cpu.c revision 1.204 1 1.204 mlelstv /* $NetBSD: cpu.c,v 1.204 2022/08/14 07:49:33 mlelstv Exp $ */
2 1.2 ad
3 1.134 maxv /*
4 1.190 ad * Copyright (c) 2000-2020 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.204 mlelstv __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.204 2022/08/14 07:49:33 mlelstv Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.101 kiyohara #include "opt_multiprocessor.h"
71 1.144 maxv #include "opt_svs.h"
72 1.2 ad
73 1.2 ad #include "lapic.h"
74 1.2 ad #include "ioapic.h"
75 1.179 ad #include "acpica.h"
76 1.190 ad #include "hpet.h"
77 1.2 ad
78 1.2 ad #include <sys/param.h>
79 1.2 ad #include <sys/proc.h>
80 1.2 ad #include <sys/systm.h>
81 1.2 ad #include <sys/device.h>
82 1.9 ad #include <sys/cpu.h>
83 1.93 jruoho #include <sys/cpufreq.h>
84 1.98 rmind #include <sys/idle.h>
85 1.9 ad #include <sys/atomic.h>
86 1.35 ad #include <sys/reboot.h>
87 1.174 maxv #include <sys/csan.h>
88 1.2 ad
89 1.78 uebayasi #include <uvm/uvm.h>
90 1.2 ad
91 1.102 pgoyette #include "acpica.h" /* for NACPICA, for mp_verbose */
92 1.102 pgoyette
93 1.187 bouyer #include <x86/machdep.h>
94 1.2 ad #include <machine/cpufunc.h>
95 1.2 ad #include <machine/cpuvar.h>
96 1.2 ad #include <machine/pmap.h>
97 1.2 ad #include <machine/vmparam.h>
98 1.102 pgoyette #if defined(MULTIPROCESSOR)
99 1.2 ad #include <machine/mpbiosvar.h>
100 1.101 kiyohara #endif
101 1.102 pgoyette #include <machine/mpconfig.h> /* for mp_verbose */
102 1.2 ad #include <machine/pcb.h>
103 1.2 ad #include <machine/specialreg.h>
104 1.2 ad #include <machine/segments.h>
105 1.2 ad #include <machine/gdt.h>
106 1.2 ad #include <machine/mtrr.h>
107 1.2 ad #include <machine/pio.h>
108 1.38 ad #include <machine/cpu_counter.h>
109 1.2 ad
110 1.109 dsl #include <x86/fpu.h>
111 1.109 dsl
112 1.179 ad #if NACPICA > 0
113 1.179 ad #include <dev/acpi/acpi_srat.h>
114 1.179 ad #endif
115 1.179 ad
116 1.101 kiyohara #if NLAPIC > 0
117 1.2 ad #include <machine/apicvar.h>
118 1.2 ad #include <machine/i82489reg.h>
119 1.2 ad #include <machine/i82489var.h>
120 1.101 kiyohara #endif
121 1.2 ad
122 1.2 ad #include <dev/ic/mc146818reg.h>
123 1.190 ad #include <dev/ic/hpetvar.h>
124 1.2 ad #include <i386/isa/nvram.h>
125 1.2 ad #include <dev/isa/isareg.h>
126 1.2 ad
127 1.38 ad #include "tsc.h"
128 1.38 ad
129 1.187 bouyer #ifndef XENPV
130 1.178 nonaka #include "hyperv.h"
131 1.178 nonaka #if NHYPERV > 0
132 1.178 nonaka #include <x86/x86/hypervvar.h>
133 1.178 nonaka #endif
134 1.178 nonaka #endif
135 1.178 nonaka
136 1.187 bouyer #ifdef XEN
137 1.187 bouyer #include <xen/hypervisor.h>
138 1.187 bouyer #endif
139 1.187 bouyer
140 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
141 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
142 1.87 jruoho static void cpu_defer(device_t);
143 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
144 1.87 jruoho static void cpu_childdetached(device_t, device_t);
145 1.96 jruoho static bool cpu_stop(device_t);
146 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
147 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
148 1.79 jruoho static bool cpu_shutdown(device_t, int);
149 1.12 jmcneill
150 1.2 ad struct cpu_softc {
151 1.23 cube device_t sc_dev; /* device tree glue */
152 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
153 1.20 jmcneill bool sc_wasonline;
154 1.2 ad };
155 1.2 ad
156 1.101 kiyohara #ifdef MULTIPROCESSOR
157 1.120 msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
158 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
159 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
160 1.2 ad mp_cpu_start_cleanup };
161 1.101 kiyohara #endif
162 1.2 ad
163 1.2 ad
164 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
165 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
166 1.2 ad
167 1.2 ad /*
168 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
169 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
170 1.2 ad * point at it.
171 1.2 ad */
172 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
173 1.2 ad .ci_dev = 0,
174 1.2 ad .ci_self = &cpu_info_primary,
175 1.2 ad .ci_idepth = -1,
176 1.2 ad .ci_curlwp = &lwp0,
177 1.43 ad .ci_curldt = -1,
178 1.203 riastrad .ci_kfpu_spl = -1,
179 1.2 ad };
180 1.2 ad
181 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
182 1.2 ad
183 1.2 ad #ifdef i386
184 1.134 maxv void cpu_set_tss_gates(struct cpu_info *);
185 1.2 ad #endif
186 1.2 ad
187 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
188 1.12 jmcneill
189 1.122 maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
190 1.117 maxv /* [0] basic features cpuid.1:%edx
191 1.117 maxv * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
192 1.117 maxv * [2] extended features cpuid:80000001:%edx
193 1.117 maxv * [3] extended features cpuid:80000001:%ecx
194 1.117 maxv * [4] VIA padlock features
195 1.117 maxv * [5] structured extended features cpuid.7:%ebx
196 1.117 maxv * [6] structured extended features cpuid.7:%ecx
197 1.117 maxv */
198 1.70 jym
199 1.101 kiyohara #ifdef MULTIPROCESSOR
200 1.12 jmcneill bool x86_mp_online;
201 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
202 1.101 kiyohara #endif
203 1.101 kiyohara #if NLAPIC > 0
204 1.14 joerg static vaddr_t cmos_data_mapping;
205 1.101 kiyohara #endif
206 1.45 ad struct cpu_info *cpu_starting;
207 1.2 ad
208 1.101 kiyohara #ifdef MULTIPROCESSOR
209 1.184 msaitoh void cpu_hatch(void *);
210 1.184 msaitoh static void cpu_boot_secondary(struct cpu_info *ci);
211 1.184 msaitoh static void cpu_start_secondary(struct cpu_info *ci);
212 1.101 kiyohara #if NLAPIC > 0
213 1.136 maxv static void cpu_copy_trampoline(paddr_t);
214 1.101 kiyohara #endif
215 1.164 cherry #endif /* MULTIPROCESSOR */
216 1.2 ad
217 1.2 ad /*
218 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
219 1.2 ad * the local APIC on the boot processor has been mapped.
220 1.2 ad *
221 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
222 1.2 ad */
223 1.101 kiyohara #if NLAPIC > 0
224 1.2 ad void
225 1.9 ad cpu_init_first(void)
226 1.2 ad {
227 1.2 ad
228 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
229 1.14 joerg
230 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
231 1.14 joerg if (cmos_data_mapping == 0)
232 1.14 joerg panic("No KVA for page 0");
233 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
234 1.14 joerg pmap_update(pmap_kernel());
235 1.2 ad }
236 1.101 kiyohara #endif
237 1.2 ad
238 1.87 jruoho static int
239 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
240 1.2 ad {
241 1.2 ad
242 1.2 ad return 1;
243 1.2 ad }
244 1.2 ad
245 1.142 maxv #ifdef __HAVE_PCPU_AREA
246 1.142 maxv void
247 1.142 maxv cpu_pcpuarea_init(struct cpu_info *ci)
248 1.142 maxv {
249 1.142 maxv struct vm_page *pg;
250 1.142 maxv size_t i, npages;
251 1.142 maxv vaddr_t base, va;
252 1.142 maxv paddr_t pa;
253 1.142 maxv
254 1.142 maxv CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
255 1.142 maxv
256 1.142 maxv npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
257 1.142 maxv base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
258 1.142 maxv
259 1.142 maxv for (i = 0; i < npages; i++) {
260 1.142 maxv pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
261 1.142 maxv if (pg == NULL) {
262 1.142 maxv panic("failed to allocate pcpu PA");
263 1.142 maxv }
264 1.142 maxv
265 1.142 maxv va = base + i * PAGE_SIZE;
266 1.142 maxv pa = VM_PAGE_TO_PHYS(pg);
267 1.142 maxv
268 1.142 maxv pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
269 1.142 maxv }
270 1.142 maxv
271 1.142 maxv pmap_update(pmap_kernel());
272 1.142 maxv }
273 1.142 maxv #endif
274 1.142 maxv
275 1.2 ad static void
276 1.2 ad cpu_vm_init(struct cpu_info *ci)
277 1.2 ad {
278 1.199 christos unsigned int ncolors = 2;
279 1.2 ad
280 1.199 christos /*
281 1.199 christos * XXX: for AP's the cache info has not been initialized yet
282 1.199 christos * but that does not matter because uvm only pays attention at
283 1.199 christos * the maximum only. We should fix it once cpus have different
284 1.199 christos * cache sizes.
285 1.199 christos */
286 1.199 christos for (unsigned int i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
287 1.2 ad struct x86_cache_info *cai;
288 1.199 christos unsigned int tcolors;
289 1.2 ad
290 1.2 ad cai = &ci->ci_cinfo[i];
291 1.2 ad
292 1.2 ad tcolors = atop(cai->cai_totalsize);
293 1.184 msaitoh switch (cai->cai_associativity) {
294 1.2 ad case 0xff:
295 1.2 ad tcolors = 1; /* fully associative */
296 1.2 ad break;
297 1.2 ad case 0:
298 1.2 ad case 1:
299 1.2 ad break;
300 1.2 ad default:
301 1.2 ad tcolors /= cai->cai_associativity;
302 1.2 ad }
303 1.199 christos if (tcolors <= ncolors)
304 1.199 christos continue;
305 1.199 christos ncolors = tcolors;
306 1.199 christos }
307 1.199 christos
308 1.199 christos /*
309 1.199 christos * If the desired number of colors is not a power of
310 1.199 christos * two, it won't be good. Find the greatest power of
311 1.199 christos * two which is an even divisor of the number of colors,
312 1.199 christos * to preserve even coloring of pages.
313 1.199 christos */
314 1.199 christos if (ncolors & (ncolors - 1) ) {
315 1.199 christos unsigned int try, picked = 1;
316 1.199 christos for (try = 1; try < ncolors; try *= 2) {
317 1.199 christos if (ncolors % try == 0) picked = try;
318 1.199 christos }
319 1.199 christos if (picked == 1) {
320 1.199 christos panic("desired number of cache colors %u is "
321 1.199 christos " > 1, but not even!", ncolors);
322 1.32 tls }
323 1.199 christos ncolors = picked;
324 1.2 ad }
325 1.2 ad
326 1.2 ad /*
327 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
328 1.94 mrg * re-color our pages.
329 1.2 ad */
330 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
331 1.2 ad uvm_page_recolor(ncolors);
332 1.98 rmind
333 1.98 rmind pmap_tlb_cpu_init(ci);
334 1.123 maxv #ifndef __HAVE_DIRECT_MAP
335 1.123 maxv pmap_vpage_cpu_init(ci);
336 1.123 maxv #endif
337 1.2 ad }
338 1.2 ad
339 1.87 jruoho static void
340 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
341 1.2 ad {
342 1.23 cube struct cpu_softc *sc = device_private(self);
343 1.2 ad struct cpu_attach_args *caa = aux;
344 1.2 ad struct cpu_info *ci;
345 1.21 ad uintptr_t ptr;
346 1.101 kiyohara #if NLAPIC > 0
347 1.2 ad int cpunum = caa->cpu_number;
348 1.101 kiyohara #endif
349 1.51 ad static bool again;
350 1.2 ad
351 1.23 cube sc->sc_dev = self;
352 1.23 cube
353 1.163 cherry if (ncpu > maxcpus) {
354 1.98 rmind #ifndef _LP64
355 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
356 1.98 rmind #else
357 1.98 rmind aprint_error(": too many CPUs\n");
358 1.98 rmind #endif
359 1.48 ad return;
360 1.48 ad }
361 1.48 ad
362 1.2 ad /*
363 1.2 ad * If we're an Application Processor, allocate a cpu_info
364 1.2 ad * structure, otherwise use the primary's.
365 1.2 ad */
366 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
367 1.36 ad if ((boothowto & RB_MD1) != 0) {
368 1.35 ad aprint_error(": multiprocessor boot disabled\n");
369 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
370 1.56 jmcneill aprint_error_dev(self,
371 1.56 jmcneill "couldn't establish power handler\n");
372 1.35 ad return;
373 1.35 ad }
374 1.2 ad aprint_naive(": Application Processor\n");
375 1.143 maxv ptr = (uintptr_t)uvm_km_alloc(kernel_map,
376 1.143 maxv sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
377 1.143 maxv UVM_KMF_WIRED|UVM_KMF_ZERO);
378 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
379 1.43 ad ci->ci_curldt = -1;
380 1.2 ad } else {
381 1.2 ad aprint_naive(": %s Processor\n",
382 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
383 1.2 ad ci = &cpu_info_primary;
384 1.101 kiyohara #if NLAPIC > 0
385 1.2 ad if (cpunum != lapic_cpu_number()) {
386 1.51 ad /* XXX should be done earlier. */
387 1.39 ad uint32_t reg;
388 1.39 ad aprint_verbose("\n");
389 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
390 1.47 ad " instead of at expected %d", lapic_cpu_number(),
391 1.23 cube cpunum);
392 1.125 nonaka reg = lapic_readreg(LAPIC_ID);
393 1.125 nonaka lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
394 1.39 ad (cpunum << LAPIC_ID_SHIFT));
395 1.2 ad }
396 1.47 ad if (cpunum != lapic_cpu_number()) {
397 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
398 1.47 ad }
399 1.101 kiyohara #endif
400 1.2 ad }
401 1.2 ad
402 1.2 ad ci->ci_self = ci;
403 1.2 ad sc->sc_info = ci;
404 1.2 ad ci->ci_dev = self;
405 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
406 1.42 ad ci->ci_cpuid = caa->cpu_number;
407 1.2 ad ci->ci_func = caa->cpu_func;
408 1.177 maxv ci->ci_kfpu_spl = -1;
409 1.112 msaitoh aprint_normal("\n");
410 1.2 ad
411 1.55 ad /* Must be before mi_cpu_attach(). */
412 1.55 ad cpu_vm_init(ci);
413 1.55 ad
414 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
415 1.2 ad int error;
416 1.2 ad
417 1.2 ad error = mi_cpu_attach(ci);
418 1.2 ad if (error != 0) {
419 1.47 ad aprint_error_dev(self,
420 1.30 cegger "mi_cpu_attach failed with %d\n", error);
421 1.2 ad return;
422 1.2 ad }
423 1.142 maxv #ifdef __HAVE_PCPU_AREA
424 1.142 maxv cpu_pcpuarea_init(ci);
425 1.142 maxv #endif
426 1.15 yamt cpu_init_tss(ci);
427 1.2 ad } else {
428 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
429 1.179 ad #if NACPICA > 0
430 1.179 ad /* Parse out NUMA info for cpu_identify(). */
431 1.179 ad acpisrat_init();
432 1.179 ad #endif
433 1.2 ad }
434 1.2 ad
435 1.146 maxv #ifdef SVS
436 1.146 maxv cpu_svs_init(ci);
437 1.146 maxv #endif
438 1.146 maxv
439 1.2 ad pmap_reference(pmap_kernel());
440 1.2 ad ci->ci_pmap = pmap_kernel();
441 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
442 1.2 ad
443 1.51 ad /*
444 1.51 ad * Boot processor may not be attached first, but the below
445 1.51 ad * must be done to allow booting other processors.
446 1.51 ad */
447 1.51 ad if (!again) {
448 1.190 ad /* Make sure DELAY() (likely i8254_delay()) is initialized. */
449 1.190 ad DELAY(1);
450 1.190 ad
451 1.190 ad /*
452 1.190 ad * Basic init. Compute an approximate frequency for the TSC
453 1.190 ad * using the i8254. If there's a HPET we'll redo it later.
454 1.190 ad */
455 1.188 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
456 1.2 ad cpu_intr_init(ci);
457 1.194 msaitoh tsc_setfunc(ci);
458 1.40 ad cpu_get_tsc_freq(ci);
459 1.2 ad cpu_init(ci);
460 1.134 maxv #ifdef i386
461 1.2 ad cpu_set_tss_gates(ci);
462 1.134 maxv #endif
463 1.2 ad pmap_cpu_init_late(ci);
464 1.101 kiyohara #if NLAPIC > 0
465 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
466 1.51 ad /* Enable lapic. */
467 1.51 ad lapic_enable();
468 1.51 ad lapic_set_lvt();
469 1.189 bouyer if (!vm_guest_is_xenpvh_or_pvhvm())
470 1.192 ad lapic_calibrate_timer(false);
471 1.51 ad }
472 1.101 kiyohara #endif
473 1.174 maxv kcsan_cpu_init(ci);
474 1.51 ad again = true;
475 1.51 ad }
476 1.51 ad
477 1.51 ad /* further PCB init done later. */
478 1.51 ad
479 1.51 ad switch (caa->cpu_role) {
480 1.51 ad case CPU_ROLE_SP:
481 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
482 1.51 ad cpu_identify(ci);
483 1.53 ad x86_errata();
484 1.37 joerg x86_cpu_idle_init();
485 1.187 bouyer #ifdef XENPVHVM
486 1.187 bouyer xen_hvm_init_cpu(ci);
487 1.187 bouyer #endif
488 1.2 ad break;
489 1.2 ad
490 1.2 ad case CPU_ROLE_BP:
491 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
492 1.40 ad cpu_identify(ci);
493 1.53 ad x86_errata();
494 1.37 joerg x86_cpu_idle_init();
495 1.187 bouyer #ifdef XENPVHVM
496 1.187 bouyer xen_hvm_init_cpu(ci);
497 1.187 bouyer #endif
498 1.2 ad break;
499 1.2 ad
500 1.101 kiyohara #ifdef MULTIPROCESSOR
501 1.2 ad case CPU_ROLE_AP:
502 1.2 ad /*
503 1.2 ad * report on an AP
504 1.2 ad */
505 1.2 ad cpu_intr_init(ci);
506 1.195 yamaguch idt_vec_init_cpu_md(&ci->ci_idtvec, cpu_index(ci));
507 1.2 ad gdt_alloc_cpu(ci);
508 1.134 maxv #ifdef i386
509 1.2 ad cpu_set_tss_gates(ci);
510 1.134 maxv #endif
511 1.2 ad pmap_cpu_init_late(ci);
512 1.2 ad cpu_start_secondary(ci);
513 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
514 1.59 cegger struct cpu_info *tmp;
515 1.59 cegger
516 1.40 ad cpu_identify(ci);
517 1.59 cegger tmp = cpu_info_list;
518 1.59 cegger while (tmp->ci_next)
519 1.59 cegger tmp = tmp->ci_next;
520 1.59 cegger
521 1.59 cegger tmp->ci_next = ci;
522 1.2 ad }
523 1.2 ad break;
524 1.101 kiyohara #endif
525 1.2 ad
526 1.2 ad default:
527 1.2 ad panic("unknown processor type??\n");
528 1.2 ad }
529 1.51 ad
530 1.71 cegger pat_init(ci);
531 1.2 ad
532 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
533 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
534 1.12 jmcneill
535 1.101 kiyohara #ifdef MULTIPROCESSOR
536 1.2 ad if (mp_verbose) {
537 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
538 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
539 1.2 ad
540 1.47 ad aprint_verbose_dev(self,
541 1.28 cegger "idle lwp at %p, idle sp at %p\n",
542 1.28 cegger l,
543 1.2 ad #ifdef i386
544 1.65 rmind (void *)pcb->pcb_esp
545 1.2 ad #else
546 1.65 rmind (void *)pcb->pcb_rsp
547 1.2 ad #endif
548 1.2 ad );
549 1.2 ad }
550 1.101 kiyohara #endif
551 1.81 jmcneill
552 1.89 jruoho /*
553 1.89 jruoho * Postpone the "cpufeaturebus" scan.
554 1.89 jruoho * It is safe to scan the pseudo-bus
555 1.89 jruoho * only after all CPUs have attached.
556 1.89 jruoho */
557 1.87 jruoho (void)config_defer(self, cpu_defer);
558 1.87 jruoho }
559 1.87 jruoho
560 1.87 jruoho static void
561 1.87 jruoho cpu_defer(device_t self)
562 1.87 jruoho {
563 1.81 jmcneill cpu_rescan(self, NULL, NULL);
564 1.81 jmcneill }
565 1.81 jmcneill
566 1.87 jruoho static int
567 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
568 1.81 jmcneill {
569 1.83 jruoho struct cpu_softc *sc = device_private(self);
570 1.81 jmcneill struct cpufeature_attach_args cfaa;
571 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
572 1.81 jmcneill
573 1.181 pgoyette /*
574 1.181 pgoyette * If we booted with RB_MD1 to disable multiprocessor, the
575 1.181 pgoyette * auto-configuration data still contains the additional
576 1.181 pgoyette * CPUs. But their initialization was mostly bypassed
577 1.181 pgoyette * during attach, so we have to make sure we don't look at
578 1.181 pgoyette * their featurebus info, since it wasn't retrieved.
579 1.181 pgoyette */
580 1.181 pgoyette if (ci == NULL)
581 1.181 pgoyette return 0;
582 1.181 pgoyette
583 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
584 1.81 jmcneill cfaa.ci = ci;
585 1.81 jmcneill
586 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
587 1.83 jruoho if (ci->ci_frequency == NULL) {
588 1.86 jruoho cfaa.name = "frequency";
589 1.200 thorpej ci->ci_frequency =
590 1.200 thorpej config_found(self, &cfaa, NULL,
591 1.201 thorpej CFARGS(.iattr = "cpufeaturebus"));
592 1.84 jruoho }
593 1.84 jruoho
594 1.81 jmcneill if (ci->ci_padlock == NULL) {
595 1.81 jmcneill cfaa.name = "padlock";
596 1.200 thorpej ci->ci_padlock =
597 1.200 thorpej config_found(self, &cfaa, NULL,
598 1.201 thorpej CFARGS(.iattr = "cpufeaturebus"));
599 1.81 jmcneill }
600 1.82 jruoho
601 1.86 jruoho if (ci->ci_temperature == NULL) {
602 1.86 jruoho cfaa.name = "temperature";
603 1.200 thorpej ci->ci_temperature =
604 1.200 thorpej config_found(self, &cfaa, NULL,
605 1.201 thorpej CFARGS(.iattr = "cpufeaturebus"));
606 1.85 jruoho }
607 1.95 jmcneill
608 1.95 jmcneill if (ci->ci_vm == NULL) {
609 1.95 jmcneill cfaa.name = "vm";
610 1.200 thorpej ci->ci_vm =
611 1.200 thorpej config_found(self, &cfaa, NULL,
612 1.201 thorpej CFARGS(.iattr = "cpufeaturebus"));
613 1.95 jmcneill }
614 1.81 jmcneill }
615 1.81 jmcneill
616 1.81 jmcneill return 0;
617 1.81 jmcneill }
618 1.81 jmcneill
619 1.87 jruoho static void
620 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
621 1.81 jmcneill {
622 1.81 jmcneill struct cpu_softc *sc = device_private(self);
623 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
624 1.81 jmcneill
625 1.83 jruoho if (ci->ci_frequency == child)
626 1.83 jruoho ci->ci_frequency = NULL;
627 1.82 jruoho
628 1.81 jmcneill if (ci->ci_padlock == child)
629 1.81 jmcneill ci->ci_padlock = NULL;
630 1.83 jruoho
631 1.86 jruoho if (ci->ci_temperature == child)
632 1.86 jruoho ci->ci_temperature = NULL;
633 1.95 jmcneill
634 1.95 jmcneill if (ci->ci_vm == child)
635 1.95 jmcneill ci->ci_vm = NULL;
636 1.2 ad }
637 1.2 ad
638 1.2 ad /*
639 1.2 ad * Initialize the processor appropriately.
640 1.2 ad */
641 1.2 ad
642 1.2 ad void
643 1.9 ad cpu_init(struct cpu_info *ci)
644 1.2 ad {
645 1.141 maxv extern int x86_fpu_save;
646 1.113 christos uint32_t cr4 = 0;
647 1.2 ad
648 1.2 ad lcr0(rcr0() | CR0_WP);
649 1.2 ad
650 1.169 maxv /* If global TLB caching is supported, enable it */
651 1.70 jym if (cpu_feature[0] & CPUID_PGE)
652 1.169 maxv cr4 |= CR4_PGE;
653 1.2 ad
654 1.2 ad /*
655 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
656 1.2 ad */
657 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
658 1.110 dsl cr4 |= CR4_OSFXSR;
659 1.2 ad
660 1.2 ad /*
661 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
662 1.2 ad */
663 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
664 1.110 dsl cr4 |= CR4_OSXMMEXCPT;
665 1.2 ad }
666 1.2 ad
667 1.110 dsl /* If xsave is supported, enable it */
668 1.110 dsl if (cpu_feature[1] & CPUID2_XSAVE)
669 1.110 dsl cr4 |= CR4_OSXSAVE;
670 1.110 dsl
671 1.118 maxv /* If SMEP is supported, enable it */
672 1.118 maxv if (cpu_feature[5] & CPUID_SEF_SMEP)
673 1.118 maxv cr4 |= CR4_SMEP;
674 1.118 maxv
675 1.137 maxv /* If SMAP is supported, enable it */
676 1.137 maxv if (cpu_feature[5] & CPUID_SEF_SMAP)
677 1.137 maxv cr4 |= CR4_SMAP;
678 1.137 maxv
679 1.171 maxv #ifdef SVS
680 1.171 maxv /* If PCID is supported, enable it */
681 1.171 maxv if (svs_pcid)
682 1.171 maxv cr4 |= CR4_PCIDE;
683 1.171 maxv #endif
684 1.171 maxv
685 1.113 christos if (cr4) {
686 1.113 christos cr4 |= rcr4();
687 1.113 christos lcr4(cr4);
688 1.113 christos }
689 1.110 dsl
690 1.145 msaitoh /*
691 1.145 msaitoh * Changing CR4 register may change cpuid values. For example, setting
692 1.145 msaitoh * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
693 1.145 msaitoh * ci_feat_val[1], so update it.
694 1.145 msaitoh * XXX Other than ci_feat_val[1] might be changed.
695 1.145 msaitoh */
696 1.145 msaitoh if (cpuid_level >= 1) {
697 1.145 msaitoh u_int descs[4];
698 1.145 msaitoh
699 1.145 msaitoh x86_cpuid(1, descs);
700 1.145 msaitoh ci->ci_feat_val[1] = descs[2];
701 1.145 msaitoh }
702 1.145 msaitoh
703 1.141 maxv if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
704 1.158 maxv fpuinit_mxcsr_mask();
705 1.141 maxv }
706 1.141 maxv
707 1.110 dsl /* If xsave is enabled, enable all fpu features */
708 1.110 dsl if (cr4 & CR4_OSXSAVE)
709 1.110 dsl wrxcr(0, x86_xsave_features & XCR0_FPU);
710 1.110 dsl
711 1.2 ad #ifdef MTRR
712 1.2 ad /*
713 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
714 1.2 ad */
715 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
716 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
717 1.2 ad i686_mtrr_init_first();
718 1.2 ad mtrr_init_cpu(ci);
719 1.2 ad }
720 1.2 ad
721 1.2 ad #ifdef i386
722 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
723 1.2 ad /*
724 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
725 1.2 ad */
726 1.106 msaitoh if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
727 1.106 msaitoh if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
728 1.106 msaitoh (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
729 1.106 msaitoh CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
730 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
731 1.2 ad k6_mtrr_init_first();
732 1.2 ad mtrr_init_cpu(ci);
733 1.2 ad }
734 1.2 ad }
735 1.2 ad }
736 1.2 ad #endif /* i386 */
737 1.2 ad #endif /* MTRR */
738 1.2 ad
739 1.38 ad if (ci != &cpu_info_primary) {
740 1.150 maxv /* Synchronize TSC */
741 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
742 1.38 ad tsc_sync_ap(ci);
743 1.38 ad } else {
744 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
745 1.38 ad }
746 1.2 ad }
747 1.2 ad
748 1.101 kiyohara #ifdef MULTIPROCESSOR
749 1.2 ad void
750 1.12 jmcneill cpu_boot_secondary_processors(void)
751 1.2 ad {
752 1.2 ad struct cpu_info *ci;
753 1.100 chs kcpuset_t *cpus;
754 1.2 ad u_long i;
755 1.2 ad
756 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
757 1.60 ad x86_patch(false);
758 1.5 ad
759 1.179 ad #if NACPICA > 0
760 1.179 ad /* Finished with NUMA info for now. */
761 1.179 ad acpisrat_exit();
762 1.179 ad #endif
763 1.179 ad
764 1.100 chs kcpuset_create(&cpus, true);
765 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
766 1.100 chs for (i = 0; i < maxcpus; i++) {
767 1.57 ad ci = cpu_lookup(i);
768 1.2 ad if (ci == NULL)
769 1.2 ad continue;
770 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
771 1.2 ad continue;
772 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
773 1.2 ad continue;
774 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
775 1.2 ad continue;
776 1.2 ad cpu_boot_secondary(ci);
777 1.100 chs kcpuset_set(cpus, cpu_index(ci));
778 1.2 ad }
779 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
780 1.100 chs ;
781 1.100 chs kcpuset_destroy(cpus);
782 1.2 ad
783 1.2 ad x86_mp_online = true;
784 1.38 ad
785 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
786 1.38 ad tsc_tc_init();
787 1.2 ad }
788 1.101 kiyohara #endif
789 1.2 ad
790 1.2 ad static void
791 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
792 1.2 ad {
793 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
794 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
795 1.2 ad
796 1.2 ad pcb->pcb_cr0 = rcr0();
797 1.2 ad }
798 1.2 ad
799 1.2 ad void
800 1.12 jmcneill cpu_init_idle_lwps(void)
801 1.2 ad {
802 1.2 ad struct cpu_info *ci;
803 1.2 ad u_long i;
804 1.2 ad
805 1.54 ad for (i = 0; i < maxcpus; i++) {
806 1.57 ad ci = cpu_lookup(i);
807 1.2 ad if (ci == NULL)
808 1.2 ad continue;
809 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
810 1.2 ad continue;
811 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
812 1.2 ad continue;
813 1.2 ad cpu_init_idle_lwp(ci);
814 1.2 ad }
815 1.2 ad }
816 1.2 ad
817 1.101 kiyohara #ifdef MULTIPROCESSOR
818 1.2 ad void
819 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
820 1.2 ad {
821 1.38 ad u_long psl;
822 1.2 ad int i;
823 1.2 ad
824 1.165 cherry #if NLAPIC > 0
825 1.165 cherry paddr_t mp_pdirpa;
826 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
827 1.136 maxv cpu_copy_trampoline(mp_pdirpa);
828 1.165 cherry #endif
829 1.136 maxv
830 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
831 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
832 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
833 1.25 ad return;
834 1.45 ad }
835 1.2 ad
836 1.2 ad /*
837 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
838 1.50 ad * initial gate and allows the AP to start soft initialization.
839 1.2 ad */
840 1.50 ad KASSERT(cpu_starting == NULL);
841 1.50 ad cpu_starting = ci;
842 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
843 1.189 bouyer delay_func(10);
844 1.2 ad }
845 1.38 ad
846 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
847 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
848 1.2 ad #if defined(MPDEBUG) && defined(DDB)
849 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
850 1.2 ad Debugger();
851 1.2 ad #endif
852 1.38 ad } else {
853 1.38 ad /*
854 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
855 1.150 maxv * twice (in tsc_sync_bp) to minimize possible cache effects.
856 1.150 maxv * Disable interrupts to try and rule out any external
857 1.150 maxv * interference.
858 1.38 ad */
859 1.38 ad psl = x86_read_psl();
860 1.38 ad x86_disable_intr();
861 1.38 ad tsc_sync_bp(ci);
862 1.38 ad x86_write_psl(psl);
863 1.2 ad }
864 1.2 ad
865 1.2 ad CPU_START_CLEANUP(ci);
866 1.45 ad cpu_starting = NULL;
867 1.2 ad }
868 1.2 ad
869 1.2 ad void
870 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
871 1.2 ad {
872 1.38 ad int64_t drift;
873 1.38 ad u_long psl;
874 1.2 ad int i;
875 1.2 ad
876 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
877 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
878 1.189 bouyer delay_func(10);
879 1.2 ad }
880 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
881 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
882 1.2 ad #if defined(MPDEBUG) && defined(DDB)
883 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
884 1.2 ad Debugger();
885 1.2 ad #endif
886 1.38 ad } else {
887 1.38 ad /* Synchronize TSC again, check for drift. */
888 1.38 ad drift = ci->ci_data.cpu_cc_skew;
889 1.38 ad psl = x86_read_psl();
890 1.38 ad x86_disable_intr();
891 1.38 ad tsc_sync_bp(ci);
892 1.38 ad x86_write_psl(psl);
893 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
894 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
895 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
896 1.38 ad tsc_sync_drift(drift);
897 1.2 ad }
898 1.2 ad }
899 1.2 ad
900 1.2 ad /*
901 1.117 maxv * The CPU ends up here when it's ready to run.
902 1.2 ad * This is called from code in mptramp.s; at this point, we are running
903 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
904 1.2 ad * this processor will enter the idle loop and start looking for work.
905 1.2 ad */
906 1.2 ad void
907 1.2 ad cpu_hatch(void *v)
908 1.2 ad {
909 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
910 1.65 rmind struct pcb *pcb;
911 1.130 kre int s, i;
912 1.2 ad
913 1.162 maxv /* ------------------------------------------------------------- */
914 1.162 maxv
915 1.162 maxv /*
916 1.162 maxv * This section of code must be compiled with SSP disabled, to
917 1.162 maxv * prevent a race against cpu0. See sys/conf/ssp.mk.
918 1.162 maxv */
919 1.162 maxv
920 1.12 jmcneill cpu_init_msrs(ci, true);
921 1.40 ad cpu_probe(ci);
922 1.154 maxv cpu_speculation_init(ci);
923 1.178 nonaka #if NHYPERV > 0
924 1.178 nonaka hyperv_init_cpu(ci);
925 1.178 nonaka #endif
926 1.46 ad
927 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
928 1.134 maxv /* cpu_get_tsc_freq(ci); */
929 1.38 ad
930 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
931 1.38 ad
932 1.38 ad /*
933 1.150 maxv * Synchronize the TSC for the first time. Note that interrupts are
934 1.150 maxv * off at this point.
935 1.38 ad */
936 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
937 1.38 ad tsc_sync_ap(ci);
938 1.38 ad
939 1.162 maxv /* ------------------------------------------------------------- */
940 1.162 maxv
941 1.38 ad /*
942 1.150 maxv * Wait to be brought online.
943 1.150 maxv *
944 1.150 maxv * Use MONITOR/MWAIT if available. These instructions put the CPU in
945 1.150 maxv * a low consumption mode (C-state), and if the TSC is not invariant,
946 1.150 maxv * this causes the TSC to drift. We want this to happen, so that we
947 1.150 maxv * can later detect (in tsc_tc_init) any abnormal drift with invariant
948 1.150 maxv * TSCs. That's just for safety; by definition such drifts should
949 1.150 maxv * never occur with invariant TSCs.
950 1.150 maxv *
951 1.150 maxv * If not available, try PAUSE. We'd like to use HLT, but we have
952 1.150 maxv * interrupts off.
953 1.38 ad */
954 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
955 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
956 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
957 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
958 1.38 ad continue;
959 1.38 ad }
960 1.38 ad x86_mwait(0, 0);
961 1.38 ad } else {
962 1.131 pgoyette /*
963 1.131 pgoyette * XXX The loop repetition count could be a lot higher, but
964 1.131 pgoyette * XXX currently qemu emulator takes a _very_long_time_ to
965 1.131 pgoyette * XXX execute the pause instruction. So for now, use a low
966 1.131 pgoyette * XXX value to allow the cpu to hatch before timing out.
967 1.131 pgoyette */
968 1.131 pgoyette for (i = 50; i != 0; i--) {
969 1.127 pgoyette x86_pause();
970 1.127 pgoyette }
971 1.38 ad }
972 1.6 ad }
973 1.5 ad
974 1.26 cegger /* Because the text may have been patched in x86_patch(). */
975 1.5 ad wbinvd();
976 1.5 ad x86_flush();
977 1.88 rmind tlbflushg();
978 1.5 ad
979 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
980 1.2 ad
981 1.73 jym #ifdef PAE
982 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
983 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
984 1.168 maxv l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
985 1.73 jym }
986 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
987 1.73 jym #else
988 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
989 1.73 jym #endif
990 1.73 jym
991 1.65 rmind pcb = lwp_getpcb(curlwp);
992 1.73 jym pcb->pcb_cr3 = rcr3();
993 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
994 1.65 rmind lcr0(pcb->pcb_cr0);
995 1.65 rmind
996 1.195 yamaguch cpu_init_idt(ci);
997 1.8 ad gdt_init_cpu(ci);
998 1.111 joerg #if NLAPIC > 0
999 1.8 ad lapic_enable();
1000 1.2 ad lapic_set_lvt();
1001 1.111 joerg #endif
1002 1.2 ad
1003 1.2 ad fpuinit(ci);
1004 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
1005 1.15 yamt ltr(ci->ci_tss_sel);
1006 1.2 ad
1007 1.150 maxv /*
1008 1.150 maxv * cpu_init will re-synchronize the TSC, and will detect any abnormal
1009 1.150 maxv * drift that would have been caused by the use of MONITOR/MWAIT
1010 1.150 maxv * above.
1011 1.150 maxv */
1012 1.2 ad cpu_init(ci);
1013 1.187 bouyer #ifdef XENPVHVM
1014 1.187 bouyer xen_hvm_init_cpu(ci);
1015 1.187 bouyer #endif
1016 1.192 ad (*x86_initclock_func)();
1017 1.7 ad cpu_get_tsc_freq(ci);
1018 1.2 ad
1019 1.2 ad s = splhigh();
1020 1.165 cherry #if NLAPIC > 0
1021 1.124 nonaka lapic_write_tpri(0);
1022 1.165 cherry #endif
1023 1.3 ad x86_enable_intr();
1024 1.2 ad splx(s);
1025 1.6 ad x86_errata();
1026 1.2 ad
1027 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
1028 1.98 rmind
1029 1.174 maxv kcsan_cpu_init(ci);
1030 1.174 maxv
1031 1.98 rmind idle_loop(NULL);
1032 1.98 rmind KASSERT(false);
1033 1.2 ad }
1034 1.101 kiyohara #endif
1035 1.2 ad
1036 1.2 ad #if defined(DDB)
1037 1.2 ad
1038 1.2 ad #include <ddb/db_output.h>
1039 1.2 ad #include <machine/db_machdep.h>
1040 1.2 ad
1041 1.2 ad /*
1042 1.2 ad * Dump CPU information from ddb.
1043 1.2 ad */
1044 1.2 ad void
1045 1.2 ad cpu_debug_dump(void)
1046 1.2 ad {
1047 1.2 ad struct cpu_info *ci;
1048 1.2 ad CPU_INFO_ITERATOR cii;
1049 1.184 msaitoh const char sixtyfour64space[] =
1050 1.172 mrg #ifdef _LP64
1051 1.172 mrg " "
1052 1.172 mrg #endif
1053 1.172 mrg "";
1054 1.2 ad
1055 1.180 ad db_printf("addr %sdev id flags ipis spl curlwp "
1056 1.173 maxv "\n", sixtyfour64space);
1057 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
1058 1.180 ad db_printf("%p %s %ld %x %x %d %10p\n",
1059 1.2 ad ci,
1060 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
1061 1.2 ad (long)ci->ci_cpuid,
1062 1.180 ad ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
1063 1.173 maxv ci->ci_curlwp);
1064 1.2 ad }
1065 1.2 ad }
1066 1.2 ad #endif
1067 1.2 ad
1068 1.164 cherry #ifdef MULTIPROCESSOR
1069 1.101 kiyohara #if NLAPIC > 0
1070 1.2 ad static void
1071 1.136 maxv cpu_copy_trampoline(paddr_t pdir_pa)
1072 1.2 ad {
1073 1.136 maxv extern uint32_t nox_flag;
1074 1.2 ad extern u_char cpu_spinup_trampoline[];
1075 1.2 ad extern u_char cpu_spinup_trampoline_end[];
1076 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
1077 1.136 maxv struct {
1078 1.136 maxv uint32_t large;
1079 1.136 maxv uint32_t nox;
1080 1.136 maxv uint32_t pdir;
1081 1.136 maxv } smp_data;
1082 1.136 maxv CTASSERT(sizeof(smp_data) == 3 * 4);
1083 1.136 maxv
1084 1.136 maxv smp_data.large = (pmap_largepages != 0);
1085 1.136 maxv smp_data.nox = nox_flag;
1086 1.136 maxv smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
1087 1.12 jmcneill
1088 1.136 maxv /* Enter the physical address */
1089 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1090 1.12 jmcneill UVM_KMF_VAONLY);
1091 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
1092 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
1093 1.2 ad pmap_update(pmap_kernel());
1094 1.136 maxv
1095 1.136 maxv /* Copy boot code */
1096 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
1097 1.2 ad cpu_spinup_trampoline,
1098 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
1099 1.12 jmcneill
1100 1.136 maxv /* Copy smp_data at the end */
1101 1.136 maxv memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
1102 1.136 maxv &smp_data, sizeof(smp_data));
1103 1.136 maxv
1104 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
1105 1.12 jmcneill pmap_update(pmap_kernel());
1106 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
1107 1.2 ad }
1108 1.101 kiyohara #endif
1109 1.2 ad
1110 1.2 ad int
1111 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
1112 1.2 ad {
1113 1.2 ad int error;
1114 1.14 joerg
1115 1.14 joerg /*
1116 1.14 joerg * Bootstrap code must be addressable in real mode
1117 1.14 joerg * and it must be page aligned.
1118 1.14 joerg */
1119 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1120 1.2 ad
1121 1.2 ad /*
1122 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1123 1.2 ad */
1124 1.2 ad
1125 1.2 ad outb(IO_RTC, NVRAM_RESET);
1126 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
1127 1.2 ad
1128 1.165 cherry #if NLAPIC > 0
1129 1.2 ad /*
1130 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
1131 1.2 ad * to the AP startup code ..."
1132 1.2 ad */
1133 1.165 cherry unsigned short dwordptr[2];
1134 1.2 ad dwordptr[0] = 0;
1135 1.14 joerg dwordptr[1] = target >> 4;
1136 1.2 ad
1137 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1138 1.111 joerg #endif
1139 1.2 ad
1140 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
1141 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
1142 1.25 ad return ENODEV;
1143 1.25 ad }
1144 1.25 ad
1145 1.2 ad /*
1146 1.51 ad * ... prior to executing the following sequence:". We'll also add in
1147 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
1148 1.51 ad * disabled. It may not be able to cope with MP coherency.
1149 1.2 ad */
1150 1.51 ad wbinvd();
1151 1.2 ad
1152 1.2 ad if (ci->ci_flags & CPUF_AP) {
1153 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
1154 1.26 cegger if (error != 0) {
1155 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1156 1.50 ad __func__);
1157 1.2 ad return error;
1158 1.25 ad }
1159 1.189 bouyer delay_func(10000);
1160 1.2 ad
1161 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1162 1.26 cegger if (error != 0) {
1163 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1164 1.50 ad __func__);
1165 1.25 ad return error;
1166 1.25 ad }
1167 1.189 bouyer delay_func(200);
1168 1.2 ad
1169 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1170 1.26 cegger if (error != 0) {
1171 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1172 1.50 ad __func__);
1173 1.25 ad return error;
1174 1.2 ad }
1175 1.189 bouyer delay_func(200);
1176 1.2 ad }
1177 1.44 ad
1178 1.2 ad return 0;
1179 1.2 ad }
1180 1.2 ad
1181 1.2 ad void
1182 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1183 1.2 ad {
1184 1.2 ad /*
1185 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1186 1.2 ad */
1187 1.2 ad
1188 1.2 ad outb(IO_RTC, NVRAM_RESET);
1189 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1190 1.2 ad }
1191 1.101 kiyohara #endif
1192 1.2 ad
1193 1.2 ad #ifdef __x86_64__
1194 1.2 ad typedef void (vector)(void);
1195 1.148 maxv extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
1196 1.70 jym #endif
1197 1.2 ad
1198 1.2 ad void
1199 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1200 1.2 ad {
1201 1.70 jym #ifdef __x86_64__
1202 1.2 ad wrmsr(MSR_STAR,
1203 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1204 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1205 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1206 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1207 1.138 maxv wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1208 1.2 ad
1209 1.148 maxv #ifdef SVS
1210 1.148 maxv if (svs_enabled)
1211 1.148 maxv wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
1212 1.148 maxv #endif
1213 1.148 maxv
1214 1.12 jmcneill if (full) {
1215 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1216 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1217 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1218 1.12 jmcneill }
1219 1.70 jym #endif /* __x86_64__ */
1220 1.2 ad
1221 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1222 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1223 1.2 ad }
1224 1.7 ad
1225 1.107 christos void
1226 1.107 christos cpu_offline_md(void)
1227 1.107 christos {
1228 1.173 maxv return;
1229 1.107 christos }
1230 1.107 christos
1231 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1232 1.12 jmcneill static bool
1233 1.96 jruoho cpu_stop(device_t dv)
1234 1.12 jmcneill {
1235 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1236 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1237 1.18 joerg int err;
1238 1.12 jmcneill
1239 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1240 1.93 jruoho
1241 1.196 fcambus if (CPU_IS_PRIMARY(ci))
1242 1.93 jruoho return true;
1243 1.93 jruoho
1244 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1245 1.12 jmcneill return true;
1246 1.12 jmcneill
1247 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1248 1.17 joerg
1249 1.20 jmcneill if (sc->sc_wasonline) {
1250 1.20 jmcneill mutex_enter(&cpu_lock);
1251 1.58 rmind err = cpu_setstate(ci, false);
1252 1.20 jmcneill mutex_exit(&cpu_lock);
1253 1.79 jruoho
1254 1.93 jruoho if (err != 0)
1255 1.20 jmcneill return false;
1256 1.20 jmcneill }
1257 1.17 joerg
1258 1.17 joerg return true;
1259 1.12 jmcneill }
1260 1.12 jmcneill
1261 1.12 jmcneill static bool
1262 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1263 1.96 jruoho {
1264 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1265 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1266 1.96 jruoho
1267 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1268 1.96 jruoho return true;
1269 1.96 jruoho else {
1270 1.96 jruoho cpufreq_suspend(ci);
1271 1.96 jruoho }
1272 1.96 jruoho
1273 1.96 jruoho return cpu_stop(dv);
1274 1.96 jruoho }
1275 1.96 jruoho
1276 1.96 jruoho static bool
1277 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1278 1.12 jmcneill {
1279 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1280 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1281 1.20 jmcneill int err = 0;
1282 1.12 jmcneill
1283 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1284 1.12 jmcneill return true;
1285 1.93 jruoho
1286 1.196 fcambus if (CPU_IS_PRIMARY(ci))
1287 1.93 jruoho goto out;
1288 1.93 jruoho
1289 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1290 1.93 jruoho goto out;
1291 1.12 jmcneill
1292 1.20 jmcneill if (sc->sc_wasonline) {
1293 1.20 jmcneill mutex_enter(&cpu_lock);
1294 1.58 rmind err = cpu_setstate(ci, true);
1295 1.20 jmcneill mutex_exit(&cpu_lock);
1296 1.20 jmcneill }
1297 1.13 joerg
1298 1.93 jruoho out:
1299 1.93 jruoho if (err != 0)
1300 1.93 jruoho return false;
1301 1.93 jruoho
1302 1.93 jruoho cpufreq_resume(ci);
1303 1.93 jruoho
1304 1.93 jruoho return true;
1305 1.12 jmcneill }
1306 1.12 jmcneill
1307 1.79 jruoho static bool
1308 1.79 jruoho cpu_shutdown(device_t dv, int how)
1309 1.79 jruoho {
1310 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1311 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1312 1.90 dyoung
1313 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1314 1.90 dyoung return false;
1315 1.90 dyoung
1316 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1317 1.96 jruoho return true;
1318 1.96 jruoho
1319 1.96 jruoho return cpu_stop(dv);
1320 1.79 jruoho }
1321 1.79 jruoho
1322 1.185 msaitoh /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
1323 1.7 ad void
1324 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1325 1.7 ad {
1326 1.191 msaitoh uint64_t freq = 0, freq_from_cpuid, t0, t1;
1327 1.190 ad int64_t overhead;
1328 1.7 ad
1329 1.196 fcambus if (CPU_IS_PRIMARY(ci) && cpu_hascounter()) {
1330 1.191 msaitoh /*
1331 1.191 msaitoh * If it's the first call of this function, try to get TSC
1332 1.191 msaitoh * freq from CPUID by calling cpu_tsc_freq_cpuid().
1333 1.191 msaitoh * The function also set lapic_per_second variable if it's
1334 1.191 msaitoh * known. This is required for Intel's Comet Lake and newer
1335 1.191 msaitoh * processors to set LAPIC timer correctly.
1336 1.191 msaitoh */
1337 1.191 msaitoh if (ci->ci_data.cpu_cc_freq == 0)
1338 1.191 msaitoh freq = freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
1339 1.204 mlelstv if (freq != 0)
1340 1.204 mlelstv aprint_debug_dev(ci->ci_dev, "TSC freq "
1341 1.204 mlelstv "from CPUID %" PRIu64 " Hz\n", freq);
1342 1.190 ad #if NHPET > 0
1343 1.204 mlelstv if (freq == 0) {
1344 1.190 ad freq = hpet_tsc_freq();
1345 1.204 mlelstv if (freq != 0)
1346 1.204 mlelstv aprint_debug_dev(ci->ci_dev, "TSC freq "
1347 1.204 mlelstv "from HPET %" PRIu64 " Hz\n", freq);
1348 1.204 mlelstv }
1349 1.190 ad #endif
1350 1.190 ad if (freq == 0) {
1351 1.190 ad /*
1352 1.202 msaitoh * Work out the approximate overhead involved below.
1353 1.190 ad * Discard the result of the first go around the
1354 1.190 ad * loop.
1355 1.190 ad */
1356 1.190 ad overhead = 0;
1357 1.190 ad for (int i = 0; i <= 8; i++) {
1358 1.204 mlelstv const int s = splhigh();
1359 1.190 ad t0 = cpu_counter();
1360 1.192 ad delay_func(0);
1361 1.190 ad t1 = cpu_counter();
1362 1.204 mlelstv splx(s);
1363 1.190 ad if (i > 0) {
1364 1.190 ad overhead += (t1 - t0);
1365 1.190 ad }
1366 1.190 ad }
1367 1.190 ad overhead >>= 3;
1368 1.185 msaitoh
1369 1.204 mlelstv /*
1370 1.204 mlelstv * Now do the calibration.
1371 1.204 mlelstv */
1372 1.204 mlelstv freq = 0;
1373 1.204 mlelstv for (int i = 0; i < 1000; i++) {
1374 1.204 mlelstv const int s = splhigh();
1375 1.204 mlelstv t0 = cpu_counter();
1376 1.204 mlelstv delay_func(100);
1377 1.204 mlelstv t1 = cpu_counter();
1378 1.204 mlelstv splx(s);
1379 1.204 mlelstv freq += t1 - t0 - overhead;
1380 1.204 mlelstv }
1381 1.204 mlelstv freq = freq * 10;
1382 1.204 mlelstv
1383 1.204 mlelstv aprint_debug_dev(ci->ci_dev, "TSC freq "
1384 1.204 mlelstv "from delay %" PRIu64 " Hz\n", freq);
1385 1.190 ad }
1386 1.191 msaitoh if (ci->ci_data.cpu_cc_freq != 0) {
1387 1.191 msaitoh freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
1388 1.191 msaitoh if ((freq_from_cpuid != 0)
1389 1.191 msaitoh && (freq != freq_from_cpuid))
1390 1.191 msaitoh aprint_verbose_dev(ci->ci_dev, "TSC freq "
1391 1.191 msaitoh "calibrated %" PRIu64 " Hz\n", freq);
1392 1.191 msaitoh }
1393 1.185 msaitoh } else {
1394 1.190 ad freq = cpu_info_primary.ci_data.cpu_cc_freq;
1395 1.7 ad }
1396 1.190 ad
1397 1.190 ad ci->ci_data.cpu_cc_freq = freq;
1398 1.7 ad }
1399 1.37 joerg
1400 1.37 joerg void
1401 1.37 joerg x86_cpu_idle_mwait(void)
1402 1.37 joerg {
1403 1.37 joerg struct cpu_info *ci = curcpu();
1404 1.37 joerg
1405 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1406 1.37 joerg
1407 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1408 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1409 1.37 joerg return;
1410 1.37 joerg }
1411 1.37 joerg x86_mwait(0, 0);
1412 1.37 joerg }
1413 1.37 joerg
1414 1.37 joerg void
1415 1.37 joerg x86_cpu_idle_halt(void)
1416 1.37 joerg {
1417 1.37 joerg struct cpu_info *ci = curcpu();
1418 1.37 joerg
1419 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1420 1.37 joerg
1421 1.37 joerg x86_disable_intr();
1422 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1423 1.37 joerg x86_stihlt();
1424 1.37 joerg } else {
1425 1.37 joerg x86_enable_intr();
1426 1.37 joerg }
1427 1.37 joerg }
1428 1.73 jym
1429 1.73 jym /*
1430 1.73 jym * Loads pmap for the current CPU.
1431 1.73 jym */
1432 1.73 jym void
1433 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1434 1.73 jym {
1435 1.144 maxv #ifdef SVS
1436 1.159 maxv if (svs_enabled) {
1437 1.159 maxv svs_pdir_switch(pmap);
1438 1.159 maxv }
1439 1.144 maxv #endif
1440 1.144 maxv
1441 1.73 jym #ifdef PAE
1442 1.99 yamt struct cpu_info *ci = curcpu();
1443 1.116 nat bool interrupts_enabled;
1444 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1445 1.99 yamt int i;
1446 1.73 jym
1447 1.99 yamt /*
1448 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1449 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1450 1.99 yamt * reload cr3.
1451 1.99 yamt */
1452 1.116 nat interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1453 1.116 nat if (interrupts_enabled)
1454 1.116 nat x86_disable_intr();
1455 1.116 nat
1456 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1457 1.168 maxv l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
1458 1.73 jym }
1459 1.134 maxv
1460 1.116 nat if (interrupts_enabled)
1461 1.116 nat x86_enable_intr();
1462 1.73 jym tlbflush();
1463 1.160 maxv #else
1464 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1465 1.160 maxv #endif
1466 1.73 jym }
1467 1.91 cherry
1468 1.91 cherry /*
1469 1.91 cherry * Notify all other cpus to halt.
1470 1.91 cherry */
1471 1.91 cherry
1472 1.91 cherry void
1473 1.92 cherry cpu_broadcast_halt(void)
1474 1.91 cherry {
1475 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1476 1.91 cherry }
1477 1.91 cherry
1478 1.91 cherry /*
1479 1.176 ad * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
1480 1.176 ad * and trigger an AST on the running LWP.
1481 1.91 cherry */
1482 1.91 cherry
1483 1.91 cherry void
1484 1.91 cherry cpu_kick(struct cpu_info *ci)
1485 1.91 cherry {
1486 1.176 ad x86_send_ipi(ci, X86_IPI_AST);
1487 1.91 cherry }
1488