is supported, enable it */
680 1.171 maxv if (svs_pcid)
681 1.171 maxv cr4 |= CR4_PCIDE;
682 1.171 maxv #endif
683 1.171 maxv
684 1.113 christos if (cr4) {
685 1.113 christos cr4 |= rcr4();
686 1.113 christos lcr4(cr4);
687 1.113 christos }
688 1.110 dsl
689 1.145 msaitoh /*
690 1.145 msaitoh * Changing CR4 register may change cpuid values. For example, setting
691 1.145 msaitoh * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
692 1.145 msaitoh * ci_feat_val[1], so update it.
693 1.145 msaitoh * XXX Other than ci_feat_val[1] might be changed.
694 1.145 msaitoh */
695 1.145 msaitoh if (cpuid_level >= 1) {
696 1.145 msaitoh u_int descs[4];
697 1.145 msaitoh
698 1.145 msaitoh x86_cpuid(1, descs);
699 1.145 msaitoh ci->ci_feat_val[1] = descs[2];
700 1.145 msaitoh }
701 1.145 msaitoh
702 1.141 maxv if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
703 1.158 maxv fpuinit_mxcsr_mask();
704 1.141 maxv }
705 1.141 maxv
706 1.110 dsl /* If xsave is enabled, enable all fpu features */
707 1.110 dsl if (cr4 & CR4_OSXSAVE)
708 1.110 dsl wrxcr(0, x86_xsave_features & XCR0_FPU);
709 1.110 dsl
710 1.2 ad #ifdef MTRR
711 1.2 ad /*
712 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
713 1.2 ad */
714 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
715 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
716 1.2 ad i686_mtrr_init_first();
717 1.2 ad mtrr_init_cpu(ci);
718 1.2 ad }
719 1.2 ad
720 1.2 ad #ifdef i386
721 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
722 1.2 ad /*
723 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
724 1.2 ad */
725 1.106 msaitoh if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
726 1.106 msaitoh if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
727 1.106 msaitoh (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
728 1.106 msaitoh CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
729 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
730 1.2 ad k6_mtrr_init_first();
731 1.2 ad mtrr_init_cpu(ci);
732 1.2 ad }
733 1.2 ad }
734 1.2 ad }
735 1.2 ad #endif /* i386 */
736 1.2 ad #endif /* MTRR */
737 1.2 ad
738 1.38 ad if (ci != &cpu_info_primary) {
739 1.150 maxv /* Synchronize TSC */
740 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
741 1.38 ad tsc_sync_ap(ci);
742 1.38 ad } else {
743 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
744 1.38 ad }
745 1.2 ad }
746 1.2 ad
747 1.101 kiyohara #ifdef MULTIPROCESSOR
748 1.2 ad void
749 1.12 jmcneill cpu_boot_secondary_processors(void)
750 1.2 ad {
751 1.2 ad struct cpu_info *ci;
752 1.100 chs kcpuset_t *cpus;
753 1.2 ad u_long i;
754 1.2 ad
755 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
756 1.60 ad x86_patch(false);
757 1.5 ad
758 1.179 ad #if NACPICA > 0
759 1.179 ad /* Finished with NUMA info for now. */
760 1.179 ad acpisrat_exit();
761 1.179 ad #endif
762 1.179 ad
763 1.100 chs kcpuset_create(&cpus, true);
764 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
765 1.100 chs for (i = 0; i < maxcpus; i++) {
766 1.57 ad ci = cpu_lookup(i);
767 1.2 ad if (ci == NULL)
768 1.2 ad continue;
769 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
770 1.2 ad continue;
771 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
772 1.2 ad continue;
773 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
774 1.2 ad continue;
775 1.2 ad cpu_boot_secondary(ci);
776 1.100 chs kcpuset_set(cpus, cpu_index(ci));
777 1.2 ad }
778 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
779 1.100 chs ;
780 1.100 chs kcpuset_destroy(cpus);
781 1.2 ad
782 1.2 ad x86_mp_online = true;
783 1.38 ad
784 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
785 1.38 ad tsc_tc_init();
786 1.2 ad }
787 1.101 kiyohara #endif
788 1.2 ad
789 1.2 ad static void
790 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
791 1.2 ad {
792 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
793 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
794 1.2 ad
795 1.2 ad pcb->pcb_cr0 = rcr0();
796 1.2 ad }
797 1.2 ad
798 1.2 ad void
799 1.12 jmcneill cpu_init_idle_lwps(void)
800 1.2 ad {
801 1.2 ad struct cpu_info *ci;
802 1.2 ad u_long i;
803 1.2 ad
804 1.54 ad for (i = 0; i < maxcpus; i++) {
805 1.57 ad ci = cpu_lookup(i);
806 1.2 ad if (ci == NULL)
807 1.2 ad continue;
808 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
809 1.2 ad continue;
810 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
811 1.2 ad continue;
812 1.2 ad cpu_init_idle_lwp(ci);
813 1.2 ad }
814 1.2 ad }
815 1.2 ad
816 1.101 kiyohara #ifdef MULTIPROCESSOR
817 1.2 ad void
818 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
819 1.2 ad {
820 1.38 ad u_long psl;
821 1.2 ad int i;
822 1.2 ad
823 1.165 cherry #if NLAPIC > 0
824 1.165 cherry paddr_t mp_pdirpa;
825 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
826 1.136 maxv cpu_copy_trampoline(mp_pdirpa);
827 1.165 cherry #endif
828 1.136 maxv
829 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
830 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
831 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
832 1.25 ad return;
833 1.45 ad }
834 1.2 ad
835 1.2 ad /*
836 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
837 1.50 ad * initial gate and allows the AP to start soft initialization.
838 1.2 ad */
839 1.50 ad KASSERT(cpu_starting == NULL);
840 1.50 ad cpu_starting = ci;
841 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
842 1.189 bouyer delay_func(10);
843 1.2 ad }
844 1.38 ad
845 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
846 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
847 1.2 ad #if defined(MPDEBUG) && defined(DDB)
848 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
849 1.2 ad Debugger();
850 1.2 ad #endif
851 1.38 ad } else {
852 1.38 ad /*
853 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
854 1.150 maxv * twice (in tsc_sync_bp) to minimize possible cache effects.
855 1.150 maxv * Disable interrupts to try and rule out any external
856 1.150 maxv * interference.
857 1.38 ad */
858 1.38 ad psl = x86_read_psl();
859 1.38 ad x86_disable_intr();
860 1.38 ad tsc_sync_bp(ci);
861 1.38 ad x86_write_psl(psl);
862 1.2 ad }
863 1.2 ad
864 1.2 ad CPU_START_CLEANUP(ci);
865 1.45 ad cpu_starting = NULL;
866 1.2 ad }
867 1.2 ad
868 1.2 ad void
869 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
870 1.2 ad {
871 1.38 ad int64_t drift;
872 1.38 ad u_long psl;
873 1.2 ad int i;
874 1.2 ad
875 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
876 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
877 1.189 bouyer delay_func(10);
878 1.2 ad }
879 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
880 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
881 1.2 ad #if defined(MPDEBUG) && defined(DDB)
882 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
883 1.2 ad Debugger();
884 1.2 ad #endif
885 1.38 ad } else {
886 1.38 ad /* Synchronize TSC again, check for drift. */
887 1.38 ad drift = ci->ci_data.cpu_cc_skew;
888 1.38 ad psl = x86_read_psl();
889 1.38 ad x86_disable_intr();
890 1.38 ad tsc_sync_bp(ci);
891 1.38 ad x86_write_psl(psl);
892 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
893 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
894 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
895 1.38 ad tsc_sync_drift(drift);
896 1.2 ad }
897 1.2 ad }
898 1.2 ad
899 1.2 ad /*
900 1.117 maxv * The CPU ends up here when it's ready to run.
901 1.2 ad * This is called from code in mptramp.s; at this point, we are running
902 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
903 1.2 ad * this processor will enter the idle loop and start looking for work.
904 1.2 ad */
905 1.2 ad void
906 1.2 ad cpu_hatch(void *v)
907 1.2 ad {
908 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
909 1.65 rmind struct pcb *pcb;
910 1.130 kre int s, i;
911 1.2 ad
912 1.162 maxv /* ------------------------------------------------------------- */
913 1.162 maxv
914 1.162 maxv /*
915 1.162 maxv * This section of code must be compiled with SSP disabled, to
916 1.162 maxv * prevent a race against cpu0. See sys/conf/ssp.mk.
917 1.162 maxv */
918 1.162 maxv
919 1.12 jmcneill cpu_init_msrs(ci, true);
920 1.40 ad cpu_probe(ci);
921 1.154 maxv cpu_speculation_init(ci);
922 1.178 nonaka #if NHYPERV > 0
923 1.178 nonaka hyperv_init_cpu(ci);
924 1.178 nonaka #endif
925 1.46 ad
926 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
927 1.134 maxv /* cpu_get_tsc_freq(ci); */
928 1.38 ad
929 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
930 1.38 ad
931 1.38 ad /*
932 1.150 maxv * Synchronize the TSC for the first time. Note that interrupts are
933 1.150 maxv * off at this point.
934 1.38 ad */
935 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
936 1.38 ad tsc_sync_ap(ci);
937 1.38 ad
938 1.162 maxv /* ------------------------------------------------------------- */
939 1.162 maxv
940 1.38 ad /*
941 1.150 maxv * Wait to be brought online.
942 1.150 maxv *
943 1.150 maxv * Use MONITOR/MWAIT if available. These instructions put the CPU in
944 1.150 maxv * a low consumption mode (C-state), and if the TSC is not invariant,
945 1.150 maxv * this causes the TSC to drift. We want this to happen, so that we
946 1.150 maxv * can later detect (in tsc_tc_init) any abnormal drift with invariant
947 1.150 maxv * TSCs. That's just for safety; by definition such drifts should
948 1.150 maxv * never occur with invariant TSCs.
949 1.150 maxv *
950 1.150 maxv * If not available, try PAUSE. We'd like to use HLT, but we have
951 1.150 maxv * interrupts off.
952 1.38 ad */
953 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
954 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
955 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
956 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
957 1.38 ad continue;
958 1.38 ad }
959 1.38 ad x86_mwait(0, 0);
960 1.38 ad } else {
961 1.131 pgoyette /*
962 1.131 pgoyette * XXX The loop repetition count could be a lot higher, but
963 1.131 pgoyette * XXX currently qemu emulator takes a _very_long_time_ to
964 1.131 pgoyette * XXX execute the pause instruction. So for now, use a low
965 1.131 pgoyette * XXX value to allow the cpu to hatch before timing out.
966 1.131 pgoyette */
967 1.131 pgoyette for (i = 50; i != 0; i--) {
968 1.127 pgoyette x86_pause();
969 1.127 pgoyette }
970 1.38 ad }
971 1.6 ad }
972 1.5 ad
973 1.26 cegger /* Because the text may have been patched in x86_patch(). */
974 1.5 ad wbinvd();
975 1.5 ad x86_flush();
976 1.88 rmind tlbflushg();
977 1.5 ad
978 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
979 1.2 ad
980 1.73 jym #ifdef PAE
981 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
982 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
983 1.168 maxv l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
984 1.73 jym }
985 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
986 1.73 jym #else
987 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
988 1.73 jym #endif
989 1.73 jym
990 1.65 rmind pcb = lwp_getpcb(curlwp);
991 1.73 jym pcb->pcb_cr3 = rcr3();
992 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
993 1.65 rmind lcr0(pcb->pcb_cr0);
994 1.65 rmind
995 1.195 yamaguch cpu_init_idt(ci);
996 1.8 ad gdt_init_cpu(ci);
997 1.111 joerg #if NLAPIC > 0
998 1.8 ad lapic_enable();
999 1.2 ad lapic_set_lvt();
1000 1.111 joerg #endif
1001 1.2 ad
1002 1.2 ad fpuinit(ci);
1003 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
1004 1.15 yamt ltr(ci->ci_tss_sel);
1005 1.2 ad
1006 1.150 maxv /*
1007 1.150 maxv * cpu_init will re-synchronize the TSC, and will detect any abnormal
1008 1.150 maxv * drift that would have been caused by the use of MONITOR/MWAIT
1009 1.150 maxv * above.
1010 1.150 maxv */
1011 1.2 ad cpu_init(ci);
1012 1.187 bouyer #ifdef XENPVHVM
1013 1.187 bouyer xen_hvm_init_cpu(ci);
1014 1.187 bouyer #endif
1015 1.192 ad (*x86_initclock_func)();
1016 1.7 ad cpu_get_tsc_freq(ci);
1017 1.2 ad
1018 1.2 ad s = splhigh();
1019 1.165 cherry #if NLAPIC > 0
1020 1.124 nonaka lapic_write_tpri(0);
1021 1.165 cherry #endif
1022 1.3 ad x86_enable_intr();
1023 1.2 ad splx(s);
1024 1.6 ad x86_errata();
1025 1.2 ad
1026 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
1027 1.98 rmind
1028 1.174 maxv kcsan_cpu_init(ci);
1029 1.174 maxv
1030 1.98 rmind idle_loop(NULL);
1031 1.98 rmind KASSERT(false);
1032 1.2 ad }
1033 1.101 kiyohara #endif
1034 1.2 ad
1035 1.2 ad #if defined(DDB)
1036 1.2 ad
1037 1.2 ad #include <ddb/db_output.h>
1038 1.2 ad #include <machine/db_machdep.h>
1039 1.2 ad
1040 1.2 ad /*
1041 1.2 ad * Dump CPU information from ddb.
1042 1.2 ad */
1043 1.2 ad void
1044 1.2 ad cpu_debug_dump(void)
1045 1.2 ad {
1046 1.2 ad struct cpu_info *ci;
1047 1.2 ad CPU_INFO_ITERATOR cii;
1048 1.184 msaitoh const char sixtyfour64space[] =
1049 1.172 mrg #ifdef _LP64
1050 1.172 mrg " "
1051 1.172 mrg #endif
1052 1.172 mrg "";
1053 1.2 ad
1054 1.180 ad db_printf("addr %sdev id flags ipis spl curlwp "
1055 1.173 maxv "\n", sixtyfour64space);
1056 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
1057 1.180 ad db_printf("%p %s %ld %x %x %d %10p\n",
1058 1.2 ad ci,
1059 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
1060 1.2 ad (long)ci->ci_cpuid,
1061 1.180 ad ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
1062 1.173 maxv ci->ci_curlwp);
1063 1.2 ad }
1064 1.2 ad }
1065 1.2 ad #endif
1066 1.2 ad
1067 1.164 cherry #ifdef MULTIPROCESSOR
1068 1.101 kiyohara #if NLAPIC > 0
1069 1.2 ad static void
1070 1.136 maxv cpu_copy_trampoline(paddr_t pdir_pa)
1071 1.2 ad {
1072 1.136 maxv extern uint32_t nox_flag;
1073 1.2 ad extern u_char cpu_spinup_trampoline[];
1074 1.2 ad extern u_char cpu_spinup_trampoline_end[];
1075 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
1076 1.136 maxv struct {
1077 1.136 maxv uint32_t large;
1078 1.136 maxv uint32_t nox;
1079 1.136 maxv uint32_t pdir;
1080 1.136 maxv } smp_data;
1081 1.136 maxv CTASSERT(sizeof(smp_data) == 3 * 4);
1082 1.136 maxv
1083 1.136 maxv smp_data.large = (pmap_largepages != 0);
1084 1.136 maxv smp_data.nox = nox_flag;
1085 1.136 maxv smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
1086 1.12 jmcneill
1087 1.136 maxv /* Enter the physical address */
1088 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1089 1.12 jmcneill UVM_KMF_VAONLY);
1090 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
1091 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
1092 1.2 ad pmap_update(pmap_kernel());
1093 1.136 maxv
1094 1.136 maxv /* Copy boot code */
1095 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
1096 1.2 ad cpu_spinup_trampoline,
1097 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
1098 1.12 jmcneill
1099 1.136 maxv /* Copy smp_data at the end */
1100 1.136 maxv memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
1101 1.136 maxv &smp_data, sizeof(smp_data));
1102 1.136 maxv
1103 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
1104 1.12 jmcneill pmap_update(pmap_kernel());
1105 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
1106 1.2 ad }
1107 1.101 kiyohara #endif
1108 1.2 ad
1109 1.2 ad int
1110 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
1111 1.2 ad {
1112 1.2 ad int error;
1113 1.14 joerg
1114 1.14 joerg /*
1115 1.14 joerg * Bootstrap code must be addressable in real mode
1116 1.14 joerg * and it must be page aligned.
1117 1.14 joerg */
1118 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1119 1.2 ad
1120 1.2 ad /*
1121 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1122 1.2 ad */
1123 1.2 ad
1124 1.2 ad outb(IO_RTC, NVRAM_RESET);
1125 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
1126 1.2 ad
1127 1.165 cherry #if NLAPIC > 0
1128 1.2 ad /*
1129 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
1130 1.2 ad * to the AP startup code ..."
1131 1.2 ad */
1132 1.165 cherry unsigned short dwordptr[2];
1133 1.2 ad dwordptr[0] = 0;
1134 1.14 joerg dwordptr[1] = target >> 4;
1135 1.2 ad
1136 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1137 1.111 joerg #endif
1138 1.2 ad
1139 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
1140 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
1141 1.25 ad return ENODEV;
1142 1.25 ad }
1143 1.25 ad
1144 1.2 ad /*
1145 1.51 ad * ... prior to executing the following sequence:". We'll also add in
1146 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
1147 1.51 ad * disabled. It may not be able to cope with MP coherency.
1148 1.2 ad */
1149 1.51 ad wbinvd();
1150 1.2 ad
1151 1.2 ad if (ci->ci_flags & CPUF_AP) {
1152 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
1153 1.26 cegger if (error != 0) {
1154 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1155 1.50 ad __func__);
1156 1.2 ad return error;
1157 1.25 ad }
1158 1.189 bouyer delay_func(10000);
1159 1.2 ad
1160 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1161 1.26 cegger if (error != 0) {
1162 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1163 1.50 ad __func__);
1164 1.25 ad return error;
1165 1.25 ad }
1166 1.189 bouyer delay_func(200);
1167 1.2 ad
1168 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1169 1.26 cegger if (error != 0) {
1170 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1171 1.50 ad __func__);
1172 1.25 ad return error;
1173 1.2 ad }
1174 1.189 bouyer delay_func(200);
1175 1.2 ad }
1176 1.44 ad
1177 1.2 ad return 0;
1178 1.2 ad }
1179 1.2 ad
1180 1.2 ad void
1181 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1182 1.2 ad {
1183 1.2 ad /*
1184 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1185 1.2 ad */
1186 1.2 ad
1187 1.2 ad outb(IO_RTC, NVRAM_RESET);
1188 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1189 1.2 ad }
1190 1.101 kiyohara #endif
1191 1.2 ad
1192 1.2 ad #ifdef __x86_64__
1193 1.2 ad typedef void (vector)(void);
1194 1.148 maxv extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
1195 1.70 jym #endif
1196 1.2 ad
1197 1.2 ad void
1198 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1199 1.2 ad {
1200 1.70 jym #ifdef __x86_64__
1201 1.2 ad wrmsr(MSR_STAR,
1202 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1203 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1204 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1205 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1206 1.138 maxv wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1207 1.2 ad
1208 1.148 maxv #ifdef SVS
1209 1.148 maxv if (svs_enabled)
1210 1.148 maxv wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
1211 1.148 maxv #endif
1212 1.148 maxv
1213 1.12 jmcneill if (full) {
1214 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1215 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1216 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1217 1.12 jmcneill }
1218 1.70 jym #endif /* __x86_64__ */
1219 1.2 ad
1220 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1221 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1222 1.2 ad }
1223 1.7 ad
1224 1.107 christos void
1225 1.107 christos cpu_offline_md(void)
1226 1.107 christos {
1227 1.173 maxv return;
1228 1.107 christos }
1229 1.107 christos
1230 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1231 1.12 jmcneill static bool
1232 1.96 jruoho cpu_stop(device_t dv)
1233 1.12 jmcneill {
1234 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1235 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1236 1.18 joerg int err;
1237 1.12 jmcneill
1238 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1239 1.93 jruoho
1240 1.196 fcambus if (CPU_IS_PRIMARY(ci))
1241 1.93 jruoho return true;
1242 1.93 jruoho
1243 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1244 1.12 jmcneill return true;
1245 1.12 jmcneill
1246 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1247 1.17 joerg
1248 1.20 jmcneill if (sc->sc_wasonline) {
1249 1.20 jmcneill mutex_enter(&cpu_lock);
1250 1.58 rmind err = cpu_setstate(ci, false);
1251 1.20 jmcneill mutex_exit(&cpu_lock);
1252 1.79 jruoho
1253 1.93 jruoho if (err != 0)
1254 1.20 jmcneill return false;
1255 1.20 jmcneill }
1256 1.17 joerg
1257 1.17 joerg return true;
1258 1.12 jmcneill }
1259 1.12 jmcneill
1260 1.12 jmcneill static bool
1261 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1262 1.96 jruoho {
1263 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1264 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1265 1.96 jruoho
1266 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1267 1.96 jruoho return true;
1268 1.96 jruoho else {
1269 1.96 jruoho cpufreq_suspend(ci);
1270 1.96 jruoho }
1271 1.96 jruoho
1272 1.96 jruoho return cpu_stop(dv);
1273 1.96 jruoho }
1274 1.96 jruoho
1275 1.96 jruoho static bool
1276 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1277 1.12 jmcneill {
1278 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1279 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1280 1.20 jmcneill int err = 0;
1281 1.12 jmcneill
1282 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1283 1.12 jmcneill return true;
1284 1.93 jruoho
1285 1.196 fcambus if (CPU_IS_PRIMARY(ci))
1286 1.93 jruoho goto out;
1287 1.93 jruoho
1288 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1289 1.93 jruoho goto out;
1290 1.12 jmcneill
1291 1.20 jmcneill if (sc->sc_wasonline) {
1292 1.20 jmcneill mutex_enter(&cpu_lock);
1293 1.58 rmind err = cpu_setstate(ci, true);
1294 1.20 jmcneill mutex_exit(&cpu_lock);
1295 1.20 jmcneill }
1296 1.13 joerg
1297 1.93 jruoho out:
1298 1.93 jruoho if (err != 0)
1299 1.93 jruoho return false;
1300 1.93 jruoho
1301 1.93 jruoho cpufreq_resume(ci);
1302 1.93 jruoho
1303 1.93 jruoho return true;
1304 1.12 jmcneill }
1305 1.12 jmcneill
1306 1.79 jruoho static bool
1307 1.79 jruoho cpu_shutdown(device_t dv, int how)
1308 1.79 jruoho {
1309 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1310 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1311 1.90 dyoung
1312 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1313 1.90 dyoung return false;
1314 1.90 dyoung
1315 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1316 1.96 jruoho return true;
1317 1.96 jruoho
1318 1.96 jruoho return cpu_stop(dv);
1319 1.79 jruoho }
1320 1.79 jruoho
1321 1.185 msaitoh /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
1322 1.7 ad void
1323 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1324 1.7 ad {
1325 1.191 msaitoh uint64_t freq = 0, freq_from_cpuid, t0, t1;
1326 1.190 ad int64_t overhead;
1327 1.7 ad
1328 1.196 fcambus if (CPU_IS_PRIMARY(ci) && cpu_hascounter()) {
1329 1.191 msaitoh /*
1330 1.191 msaitoh * If it's the first call of this function, try to get TSC
1331 1.191 msaitoh * freq from CPUID by calling cpu_tsc_freq_cpuid().
1332 1.191 msaitoh * The function also set lapic_per_second variable if it's
1333 1.191 msaitoh * known. This is required for Intel's Comet Lake and newer
1334 1.191 msaitoh * processors to set LAPIC timer correctly.
1335 1.191 msaitoh */
1336 1.191 msaitoh if (ci->ci_data.cpu_cc_freq == 0)
1337 1.191 msaitoh freq = freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
1338 1.190 ad #if NHPET > 0
1339 1.190 ad if (freq == 0)
1340 1.190 ad freq = hpet_tsc_freq();
1341 1.190 ad #endif
1342 1.190 ad if (freq == 0) {
1343 1.190 ad /*
1344 1.190 ad * Work out the approximate overhead involved below.
1345 1.190 ad * Discard the result of the first go around the
1346 1.190 ad * loop.
1347 1.190 ad */
1348 1.190 ad overhead = 0;
1349 1.190 ad for (int i = 0; i <= 8; i++) {
1350 1.190 ad t0 = cpu_counter();
1351 1.192 ad delay_func(0);
1352 1.190 ad t1 = cpu_counter();
1353 1.190 ad if (i > 0) {
1354 1.190 ad overhead += (t1 - t0);
1355 1.190 ad }
1356 1.190 ad }
1357 1.190 ad overhead >>= 3;
1358 1.185 msaitoh
1359 1.190 ad /* Now do the calibration. */
1360 1.190 ad t0 = cpu_counter();
1361 1.192 ad delay_func(100000);
1362 1.190 ad t1 = cpu_counter();
1363 1.190 ad freq = (t1 - t0 - overhead) * 10;
1364 1.190 ad }
1365 1.191 msaitoh if (ci->ci_data.cpu_cc_freq != 0) {
1366 1.191 msaitoh freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
1367 1.191 msaitoh if ((freq_from_cpuid != 0)
1368 1.191 msaitoh && (freq != freq_from_cpuid))
1369 1.191 msaitoh aprint_verbose_dev(ci->ci_dev, "TSC freq "
1370 1.191 msaitoh "calibrated %" PRIu64 " Hz\n", freq);
1371 1.191 msaitoh }
1372 1.185 msaitoh } else {
1373 1.190 ad freq = cpu_info_primary.ci_data.cpu_cc_freq;
1374 1.7 ad }
1375 1.190 ad
1376 1.190 ad ci->ci_data.cpu_cc_freq = freq;
1377 1.7 ad }
1378 1.37 joerg
1379 1.37 joerg void
1380 1.37 joerg x86_cpu_idle_mwait(void)
1381 1.37 joerg {
1382 1.37 joerg struct cpu_info *ci = curcpu();
1383 1.37 joerg
1384 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1385 1.37 joerg
1386 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1387 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1388 1.37 joerg return;
1389 1.37 joerg }
1390 1.37 joerg x86_mwait(0, 0);
1391 1.37 joerg }
1392 1.37 joerg
1393 1.37 joerg void
1394 1.37 joerg x86_cpu_idle_halt(void)
1395 1.37 joerg {
1396 1.37 joerg struct cpu_info *ci = curcpu();
1397 1.37 joerg
1398 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1399 1.37 joerg
1400 1.37 joerg x86_disable_intr();
1401 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1402 1.37 joerg x86_stihlt();
1403 1.37 joerg } else {
1404 1.37 joerg x86_enable_intr();
1405 1.37 joerg }
1406 1.37 joerg }
1407 1.73 jym
1408 1.73 jym /*
1409 1.73 jym * Loads pmap for the current CPU.
1410 1.73 jym */
1411 1.73 jym void
1412 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1413 1.73 jym {
1414 1.144 maxv #ifdef SVS
1415 1.159 maxv if (svs_enabled) {
1416 1.159 maxv svs_pdir_switch(pmap);
1417 1.159 maxv }
1418 1.144 maxv #endif
1419 1.144 maxv
1420 1.73 jym #ifdef PAE
1421 1.99 yamt struct cpu_info *ci = curcpu();
1422 1.116 nat bool interrupts_enabled;
1423 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1424 1.99 yamt int i;
1425 1.73 jym
1426 1.99 yamt /*
1427 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1428 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1429 1.99 yamt * reload cr3.
1430 1.99 yamt */
1431 1.116 nat interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1432 1.116 nat if (interrupts_enabled)
1433 1.116 nat x86_disable_intr();
1434 1.116 nat
1435 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1436 1.168 maxv l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
1437 1.73 jym }
1438 1.134 maxv
1439 1.116 nat if (interrupts_enabled)
1440 1.116 nat x86_enable_intr();
1441 1.73 jym tlbflush();
1442 1.160 maxv #else
1443 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1444 1.160 maxv #endif
1445 1.73 jym }
1446 1.91 cherry
1447 1.91 cherry /*
1448 1.91 cherry * Notify all other cpus to halt.
1449 1.91 cherry */
1450 1.91 cherry
1451 1.91 cherry void
1452 1.92 cherry cpu_broadcast_halt(void)
1453 1.91 cherry {
1454 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1455 1.91 cherry }
1456 1.91 cherry
1457 1.91 cherry /*
1458 1.176 ad * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
1459 1.176 ad * and trigger an AST on the running LWP.
1460 1.91 cherry */
1461 1.91 cherry
1462 1.91 cherry void
1463 1.91 cherry cpu_kick(struct cpu_info *ci)
1464 1.91 cherry {
1465 1.176 ad x86_send_ipi(ci, X86_IPI_AST);
1466 1.91 cherry }
1467