cpu.c revision 1.213 1 1.213 imil /* $NetBSD: cpu.c,v 1.213 2025/04/11 04:54:02 imil Exp $ */
2 1.2 ad
3 1.134 maxv /*
4 1.190 ad * Copyright (c) 2000-2020 NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.213 imil __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.213 2025/04/11 04:54:02 imil Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.101 kiyohara #include "opt_multiprocessor.h"
71 1.144 maxv #include "opt_svs.h"
72 1.2 ad
73 1.2 ad #include "lapic.h"
74 1.2 ad #include "ioapic.h"
75 1.179 ad #include "acpica.h"
76 1.190 ad #include "hpet.h"
77 1.2 ad
78 1.2 ad #include <sys/param.h>
79 1.2 ad #include <sys/proc.h>
80 1.2 ad #include <sys/systm.h>
81 1.2 ad #include <sys/device.h>
82 1.9 ad #include <sys/cpu.h>
83 1.93 jruoho #include <sys/cpufreq.h>
84 1.98 rmind #include <sys/idle.h>
85 1.9 ad #include <sys/atomic.h>
86 1.35 ad #include <sys/reboot.h>
87 1.174 maxv #include <sys/csan.h>
88 1.2 ad
89 1.78 uebayasi #include <uvm/uvm.h>
90 1.2 ad
91 1.102 pgoyette #include "acpica.h" /* for NACPICA, for mp_verbose */
92 1.102 pgoyette
93 1.187 bouyer #include <x86/machdep.h>
94 1.2 ad #include <machine/cpufunc.h>
95 1.2 ad #include <machine/cpuvar.h>
96 1.2 ad #include <machine/pmap.h>
97 1.2 ad #include <machine/vmparam.h>
98 1.102 pgoyette #if defined(MULTIPROCESSOR)
99 1.2 ad #include <machine/mpbiosvar.h>
100 1.101 kiyohara #endif
101 1.102 pgoyette #include <machine/mpconfig.h> /* for mp_verbose */
102 1.2 ad #include <machine/pcb.h>
103 1.2 ad #include <machine/specialreg.h>
104 1.2 ad #include <machine/segments.h>
105 1.2 ad #include <machine/gdt.h>
106 1.2 ad #include <machine/mtrr.h>
107 1.2 ad #include <machine/pio.h>
108 1.38 ad #include <machine/cpu_counter.h>
109 1.205 riastrad #include <machine/pmap_private.h>
110 1.2 ad
111 1.109 dsl #include <x86/fpu.h>
112 1.109 dsl
113 1.179 ad #if NACPICA > 0
114 1.179 ad #include <dev/acpi/acpi_srat.h>
115 1.179 ad #endif
116 1.179 ad
117 1.101 kiyohara #if NLAPIC > 0
118 1.2 ad #include <machine/apicvar.h>
119 1.2 ad #include <machine/i82489reg.h>
120 1.2 ad #include <machine/i82489var.h>
121 1.101 kiyohara #endif
122 1.2 ad
123 1.2 ad #include <dev/ic/mc146818reg.h>
124 1.190 ad #include <dev/ic/hpetvar.h>
125 1.2 ad #include <i386/isa/nvram.h>
126 1.2 ad #include <dev/isa/isareg.h>
127 1.2 ad
128 1.38 ad #include "tsc.h"
129 1.38 ad
130 1.187 bouyer #ifndef XENPV
131 1.178 nonaka #include "hyperv.h"
132 1.178 nonaka #if NHYPERV > 0
133 1.178 nonaka #include <x86/x86/hypervvar.h>
134 1.178 nonaka #endif
135 1.178 nonaka #endif
136 1.178 nonaka
137 1.187 bouyer #ifdef XEN
138 1.187 bouyer #include <xen/hypervisor.h>
139 1.187 bouyer #endif
140 1.187 bouyer
141 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
142 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
143 1.87 jruoho static void cpu_defer(device_t);
144 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
145 1.87 jruoho static void cpu_childdetached(device_t, device_t);
146 1.96 jruoho static bool cpu_stop(device_t);
147 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
148 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
149 1.79 jruoho static bool cpu_shutdown(device_t, int);
150 1.12 jmcneill
151 1.2 ad struct cpu_softc {
152 1.23 cube device_t sc_dev; /* device tree glue */
153 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
154 1.20 jmcneill bool sc_wasonline;
155 1.2 ad };
156 1.2 ad
157 1.101 kiyohara #ifdef MULTIPROCESSOR
158 1.120 msaitoh int mp_cpu_start(struct cpu_info *, paddr_t);
159 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
160 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
161 1.2 ad mp_cpu_start_cleanup };
162 1.101 kiyohara #endif
163 1.2 ad
164 1.2 ad
165 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
166 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
167 1.2 ad
168 1.2 ad /*
169 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
170 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
171 1.2 ad * point at it.
172 1.2 ad */
173 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
174 1.2 ad .ci_dev = 0,
175 1.2 ad .ci_self = &cpu_info_primary,
176 1.2 ad .ci_idepth = -1,
177 1.2 ad .ci_curlwp = &lwp0,
178 1.43 ad .ci_curldt = -1,
179 1.203 riastrad .ci_kfpu_spl = -1,
180 1.2 ad };
181 1.2 ad
182 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
183 1.2 ad
184 1.2 ad #ifdef i386
185 1.134 maxv void cpu_set_tss_gates(struct cpu_info *);
186 1.2 ad #endif
187 1.2 ad
188 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
189 1.12 jmcneill
190 1.122 maxv uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
191 1.117 maxv /* [0] basic features cpuid.1:%edx
192 1.117 maxv * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
193 1.117 maxv * [2] extended features cpuid:80000001:%edx
194 1.117 maxv * [3] extended features cpuid:80000001:%ecx
195 1.117 maxv * [4] VIA padlock features
196 1.117 maxv * [5] structured extended features cpuid.7:%ebx
197 1.117 maxv * [6] structured extended features cpuid.7:%ecx
198 1.117 maxv */
199 1.70 jym
200 1.101 kiyohara #ifdef MULTIPROCESSOR
201 1.12 jmcneill bool x86_mp_online;
202 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
203 1.101 kiyohara #endif
204 1.101 kiyohara #if NLAPIC > 0
205 1.14 joerg static vaddr_t cmos_data_mapping;
206 1.101 kiyohara #endif
207 1.45 ad struct cpu_info *cpu_starting;
208 1.2 ad
209 1.101 kiyohara #ifdef MULTIPROCESSOR
210 1.184 msaitoh void cpu_hatch(void *);
211 1.184 msaitoh static void cpu_boot_secondary(struct cpu_info *ci);
212 1.184 msaitoh static void cpu_start_secondary(struct cpu_info *ci);
213 1.101 kiyohara #if NLAPIC > 0
214 1.136 maxv static void cpu_copy_trampoline(paddr_t);
215 1.101 kiyohara #endif
216 1.164 cherry #endif /* MULTIPROCESSOR */
217 1.2 ad
218 1.2 ad /*
219 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
220 1.2 ad * the local APIC on the boot processor has been mapped.
221 1.2 ad *
222 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
223 1.2 ad */
224 1.101 kiyohara #if NLAPIC > 0
225 1.2 ad void
226 1.9 ad cpu_init_first(void)
227 1.2 ad {
228 1.2 ad
229 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
230 1.14 joerg
231 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
232 1.14 joerg if (cmos_data_mapping == 0)
233 1.14 joerg panic("No KVA for page 0");
234 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
235 1.14 joerg pmap_update(pmap_kernel());
236 1.2 ad }
237 1.101 kiyohara #endif
238 1.2 ad
239 1.87 jruoho static int
240 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
241 1.2 ad {
242 1.2 ad
243 1.2 ad return 1;
244 1.2 ad }
245 1.2 ad
246 1.142 maxv #ifdef __HAVE_PCPU_AREA
247 1.142 maxv void
248 1.142 maxv cpu_pcpuarea_init(struct cpu_info *ci)
249 1.142 maxv {
250 1.142 maxv struct vm_page *pg;
251 1.142 maxv size_t i, npages;
252 1.142 maxv vaddr_t base, va;
253 1.142 maxv paddr_t pa;
254 1.142 maxv
255 1.142 maxv CTASSERT(sizeof(struct pcpu_entry) % PAGE_SIZE == 0);
256 1.142 maxv
257 1.142 maxv npages = sizeof(struct pcpu_entry) / PAGE_SIZE;
258 1.142 maxv base = (vaddr_t)&pcpuarea->ent[cpu_index(ci)];
259 1.142 maxv
260 1.142 maxv for (i = 0; i < npages; i++) {
261 1.142 maxv pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
262 1.142 maxv if (pg == NULL) {
263 1.142 maxv panic("failed to allocate pcpu PA");
264 1.142 maxv }
265 1.142 maxv
266 1.142 maxv va = base + i * PAGE_SIZE;
267 1.142 maxv pa = VM_PAGE_TO_PHYS(pg);
268 1.142 maxv
269 1.142 maxv pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 0);
270 1.142 maxv }
271 1.142 maxv
272 1.142 maxv pmap_update(pmap_kernel());
273 1.142 maxv }
274 1.142 maxv #endif
275 1.142 maxv
276 1.2 ad static void
277 1.2 ad cpu_vm_init(struct cpu_info *ci)
278 1.2 ad {
279 1.199 christos unsigned int ncolors = 2;
280 1.2 ad
281 1.199 christos /*
282 1.199 christos * XXX: for AP's the cache info has not been initialized yet
283 1.199 christos * but that does not matter because uvm only pays attention at
284 1.199 christos * the maximum only. We should fix it once cpus have different
285 1.199 christos * cache sizes.
286 1.199 christos */
287 1.199 christos for (unsigned int i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
288 1.2 ad struct x86_cache_info *cai;
289 1.199 christos unsigned int tcolors;
290 1.2 ad
291 1.2 ad cai = &ci->ci_cinfo[i];
292 1.2 ad
293 1.2 ad tcolors = atop(cai->cai_totalsize);
294 1.184 msaitoh switch (cai->cai_associativity) {
295 1.2 ad case 0xff:
296 1.2 ad tcolors = 1; /* fully associative */
297 1.2 ad break;
298 1.2 ad case 0:
299 1.2 ad case 1:
300 1.2 ad break;
301 1.2 ad default:
302 1.2 ad tcolors /= cai->cai_associativity;
303 1.2 ad }
304 1.199 christos if (tcolors <= ncolors)
305 1.199 christos continue;
306 1.199 christos ncolors = tcolors;
307 1.199 christos }
308 1.199 christos
309 1.199 christos /*
310 1.199 christos * If the desired number of colors is not a power of
311 1.199 christos * two, it won't be good. Find the greatest power of
312 1.199 christos * two which is an even divisor of the number of colors,
313 1.199 christos * to preserve even coloring of pages.
314 1.199 christos */
315 1.199 christos if (ncolors & (ncolors - 1) ) {
316 1.199 christos unsigned int try, picked = 1;
317 1.199 christos for (try = 1; try < ncolors; try *= 2) {
318 1.199 christos if (ncolors % try == 0) picked = try;
319 1.199 christos }
320 1.199 christos if (picked == 1) {
321 1.199 christos panic("desired number of cache colors %u is "
322 1.199 christos " > 1, but not even!", ncolors);
323 1.32 tls }
324 1.199 christos ncolors = picked;
325 1.2 ad }
326 1.2 ad
327 1.2 ad /*
328 1.94 mrg * Knowing the size of the largest cache on this CPU, potentially
329 1.94 mrg * re-color our pages.
330 1.2 ad */
331 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
332 1.2 ad uvm_page_recolor(ncolors);
333 1.98 rmind
334 1.98 rmind pmap_tlb_cpu_init(ci);
335 1.123 maxv #ifndef __HAVE_DIRECT_MAP
336 1.123 maxv pmap_vpage_cpu_init(ci);
337 1.123 maxv #endif
338 1.2 ad }
339 1.2 ad
340 1.87 jruoho static void
341 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
342 1.2 ad {
343 1.23 cube struct cpu_softc *sc = device_private(self);
344 1.2 ad struct cpu_attach_args *caa = aux;
345 1.2 ad struct cpu_info *ci;
346 1.21 ad uintptr_t ptr;
347 1.101 kiyohara #if NLAPIC > 0
348 1.2 ad int cpunum = caa->cpu_number;
349 1.101 kiyohara #endif
350 1.51 ad static bool again;
351 1.2 ad
352 1.23 cube sc->sc_dev = self;
353 1.23 cube
354 1.163 cherry if (ncpu > maxcpus) {
355 1.98 rmind #ifndef _LP64
356 1.98 rmind aprint_error(": too many CPUs, please use NetBSD/amd64\n");
357 1.98 rmind #else
358 1.98 rmind aprint_error(": too many CPUs\n");
359 1.98 rmind #endif
360 1.48 ad return;
361 1.48 ad }
362 1.48 ad
363 1.2 ad /*
364 1.2 ad * If we're an Application Processor, allocate a cpu_info
365 1.2 ad * structure, otherwise use the primary's.
366 1.2 ad */
367 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
368 1.36 ad if ((boothowto & RB_MD1) != 0) {
369 1.35 ad aprint_error(": multiprocessor boot disabled\n");
370 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
371 1.56 jmcneill aprint_error_dev(self,
372 1.56 jmcneill "couldn't establish power handler\n");
373 1.35 ad return;
374 1.35 ad }
375 1.2 ad aprint_naive(": Application Processor\n");
376 1.143 maxv ptr = (uintptr_t)uvm_km_alloc(kernel_map,
377 1.143 maxv sizeof(*ci) + CACHE_LINE_SIZE - 1, 0,
378 1.143 maxv UVM_KMF_WIRED|UVM_KMF_ZERO);
379 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
380 1.43 ad ci->ci_curldt = -1;
381 1.2 ad } else {
382 1.2 ad aprint_naive(": %s Processor\n",
383 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
384 1.2 ad ci = &cpu_info_primary;
385 1.101 kiyohara #if NLAPIC > 0
386 1.2 ad if (cpunum != lapic_cpu_number()) {
387 1.51 ad /* XXX should be done earlier. */
388 1.39 ad uint32_t reg;
389 1.39 ad aprint_verbose("\n");
390 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
391 1.47 ad " instead of at expected %d", lapic_cpu_number(),
392 1.23 cube cpunum);
393 1.125 nonaka reg = lapic_readreg(LAPIC_ID);
394 1.125 nonaka lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
395 1.39 ad (cpunum << LAPIC_ID_SHIFT));
396 1.2 ad }
397 1.47 ad if (cpunum != lapic_cpu_number()) {
398 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
399 1.47 ad }
400 1.101 kiyohara #endif
401 1.2 ad }
402 1.2 ad
403 1.2 ad ci->ci_self = ci;
404 1.2 ad sc->sc_info = ci;
405 1.2 ad ci->ci_dev = self;
406 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
407 1.42 ad ci->ci_cpuid = caa->cpu_number;
408 1.2 ad ci->ci_func = caa->cpu_func;
409 1.177 maxv ci->ci_kfpu_spl = -1;
410 1.112 msaitoh aprint_normal("\n");
411 1.2 ad
412 1.55 ad /* Must be before mi_cpu_attach(). */
413 1.55 ad cpu_vm_init(ci);
414 1.55 ad
415 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
416 1.2 ad int error;
417 1.2 ad
418 1.2 ad error = mi_cpu_attach(ci);
419 1.2 ad if (error != 0) {
420 1.47 ad aprint_error_dev(self,
421 1.30 cegger "mi_cpu_attach failed with %d\n", error);
422 1.2 ad return;
423 1.2 ad }
424 1.142 maxv #ifdef __HAVE_PCPU_AREA
425 1.142 maxv cpu_pcpuarea_init(ci);
426 1.142 maxv #endif
427 1.15 yamt cpu_init_tss(ci);
428 1.2 ad } else {
429 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
430 1.179 ad #if NACPICA > 0
431 1.179 ad /* Parse out NUMA info for cpu_identify(). */
432 1.179 ad acpisrat_init();
433 1.179 ad #endif
434 1.2 ad }
435 1.2 ad
436 1.146 maxv #ifdef SVS
437 1.146 maxv cpu_svs_init(ci);
438 1.146 maxv #endif
439 1.146 maxv
440 1.2 ad pmap_reference(pmap_kernel());
441 1.2 ad ci->ci_pmap = pmap_kernel();
442 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
443 1.2 ad
444 1.51 ad /*
445 1.51 ad * Boot processor may not be attached first, but the below
446 1.51 ad * must be done to allow booting other processors.
447 1.51 ad */
448 1.51 ad if (!again) {
449 1.190 ad /* Make sure DELAY() (likely i8254_delay()) is initialized. */
450 1.190 ad DELAY(1);
451 1.190 ad
452 1.190 ad /*
453 1.190 ad * Basic init. Compute an approximate frequency for the TSC
454 1.190 ad * using the i8254. If there's a HPET we'll redo it later.
455 1.190 ad */
456 1.188 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
457 1.2 ad cpu_intr_init(ci);
458 1.194 msaitoh tsc_setfunc(ci);
459 1.40 ad cpu_get_tsc_freq(ci);
460 1.2 ad cpu_init(ci);
461 1.134 maxv #ifdef i386
462 1.2 ad cpu_set_tss_gates(ci);
463 1.134 maxv #endif
464 1.2 ad pmap_cpu_init_late(ci);
465 1.101 kiyohara #if NLAPIC > 0
466 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
467 1.51 ad /* Enable lapic. */
468 1.51 ad lapic_enable();
469 1.51 ad lapic_set_lvt();
470 1.189 bouyer if (!vm_guest_is_xenpvh_or_pvhvm())
471 1.192 ad lapic_calibrate_timer(false);
472 1.51 ad }
473 1.101 kiyohara #endif
474 1.174 maxv kcsan_cpu_init(ci);
475 1.51 ad again = true;
476 1.51 ad }
477 1.51 ad
478 1.51 ad /* further PCB init done later. */
479 1.51 ad
480 1.51 ad switch (caa->cpu_role) {
481 1.51 ad case CPU_ROLE_SP:
482 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
483 1.51 ad cpu_identify(ci);
484 1.53 ad x86_errata();
485 1.37 joerg x86_cpu_idle_init();
486 1.187 bouyer #ifdef XENPVHVM
487 1.187 bouyer xen_hvm_init_cpu(ci);
488 1.187 bouyer #endif
489 1.2 ad break;
490 1.2 ad
491 1.2 ad case CPU_ROLE_BP:
492 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
493 1.40 ad cpu_identify(ci);
494 1.53 ad x86_errata();
495 1.37 joerg x86_cpu_idle_init();
496 1.187 bouyer #ifdef XENPVHVM
497 1.187 bouyer xen_hvm_init_cpu(ci);
498 1.187 bouyer #endif
499 1.2 ad break;
500 1.2 ad
501 1.101 kiyohara #ifdef MULTIPROCESSOR
502 1.2 ad case CPU_ROLE_AP:
503 1.2 ad /*
504 1.2 ad * report on an AP
505 1.2 ad */
506 1.2 ad cpu_intr_init(ci);
507 1.195 yamaguch idt_vec_init_cpu_md(&ci->ci_idtvec, cpu_index(ci));
508 1.2 ad gdt_alloc_cpu(ci);
509 1.134 maxv #ifdef i386
510 1.2 ad cpu_set_tss_gates(ci);
511 1.134 maxv #endif
512 1.2 ad pmap_cpu_init_late(ci);
513 1.2 ad cpu_start_secondary(ci);
514 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
515 1.59 cegger struct cpu_info *tmp;
516 1.59 cegger
517 1.40 ad cpu_identify(ci);
518 1.59 cegger tmp = cpu_info_list;
519 1.59 cegger while (tmp->ci_next)
520 1.59 cegger tmp = tmp->ci_next;
521 1.59 cegger
522 1.59 cegger tmp->ci_next = ci;
523 1.2 ad }
524 1.2 ad break;
525 1.101 kiyohara #endif
526 1.2 ad
527 1.2 ad default:
528 1.2 ad panic("unknown processor type??\n");
529 1.2 ad }
530 1.51 ad
531 1.71 cegger pat_init(ci);
532 1.2 ad
533 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
534 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
535 1.12 jmcneill
536 1.101 kiyohara #ifdef MULTIPROCESSOR
537 1.2 ad if (mp_verbose) {
538 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
539 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
540 1.2 ad
541 1.47 ad aprint_verbose_dev(self,
542 1.28 cegger "idle lwp at %p, idle sp at %p\n",
543 1.28 cegger l,
544 1.2 ad #ifdef i386
545 1.65 rmind (void *)pcb->pcb_esp
546 1.2 ad #else
547 1.65 rmind (void *)pcb->pcb_rsp
548 1.2 ad #endif
549 1.2 ad );
550 1.2 ad }
551 1.101 kiyohara #endif
552 1.81 jmcneill
553 1.89 jruoho /*
554 1.89 jruoho * Postpone the "cpufeaturebus" scan.
555 1.89 jruoho * It is safe to scan the pseudo-bus
556 1.89 jruoho * only after all CPUs have attached.
557 1.89 jruoho */
558 1.87 jruoho (void)config_defer(self, cpu_defer);
559 1.87 jruoho }
560 1.87 jruoho
561 1.87 jruoho static void
562 1.87 jruoho cpu_defer(device_t self)
563 1.87 jruoho {
564 1.81 jmcneill cpu_rescan(self, NULL, NULL);
565 1.81 jmcneill }
566 1.81 jmcneill
567 1.87 jruoho static int
568 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
569 1.81 jmcneill {
570 1.83 jruoho struct cpu_softc *sc = device_private(self);
571 1.81 jmcneill struct cpufeature_attach_args cfaa;
572 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
573 1.81 jmcneill
574 1.181 pgoyette /*
575 1.181 pgoyette * If we booted with RB_MD1 to disable multiprocessor, the
576 1.181 pgoyette * auto-configuration data still contains the additional
577 1.181 pgoyette * CPUs. But their initialization was mostly bypassed
578 1.181 pgoyette * during attach, so we have to make sure we don't look at
579 1.181 pgoyette * their featurebus info, since it wasn't retrieved.
580 1.181 pgoyette */
581 1.181 pgoyette if (ci == NULL)
582 1.181 pgoyette return 0;
583 1.181 pgoyette
584 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
585 1.81 jmcneill cfaa.ci = ci;
586 1.81 jmcneill
587 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
588 1.83 jruoho if (ci->ci_frequency == NULL) {
589 1.86 jruoho cfaa.name = "frequency";
590 1.200 thorpej ci->ci_frequency =
591 1.200 thorpej config_found(self, &cfaa, NULL,
592 1.201 thorpej CFARGS(.iattr = "cpufeaturebus"));
593 1.84 jruoho }
594 1.84 jruoho
595 1.81 jmcneill if (ci->ci_padlock == NULL) {
596 1.81 jmcneill cfaa.name = "padlock";
597 1.200 thorpej ci->ci_padlock =
598 1.200 thorpej config_found(self, &cfaa, NULL,
599 1.201 thorpej CFARGS(.iattr = "cpufeaturebus"));
600 1.81 jmcneill }
601 1.82 jruoho
602 1.86 jruoho if (ci->ci_temperature == NULL) {
603 1.86 jruoho cfaa.name = "temperature";
604 1.200 thorpej ci->ci_temperature =
605 1.200 thorpej config_found(self, &cfaa, NULL,
606 1.201 thorpej CFARGS(.iattr = "cpufeaturebus"));
607 1.85 jruoho }
608 1.95 jmcneill
609 1.95 jmcneill if (ci->ci_vm == NULL) {
610 1.95 jmcneill cfaa.name = "vm";
611 1.200 thorpej ci->ci_vm =
612 1.200 thorpej config_found(self, &cfaa, NULL,
613 1.201 thorpej CFARGS(.iattr = "cpufeaturebus"));
614 1.95 jmcneill }
615 1.81 jmcneill }
616 1.81 jmcneill
617 1.81 jmcneill return 0;
618 1.81 jmcneill }
619 1.81 jmcneill
620 1.87 jruoho static void
621 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
622 1.81 jmcneill {
623 1.81 jmcneill struct cpu_softc *sc = device_private(self);
624 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
625 1.81 jmcneill
626 1.83 jruoho if (ci->ci_frequency == child)
627 1.83 jruoho ci->ci_frequency = NULL;
628 1.82 jruoho
629 1.81 jmcneill if (ci->ci_padlock == child)
630 1.81 jmcneill ci->ci_padlock = NULL;
631 1.83 jruoho
632 1.86 jruoho if (ci->ci_temperature == child)
633 1.86 jruoho ci->ci_temperature = NULL;
634 1.95 jmcneill
635 1.95 jmcneill if (ci->ci_vm == child)
636 1.95 jmcneill ci->ci_vm = NULL;
637 1.2 ad }
638 1.2 ad
639 1.2 ad /*
640 1.2 ad * Initialize the processor appropriately.
641 1.2 ad */
642 1.2 ad
643 1.2 ad void
644 1.9 ad cpu_init(struct cpu_info *ci)
645 1.2 ad {
646 1.141 maxv extern int x86_fpu_save;
647 1.113 christos uint32_t cr4 = 0;
648 1.2 ad
649 1.2 ad lcr0(rcr0() | CR0_WP);
650 1.2 ad
651 1.169 maxv /* If global TLB caching is supported, enable it */
652 1.70 jym if (cpu_feature[0] & CPUID_PGE)
653 1.169 maxv cr4 |= CR4_PGE;
654 1.2 ad
655 1.2 ad /*
656 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
657 1.2 ad */
658 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
659 1.110 dsl cr4 |= CR4_OSFXSR;
660 1.2 ad
661 1.2 ad /*
662 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
663 1.2 ad */
664 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
665 1.110 dsl cr4 |= CR4_OSXMMEXCPT;
666 1.2 ad }
667 1.2 ad
668 1.110 dsl /* If xsave is supported, enable it */
669 1.110 dsl if (cpu_feature[1] & CPUID2_XSAVE)
670 1.110 dsl cr4 |= CR4_OSXSAVE;
671 1.110 dsl
672 1.118 maxv /* If SMEP is supported, enable it */
673 1.118 maxv if (cpu_feature[5] & CPUID_SEF_SMEP)
674 1.118 maxv cr4 |= CR4_SMEP;
675 1.118 maxv
676 1.137 maxv /* If SMAP is supported, enable it */
677 1.137 maxv if (cpu_feature[5] & CPUID_SEF_SMAP)
678 1.137 maxv cr4 |= CR4_SMAP;
679 1.137 maxv
680 1.171 maxv #ifdef SVS
681 1.171 maxv /* If PCID is supported, enable it */
682 1.171 maxv if (svs_pcid)
683 1.171 maxv cr4 |= CR4_PCIDE;
684 1.171 maxv #endif
685 1.171 maxv
686 1.113 christos if (cr4) {
687 1.113 christos cr4 |= rcr4();
688 1.113 christos lcr4(cr4);
689 1.113 christos }
690 1.110 dsl
691 1.145 msaitoh /*
692 1.145 msaitoh * Changing CR4 register may change cpuid values. For example, setting
693 1.145 msaitoh * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
694 1.145 msaitoh * ci_feat_val[1], so update it.
695 1.145 msaitoh * XXX Other than ci_feat_val[1] might be changed.
696 1.145 msaitoh */
697 1.145 msaitoh if (cpuid_level >= 1) {
698 1.145 msaitoh u_int descs[4];
699 1.145 msaitoh
700 1.145 msaitoh x86_cpuid(1, descs);
701 1.145 msaitoh ci->ci_feat_val[1] = descs[2];
702 1.145 msaitoh }
703 1.145 msaitoh
704 1.208 riastrad if (CPU_IS_PRIMARY(ci) &&
705 1.208 riastrad x86_fpu_save >= FPU_SAVE_FXSAVE) {
706 1.158 maxv fpuinit_mxcsr_mask();
707 1.141 maxv }
708 1.141 maxv
709 1.110 dsl /* If xsave is enabled, enable all fpu features */
710 1.110 dsl if (cr4 & CR4_OSXSAVE)
711 1.110 dsl wrxcr(0, x86_xsave_features & XCR0_FPU);
712 1.110 dsl
713 1.2 ad #ifdef MTRR
714 1.2 ad /*
715 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
716 1.2 ad */
717 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
718 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
719 1.2 ad i686_mtrr_init_first();
720 1.2 ad mtrr_init_cpu(ci);
721 1.2 ad }
722 1.2 ad
723 1.2 ad #ifdef i386
724 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
725 1.2 ad /*
726 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
727 1.2 ad */
728 1.106 msaitoh if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
729 1.106 msaitoh if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
730 1.106 msaitoh (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
731 1.106 msaitoh CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
732 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
733 1.2 ad k6_mtrr_init_first();
734 1.2 ad mtrr_init_cpu(ci);
735 1.2 ad }
736 1.2 ad }
737 1.2 ad }
738 1.2 ad #endif /* i386 */
739 1.2 ad #endif /* MTRR */
740 1.2 ad
741 1.38 ad if (ci != &cpu_info_primary) {
742 1.150 maxv /* Synchronize TSC */
743 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
744 1.38 ad tsc_sync_ap(ci);
745 1.38 ad } else {
746 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
747 1.38 ad }
748 1.2 ad }
749 1.2 ad
750 1.101 kiyohara #ifdef MULTIPROCESSOR
751 1.2 ad void
752 1.12 jmcneill cpu_boot_secondary_processors(void)
753 1.2 ad {
754 1.2 ad struct cpu_info *ci;
755 1.100 chs kcpuset_t *cpus;
756 1.2 ad u_long i;
757 1.2 ad
758 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
759 1.60 ad x86_patch(false);
760 1.5 ad
761 1.179 ad #if NACPICA > 0
762 1.179 ad /* Finished with NUMA info for now. */
763 1.179 ad acpisrat_exit();
764 1.179 ad #endif
765 1.179 ad
766 1.100 chs kcpuset_create(&cpus, true);
767 1.100 chs kcpuset_set(cpus, cpu_index(curcpu()));
768 1.100 chs for (i = 0; i < maxcpus; i++) {
769 1.57 ad ci = cpu_lookup(i);
770 1.2 ad if (ci == NULL)
771 1.2 ad continue;
772 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
773 1.2 ad continue;
774 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
775 1.2 ad continue;
776 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
777 1.2 ad continue;
778 1.2 ad cpu_boot_secondary(ci);
779 1.100 chs kcpuset_set(cpus, cpu_index(ci));
780 1.2 ad }
781 1.100 chs while (!kcpuset_match(cpus, kcpuset_running))
782 1.100 chs ;
783 1.100 chs kcpuset_destroy(cpus);
784 1.2 ad
785 1.2 ad x86_mp_online = true;
786 1.38 ad
787 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
788 1.38 ad tsc_tc_init();
789 1.2 ad }
790 1.101 kiyohara #endif
791 1.2 ad
792 1.2 ad static void
793 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
794 1.2 ad {
795 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
796 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
797 1.2 ad
798 1.2 ad pcb->pcb_cr0 = rcr0();
799 1.2 ad }
800 1.2 ad
801 1.2 ad void
802 1.12 jmcneill cpu_init_idle_lwps(void)
803 1.2 ad {
804 1.2 ad struct cpu_info *ci;
805 1.2 ad u_long i;
806 1.2 ad
807 1.54 ad for (i = 0; i < maxcpus; i++) {
808 1.57 ad ci = cpu_lookup(i);
809 1.2 ad if (ci == NULL)
810 1.2 ad continue;
811 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
812 1.2 ad continue;
813 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
814 1.2 ad continue;
815 1.2 ad cpu_init_idle_lwp(ci);
816 1.2 ad }
817 1.2 ad }
818 1.2 ad
819 1.101 kiyohara #ifdef MULTIPROCESSOR
820 1.2 ad void
821 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
822 1.2 ad {
823 1.38 ad u_long psl;
824 1.2 ad int i;
825 1.2 ad
826 1.165 cherry #if NLAPIC > 0
827 1.165 cherry paddr_t mp_pdirpa;
828 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
829 1.136 maxv cpu_copy_trampoline(mp_pdirpa);
830 1.165 cherry #endif
831 1.136 maxv
832 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
833 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
834 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
835 1.25 ad return;
836 1.45 ad }
837 1.2 ad
838 1.2 ad /*
839 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
840 1.50 ad * initial gate and allows the AP to start soft initialization.
841 1.2 ad */
842 1.50 ad KASSERT(cpu_starting == NULL);
843 1.50 ad cpu_starting = ci;
844 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
845 1.189 bouyer delay_func(10);
846 1.2 ad }
847 1.38 ad
848 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
849 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
850 1.2 ad #if defined(MPDEBUG) && defined(DDB)
851 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
852 1.2 ad Debugger();
853 1.2 ad #endif
854 1.38 ad } else {
855 1.38 ad /*
856 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
857 1.150 maxv * twice (in tsc_sync_bp) to minimize possible cache effects.
858 1.150 maxv * Disable interrupts to try and rule out any external
859 1.150 maxv * interference.
860 1.38 ad */
861 1.38 ad psl = x86_read_psl();
862 1.38 ad x86_disable_intr();
863 1.38 ad tsc_sync_bp(ci);
864 1.38 ad x86_write_psl(psl);
865 1.2 ad }
866 1.2 ad
867 1.2 ad CPU_START_CLEANUP(ci);
868 1.45 ad cpu_starting = NULL;
869 1.2 ad }
870 1.2 ad
871 1.2 ad void
872 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
873 1.2 ad {
874 1.38 ad int64_t drift;
875 1.38 ad u_long psl;
876 1.2 ad int i;
877 1.2 ad
878 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
879 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
880 1.189 bouyer delay_func(10);
881 1.2 ad }
882 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
883 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
884 1.2 ad #if defined(MPDEBUG) && defined(DDB)
885 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
886 1.2 ad Debugger();
887 1.2 ad #endif
888 1.38 ad } else {
889 1.38 ad /* Synchronize TSC again, check for drift. */
890 1.38 ad drift = ci->ci_data.cpu_cc_skew;
891 1.38 ad psl = x86_read_psl();
892 1.38 ad x86_disable_intr();
893 1.38 ad tsc_sync_bp(ci);
894 1.38 ad x86_write_psl(psl);
895 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
896 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
897 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
898 1.38 ad tsc_sync_drift(drift);
899 1.2 ad }
900 1.2 ad }
901 1.2 ad
902 1.2 ad /*
903 1.117 maxv * The CPU ends up here when it's ready to run.
904 1.2 ad * This is called from code in mptramp.s; at this point, we are running
905 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
906 1.2 ad * this processor will enter the idle loop and start looking for work.
907 1.2 ad */
908 1.2 ad void
909 1.2 ad cpu_hatch(void *v)
910 1.2 ad {
911 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
912 1.65 rmind struct pcb *pcb;
913 1.130 kre int s, i;
914 1.2 ad
915 1.162 maxv /* ------------------------------------------------------------- */
916 1.162 maxv
917 1.162 maxv /*
918 1.162 maxv * This section of code must be compiled with SSP disabled, to
919 1.162 maxv * prevent a race against cpu0. See sys/conf/ssp.mk.
920 1.162 maxv */
921 1.162 maxv
922 1.209 riastrad /*
923 1.209 riastrad * Initialize MSRs on this CPU:
924 1.209 riastrad *
925 1.209 riastrad * - On amd64: Enables SYSCALL/SYSRET.
926 1.209 riastrad *
927 1.209 riastrad * - On amd64: Sets up %fs and %gs so that %gs points to the
928 1.209 riastrad * current struct cpu_info as needed for CPUVAR(...),
929 1.209 riastrad * curcpu(), and curlwp.
930 1.209 riastrad *
931 1.209 riastrad * (On i386, CPUVAR(...), curcpu(), and curlwp are made to
932 1.209 riastrad * work first by the conifguration of segment descriptors in
933 1.209 riastrad * the Global Descriptor Table (GDT) in initgdt.)
934 1.209 riastrad *
935 1.209 riastrad * - Enables the no-execute bit if supported.
936 1.209 riastrad *
937 1.209 riastrad * Thus, after this point, CPUVAR(...), curcpu(), and curlwp
938 1.209 riastrad * will work on this CPU.
939 1.209 riastrad *
940 1.209 riastrad * Note: The call to cpu_init_msrs for cpu0 happens in
941 1.209 riastrad * init386/init_x86_64.
942 1.209 riastrad */
943 1.12 jmcneill cpu_init_msrs(ci, true);
944 1.209 riastrad
945 1.40 ad cpu_probe(ci);
946 1.154 maxv cpu_speculation_init(ci);
947 1.178 nonaka #if NHYPERV > 0
948 1.178 nonaka hyperv_init_cpu(ci);
949 1.178 nonaka #endif
950 1.46 ad
951 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
952 1.134 maxv /* cpu_get_tsc_freq(ci); */
953 1.38 ad
954 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
955 1.38 ad
956 1.38 ad /*
957 1.150 maxv * Synchronize the TSC for the first time. Note that interrupts are
958 1.150 maxv * off at this point.
959 1.38 ad */
960 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
961 1.38 ad tsc_sync_ap(ci);
962 1.38 ad
963 1.162 maxv /* ------------------------------------------------------------- */
964 1.162 maxv
965 1.38 ad /*
966 1.150 maxv * Wait to be brought online.
967 1.150 maxv *
968 1.150 maxv * Use MONITOR/MWAIT if available. These instructions put the CPU in
969 1.150 maxv * a low consumption mode (C-state), and if the TSC is not invariant,
970 1.150 maxv * this causes the TSC to drift. We want this to happen, so that we
971 1.150 maxv * can later detect (in tsc_tc_init) any abnormal drift with invariant
972 1.150 maxv * TSCs. That's just for safety; by definition such drifts should
973 1.150 maxv * never occur with invariant TSCs.
974 1.150 maxv *
975 1.150 maxv * If not available, try PAUSE. We'd like to use HLT, but we have
976 1.150 maxv * interrupts off.
977 1.38 ad */
978 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
979 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
980 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
981 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
982 1.38 ad continue;
983 1.38 ad }
984 1.38 ad x86_mwait(0, 0);
985 1.38 ad } else {
986 1.131 pgoyette /*
987 1.131 pgoyette * XXX The loop repetition count could be a lot higher, but
988 1.131 pgoyette * XXX currently qemu emulator takes a _very_long_time_ to
989 1.131 pgoyette * XXX execute the pause instruction. So for now, use a low
990 1.131 pgoyette * XXX value to allow the cpu to hatch before timing out.
991 1.131 pgoyette */
992 1.131 pgoyette for (i = 50; i != 0; i--) {
993 1.127 pgoyette x86_pause();
994 1.127 pgoyette }
995 1.38 ad }
996 1.6 ad }
997 1.5 ad
998 1.26 cegger /* Because the text may have been patched in x86_patch(). */
999 1.5 ad wbinvd();
1000 1.5 ad x86_flush();
1001 1.88 rmind tlbflushg();
1002 1.5 ad
1003 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
1004 1.2 ad
1005 1.73 jym #ifdef PAE
1006 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
1007 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1008 1.168 maxv l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PTE_P;
1009 1.73 jym }
1010 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
1011 1.73 jym #else
1012 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
1013 1.73 jym #endif
1014 1.73 jym
1015 1.65 rmind pcb = lwp_getpcb(curlwp);
1016 1.73 jym pcb->pcb_cr3 = rcr3();
1017 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
1018 1.65 rmind lcr0(pcb->pcb_cr0);
1019 1.65 rmind
1020 1.195 yamaguch cpu_init_idt(ci);
1021 1.8 ad gdt_init_cpu(ci);
1022 1.111 joerg #if NLAPIC > 0
1023 1.8 ad lapic_enable();
1024 1.2 ad lapic_set_lvt();
1025 1.111 joerg #endif
1026 1.2 ad
1027 1.2 ad fpuinit(ci);
1028 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
1029 1.15 yamt ltr(ci->ci_tss_sel);
1030 1.2 ad
1031 1.150 maxv /*
1032 1.150 maxv * cpu_init will re-synchronize the TSC, and will detect any abnormal
1033 1.150 maxv * drift that would have been caused by the use of MONITOR/MWAIT
1034 1.150 maxv * above.
1035 1.150 maxv */
1036 1.2 ad cpu_init(ci);
1037 1.187 bouyer #ifdef XENPVHVM
1038 1.187 bouyer xen_hvm_init_cpu(ci);
1039 1.187 bouyer #endif
1040 1.192 ad (*x86_initclock_func)();
1041 1.7 ad cpu_get_tsc_freq(ci);
1042 1.2 ad
1043 1.2 ad s = splhigh();
1044 1.165 cherry #if NLAPIC > 0
1045 1.124 nonaka lapic_write_tpri(0);
1046 1.165 cherry #endif
1047 1.3 ad x86_enable_intr();
1048 1.2 ad splx(s);
1049 1.6 ad x86_errata();
1050 1.2 ad
1051 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
1052 1.98 rmind
1053 1.174 maxv kcsan_cpu_init(ci);
1054 1.174 maxv
1055 1.98 rmind idle_loop(NULL);
1056 1.98 rmind KASSERT(false);
1057 1.2 ad }
1058 1.101 kiyohara #endif
1059 1.2 ad
1060 1.2 ad #if defined(DDB)
1061 1.2 ad
1062 1.2 ad #include <ddb/db_output.h>
1063 1.2 ad #include <machine/db_machdep.h>
1064 1.2 ad
1065 1.2 ad /*
1066 1.2 ad * Dump CPU information from ddb.
1067 1.2 ad */
1068 1.2 ad void
1069 1.2 ad cpu_debug_dump(void)
1070 1.2 ad {
1071 1.2 ad struct cpu_info *ci;
1072 1.2 ad CPU_INFO_ITERATOR cii;
1073 1.184 msaitoh const char sixtyfour64space[] =
1074 1.172 mrg #ifdef _LP64
1075 1.172 mrg " "
1076 1.172 mrg #endif
1077 1.172 mrg "";
1078 1.2 ad
1079 1.180 ad db_printf("addr %sdev id flags ipis spl curlwp "
1080 1.173 maxv "\n", sixtyfour64space);
1081 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
1082 1.180 ad db_printf("%p %s %ld %x %x %d %10p\n",
1083 1.2 ad ci,
1084 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
1085 1.2 ad (long)ci->ci_cpuid,
1086 1.180 ad ci->ci_flags, ci->ci_ipis, ci->ci_ilevel,
1087 1.173 maxv ci->ci_curlwp);
1088 1.2 ad }
1089 1.2 ad }
1090 1.2 ad #endif
1091 1.2 ad
1092 1.164 cherry #ifdef MULTIPROCESSOR
1093 1.101 kiyohara #if NLAPIC > 0
1094 1.2 ad static void
1095 1.136 maxv cpu_copy_trampoline(paddr_t pdir_pa)
1096 1.2 ad {
1097 1.136 maxv extern uint32_t nox_flag;
1098 1.2 ad extern u_char cpu_spinup_trampoline[];
1099 1.2 ad extern u_char cpu_spinup_trampoline_end[];
1100 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
1101 1.136 maxv struct {
1102 1.136 maxv uint32_t large;
1103 1.136 maxv uint32_t nox;
1104 1.136 maxv uint32_t pdir;
1105 1.136 maxv } smp_data;
1106 1.136 maxv CTASSERT(sizeof(smp_data) == 3 * 4);
1107 1.136 maxv
1108 1.136 maxv smp_data.large = (pmap_largepages != 0);
1109 1.136 maxv smp_data.nox = nox_flag;
1110 1.136 maxv smp_data.pdir = (uint32_t)(pdir_pa & 0xFFFFFFFF);
1111 1.12 jmcneill
1112 1.136 maxv /* Enter the physical address */
1113 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1114 1.12 jmcneill UVM_KMF_VAONLY);
1115 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
1116 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
1117 1.2 ad pmap_update(pmap_kernel());
1118 1.136 maxv
1119 1.136 maxv /* Copy boot code */
1120 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
1121 1.2 ad cpu_spinup_trampoline,
1122 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
1123 1.12 jmcneill
1124 1.136 maxv /* Copy smp_data at the end */
1125 1.136 maxv memcpy((void *)(mp_trampoline_vaddr + PAGE_SIZE - sizeof(smp_data)),
1126 1.136 maxv &smp_data, sizeof(smp_data));
1127 1.136 maxv
1128 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
1129 1.12 jmcneill pmap_update(pmap_kernel());
1130 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
1131 1.2 ad }
1132 1.101 kiyohara #endif
1133 1.2 ad
1134 1.2 ad int
1135 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
1136 1.2 ad {
1137 1.210 andvar #if NLAPIC > 0
1138 1.2 ad int error;
1139 1.14 joerg
1140 1.14 joerg /*
1141 1.14 joerg * Bootstrap code must be addressable in real mode
1142 1.14 joerg * and it must be page aligned.
1143 1.14 joerg */
1144 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1145 1.2 ad
1146 1.2 ad /*
1147 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1148 1.2 ad */
1149 1.2 ad
1150 1.2 ad outb(IO_RTC, NVRAM_RESET);
1151 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
1152 1.2 ad
1153 1.2 ad /*
1154 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
1155 1.2 ad * to the AP startup code ..."
1156 1.2 ad */
1157 1.165 cherry unsigned short dwordptr[2];
1158 1.2 ad dwordptr[0] = 0;
1159 1.14 joerg dwordptr[1] = target >> 4;
1160 1.2 ad
1161 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1162 1.2 ad
1163 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
1164 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
1165 1.25 ad return ENODEV;
1166 1.25 ad }
1167 1.25 ad
1168 1.2 ad /*
1169 1.51 ad * ... prior to executing the following sequence:". We'll also add in
1170 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
1171 1.51 ad * disabled. It may not be able to cope with MP coherency.
1172 1.2 ad */
1173 1.51 ad wbinvd();
1174 1.2 ad
1175 1.2 ad if (ci->ci_flags & CPUF_AP) {
1176 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
1177 1.26 cegger if (error != 0) {
1178 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1179 1.50 ad __func__);
1180 1.2 ad return error;
1181 1.25 ad }
1182 1.189 bouyer delay_func(10000);
1183 1.2 ad
1184 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1185 1.26 cegger if (error != 0) {
1186 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1187 1.50 ad __func__);
1188 1.25 ad return error;
1189 1.25 ad }
1190 1.189 bouyer delay_func(200);
1191 1.2 ad
1192 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1193 1.26 cegger if (error != 0) {
1194 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1195 1.50 ad __func__);
1196 1.25 ad return error;
1197 1.2 ad }
1198 1.189 bouyer delay_func(200);
1199 1.2 ad }
1200 1.44 ad
1201 1.2 ad return 0;
1202 1.210 andvar #else
1203 1.210 andvar return ENODEV;
1204 1.210 andvar #endif /* NLAPIC > 0 */
1205 1.2 ad }
1206 1.2 ad
1207 1.2 ad void
1208 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1209 1.2 ad {
1210 1.2 ad /*
1211 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1212 1.2 ad */
1213 1.2 ad
1214 1.2 ad outb(IO_RTC, NVRAM_RESET);
1215 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1216 1.2 ad }
1217 1.101 kiyohara #endif
1218 1.2 ad
1219 1.2 ad #ifdef __x86_64__
1220 1.2 ad typedef void (vector)(void);
1221 1.148 maxv extern vector Xsyscall, Xsyscall32, Xsyscall_svs;
1222 1.70 jym #endif
1223 1.2 ad
1224 1.209 riastrad /*
1225 1.209 riastrad * cpu_init_msrs(ci, full)
1226 1.209 riastrad *
1227 1.209 riastrad * Initialize some Model-Specific Registers (MSRs) on the current
1228 1.209 riastrad * CPU, whose struct cpu_info pointer is ci, for:
1229 1.209 riastrad *
1230 1.209 riastrad * - SYSCALL/SYSRET.
1231 1.209 riastrad * - %fs/%gs on amd64 if `full' is true; needed to make
1232 1.209 riastrad * CPUVAR(...), curcpu(), and curlwp work. (We do this at boot,
1233 1.209 riastrad * but skip it on ACPI wakeup.)
1234 1.209 riastrad * - No-execute bit, if supported.
1235 1.209 riastrad *
1236 1.209 riastrad * References:
1237 1.209 riastrad *
1238 1.209 riastrad * - Intel 64 and IA-32 Architectures Software Developer's Manual,
1239 1.209 riastrad * Volume 3: System Programming Guide, Order Number 325384,
1240 1.209 riastrad * April 2022, Sec. 5.8.8 `Fast System Calls in 64-Bit Mode',
1241 1.209 riastrad * pp. 5-22 through 5-23.
1242 1.209 riastrad *
1243 1.209 riastrad * - Intel 64 and IA-32 Architectures Software Developer's Manual,
1244 1.209 riastrad * Volume 4: Model-Specific Registers, Order Number 335592,
1245 1.209 riastrad * April 2022, Sec. 2.1 `Architectural MSRs', Table 2-2,
1246 1.209 riastrad * pp. 2-60 through 2-61.
1247 1.209 riastrad */
1248 1.2 ad void
1249 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1250 1.2 ad {
1251 1.70 jym #ifdef __x86_64__
1252 1.209 riastrad /*
1253 1.209 riastrad * On amd64, set up the syscall target address registers
1254 1.209 riastrad * for SYSCALL/SYSRET:
1255 1.209 riastrad *
1256 1.209 riastrad * - IA32_STAR, c000_0081h (MSR_STAR): System Call Target
1257 1.209 riastrad * Address. Code and stack segment selectors for SYSRET
1258 1.209 riastrad * (bits 48:63) and SYSCALL (bits 32:47).
1259 1.209 riastrad *
1260 1.209 riastrad * - IA32_LSTAR, c000_0082h (MSR_LSTAR): IA-32e Mode System
1261 1.209 riastrad * Call Target Address. Target rip for SYSCALL when executed
1262 1.209 riastrad * in 64-bit mode.
1263 1.209 riastrad *
1264 1.209 riastrad * - IA32_CSTAR, c000_0083h (MSR_CSTAR): IA-32e Mode System
1265 1.209 riastrad * Call Target Address. Target rip for SYSCALL when executed
1266 1.209 riastrad * in compatibility mode. (XXX Manual says this is `[n]ot
1267 1.209 riastrad * used, as the SYSCALL instruction is not recognized in
1268 1.209 riastrad * compatibility mode', so why do we set it?)
1269 1.209 riastrad *
1270 1.209 riastrad * - IA32_FMASK, c000_0084h (MSR_SFMASK): System Call Flag
1271 1.209 riastrad * Mask. Mask for the RFLAGS register on SYSCALL.
1272 1.209 riastrad */
1273 1.2 ad wrmsr(MSR_STAR,
1274 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1275 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1276 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1277 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1278 1.138 maxv wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
1279 1.2 ad
1280 1.148 maxv #ifdef SVS
1281 1.148 maxv if (svs_enabled)
1282 1.148 maxv wrmsr(MSR_LSTAR, (uint64_t)Xsyscall_svs);
1283 1.148 maxv #endif
1284 1.148 maxv
1285 1.209 riastrad /*
1286 1.209 riastrad * On amd64 if `full' is true -- used at boot, but not on ACPI
1287 1.209 riastrad * wakeup -- then additionally set up %fs and %gs:
1288 1.209 riastrad *
1289 1.209 riastrad * - IA32_FS_BASE, c000_0100h (MSR_FSBASE): Base address of
1290 1.209 riastrad * %fs. Not used in NetBSD kernel, so zero it.
1291 1.209 riastrad *
1292 1.209 riastrad * - IA32_GS_BASE, c000_0101h (MSR_GSBASE): Base address of
1293 1.209 riastrad * %gs. Used in NetBSD kernel by CPUVAR(...), curcpu(), and
1294 1.209 riastrad * curlwp for access to the CPU-local area, so set it to ci.
1295 1.209 riastrad *
1296 1.209 riastrad * - IA32_KERNEL_GS_BASE, c000_0102h (MSR_KERNELGSBASE): Base
1297 1.209 riastrad * address of what swapgs will leave in %gs when switching to
1298 1.209 riastrad * userland. Zero for now; will be set to pcb->pcb_gs in
1299 1.209 riastrad * cpu_switchto for user threads.
1300 1.209 riastrad */
1301 1.12 jmcneill if (full) {
1302 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1303 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1304 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1305 1.12 jmcneill }
1306 1.70 jym #endif /* __x86_64__ */
1307 1.2 ad
1308 1.209 riastrad /*
1309 1.209 riastrad * If the no-execute bit is supported, enable it in:
1310 1.209 riastrad *
1311 1.209 riastrad * - IA32_EFER, c000_0080h (MSR_EFER): Extended Feature
1312 1.209 riastrad * Enables.
1313 1.209 riastrad */
1314 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1315 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1316 1.2 ad }
1317 1.7 ad
1318 1.107 christos void
1319 1.107 christos cpu_offline_md(void)
1320 1.107 christos {
1321 1.173 maxv return;
1322 1.107 christos }
1323 1.107 christos
1324 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1325 1.12 jmcneill static bool
1326 1.96 jruoho cpu_stop(device_t dv)
1327 1.12 jmcneill {
1328 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1329 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1330 1.18 joerg int err;
1331 1.12 jmcneill
1332 1.96 jruoho KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1333 1.93 jruoho
1334 1.196 fcambus if (CPU_IS_PRIMARY(ci))
1335 1.93 jruoho return true;
1336 1.93 jruoho
1337 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1338 1.12 jmcneill return true;
1339 1.12 jmcneill
1340 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1341 1.17 joerg
1342 1.20 jmcneill if (sc->sc_wasonline) {
1343 1.20 jmcneill mutex_enter(&cpu_lock);
1344 1.58 rmind err = cpu_setstate(ci, false);
1345 1.20 jmcneill mutex_exit(&cpu_lock);
1346 1.79 jruoho
1347 1.93 jruoho if (err != 0)
1348 1.20 jmcneill return false;
1349 1.20 jmcneill }
1350 1.17 joerg
1351 1.17 joerg return true;
1352 1.12 jmcneill }
1353 1.12 jmcneill
1354 1.12 jmcneill static bool
1355 1.96 jruoho cpu_suspend(device_t dv, const pmf_qual_t *qual)
1356 1.96 jruoho {
1357 1.96 jruoho struct cpu_softc *sc = device_private(dv);
1358 1.96 jruoho struct cpu_info *ci = sc->sc_info;
1359 1.96 jruoho
1360 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1361 1.96 jruoho return true;
1362 1.96 jruoho else {
1363 1.96 jruoho cpufreq_suspend(ci);
1364 1.96 jruoho }
1365 1.96 jruoho
1366 1.96 jruoho return cpu_stop(dv);
1367 1.96 jruoho }
1368 1.96 jruoho
1369 1.96 jruoho static bool
1370 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1371 1.12 jmcneill {
1372 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1373 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1374 1.20 jmcneill int err = 0;
1375 1.12 jmcneill
1376 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1377 1.12 jmcneill return true;
1378 1.93 jruoho
1379 1.196 fcambus if (CPU_IS_PRIMARY(ci))
1380 1.93 jruoho goto out;
1381 1.93 jruoho
1382 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1383 1.93 jruoho goto out;
1384 1.12 jmcneill
1385 1.20 jmcneill if (sc->sc_wasonline) {
1386 1.20 jmcneill mutex_enter(&cpu_lock);
1387 1.58 rmind err = cpu_setstate(ci, true);
1388 1.20 jmcneill mutex_exit(&cpu_lock);
1389 1.20 jmcneill }
1390 1.13 joerg
1391 1.93 jruoho out:
1392 1.93 jruoho if (err != 0)
1393 1.93 jruoho return false;
1394 1.93 jruoho
1395 1.93 jruoho cpufreq_resume(ci);
1396 1.93 jruoho
1397 1.93 jruoho return true;
1398 1.12 jmcneill }
1399 1.12 jmcneill
1400 1.79 jruoho static bool
1401 1.79 jruoho cpu_shutdown(device_t dv, int how)
1402 1.79 jruoho {
1403 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1404 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1405 1.90 dyoung
1406 1.96 jruoho if ((ci->ci_flags & CPUF_BSP) != 0)
1407 1.90 dyoung return false;
1408 1.90 dyoung
1409 1.96 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1410 1.96 jruoho return true;
1411 1.96 jruoho
1412 1.96 jruoho return cpu_stop(dv);
1413 1.79 jruoho }
1414 1.79 jruoho
1415 1.185 msaitoh /* Get the TSC frequency and set it to ci->ci_data.cpu_cc_freq. */
1416 1.7 ad void
1417 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1418 1.7 ad {
1419 1.212 imil uint64_t freq = 0, freq_from_cpuid, t0, t1;
1420 1.190 ad int64_t overhead;
1421 1.7 ad
1422 1.196 fcambus if (CPU_IS_PRIMARY(ci) && cpu_hascounter()) {
1423 1.191 msaitoh /*
1424 1.191 msaitoh * If it's the first call of this function, try to get TSC
1425 1.191 msaitoh * freq from CPUID by calling cpu_tsc_freq_cpuid().
1426 1.191 msaitoh * The function also set lapic_per_second variable if it's
1427 1.191 msaitoh * known. This is required for Intel's Comet Lake and newer
1428 1.191 msaitoh * processors to set LAPIC timer correctly.
1429 1.191 msaitoh */
1430 1.191 msaitoh if (ci->ci_data.cpu_cc_freq == 0)
1431 1.191 msaitoh freq = freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
1432 1.204 mlelstv if (freq != 0)
1433 1.204 mlelstv aprint_debug_dev(ci->ci_dev, "TSC freq "
1434 1.204 mlelstv "from CPUID %" PRIu64 " Hz\n", freq);
1435 1.190 ad #if NHPET > 0
1436 1.204 mlelstv if (freq == 0) {
1437 1.190 ad freq = hpet_tsc_freq();
1438 1.204 mlelstv if (freq != 0)
1439 1.204 mlelstv aprint_debug_dev(ci->ci_dev, "TSC freq "
1440 1.204 mlelstv "from HPET %" PRIu64 " Hz\n", freq);
1441 1.204 mlelstv }
1442 1.190 ad #endif
1443 1.190 ad if (freq == 0) {
1444 1.190 ad /*
1445 1.202 msaitoh * Work out the approximate overhead involved below.
1446 1.190 ad * Discard the result of the first go around the
1447 1.190 ad * loop.
1448 1.190 ad */
1449 1.190 ad overhead = 0;
1450 1.190 ad for (int i = 0; i <= 8; i++) {
1451 1.204 mlelstv const int s = splhigh();
1452 1.190 ad t0 = cpu_counter();
1453 1.192 ad delay_func(0);
1454 1.190 ad t1 = cpu_counter();
1455 1.204 mlelstv splx(s);
1456 1.190 ad if (i > 0) {
1457 1.190 ad overhead += (t1 - t0);
1458 1.190 ad }
1459 1.190 ad }
1460 1.190 ad overhead >>= 3;
1461 1.185 msaitoh
1462 1.204 mlelstv /*
1463 1.204 mlelstv * Now do the calibration.
1464 1.204 mlelstv */
1465 1.204 mlelstv freq = 0;
1466 1.204 mlelstv for (int i = 0; i < 1000; i++) {
1467 1.204 mlelstv const int s = splhigh();
1468 1.204 mlelstv t0 = cpu_counter();
1469 1.204 mlelstv delay_func(100);
1470 1.204 mlelstv t1 = cpu_counter();
1471 1.204 mlelstv splx(s);
1472 1.204 mlelstv freq += t1 - t0 - overhead;
1473 1.204 mlelstv }
1474 1.204 mlelstv freq = freq * 10;
1475 1.204 mlelstv
1476 1.204 mlelstv aprint_debug_dev(ci->ci_dev, "TSC freq "
1477 1.204 mlelstv "from delay %" PRIu64 " Hz\n", freq);
1478 1.190 ad }
1479 1.191 msaitoh if (ci->ci_data.cpu_cc_freq != 0) {
1480 1.191 msaitoh freq_from_cpuid = cpu_tsc_freq_cpuid(ci);
1481 1.191 msaitoh if ((freq_from_cpuid != 0)
1482 1.191 msaitoh && (freq != freq_from_cpuid))
1483 1.191 msaitoh aprint_verbose_dev(ci->ci_dev, "TSC freq "
1484 1.191 msaitoh "calibrated %" PRIu64 " Hz\n", freq);
1485 1.191 msaitoh }
1486 1.185 msaitoh } else {
1487 1.190 ad freq = cpu_info_primary.ci_data.cpu_cc_freq;
1488 1.7 ad }
1489 1.190 ad
1490 1.190 ad ci->ci_data.cpu_cc_freq = freq;
1491 1.7 ad }
1492 1.37 joerg
1493 1.213 imil bool
1494 1.213 imil has_lapic(void)
1495 1.213 imil {
1496 1.213 imil #if NLAPIC > 0
1497 1.213 imil return true;
1498 1.213 imil #else
1499 1.213 imil return false;
1500 1.213 imil #endif
1501 1.213 imil }
1502 1.213 imil
1503 1.37 joerg void
1504 1.37 joerg x86_cpu_idle_mwait(void)
1505 1.37 joerg {
1506 1.37 joerg struct cpu_info *ci = curcpu();
1507 1.37 joerg
1508 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1509 1.37 joerg
1510 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1511 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1512 1.37 joerg return;
1513 1.37 joerg }
1514 1.37 joerg x86_mwait(0, 0);
1515 1.37 joerg }
1516 1.37 joerg
1517 1.37 joerg void
1518 1.37 joerg x86_cpu_idle_halt(void)
1519 1.37 joerg {
1520 1.37 joerg struct cpu_info *ci = curcpu();
1521 1.37 joerg
1522 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1523 1.37 joerg
1524 1.37 joerg x86_disable_intr();
1525 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1526 1.37 joerg x86_stihlt();
1527 1.37 joerg } else {
1528 1.37 joerg x86_enable_intr();
1529 1.37 joerg }
1530 1.37 joerg }
1531 1.73 jym
1532 1.73 jym /*
1533 1.73 jym * Loads pmap for the current CPU.
1534 1.73 jym */
1535 1.73 jym void
1536 1.97 bouyer cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1537 1.73 jym {
1538 1.207 riastrad
1539 1.207 riastrad KASSERT(kpreempt_disabled());
1540 1.207 riastrad
1541 1.144 maxv #ifdef SVS
1542 1.206 riastrad if (svs_enabled && pmap_is_user(pmap)) {
1543 1.159 maxv svs_pdir_switch(pmap);
1544 1.159 maxv }
1545 1.144 maxv #endif
1546 1.144 maxv
1547 1.73 jym #ifdef PAE
1548 1.99 yamt struct cpu_info *ci = curcpu();
1549 1.116 nat bool interrupts_enabled;
1550 1.99 yamt pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1551 1.99 yamt int i;
1552 1.73 jym
1553 1.99 yamt /*
1554 1.99 yamt * disable interrupts to block TLB shootdowns, which can reload cr3.
1555 1.99 yamt * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1556 1.99 yamt * reload cr3.
1557 1.99 yamt */
1558 1.116 nat interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1559 1.116 nat if (interrupts_enabled)
1560 1.116 nat x86_disable_intr();
1561 1.116 nat
1562 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1563 1.168 maxv l3_pd[i] = pmap->pm_pdirpa[i] | PTE_P;
1564 1.73 jym }
1565 1.134 maxv
1566 1.116 nat if (interrupts_enabled)
1567 1.116 nat x86_enable_intr();
1568 1.73 jym tlbflush();
1569 1.160 maxv #else
1570 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1571 1.160 maxv #endif
1572 1.73 jym }
1573 1.91 cherry
1574 1.91 cherry /*
1575 1.91 cherry * Notify all other cpus to halt.
1576 1.91 cherry */
1577 1.91 cherry
1578 1.91 cherry void
1579 1.92 cherry cpu_broadcast_halt(void)
1580 1.91 cherry {
1581 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1582 1.91 cherry }
1583 1.91 cherry
1584 1.91 cherry /*
1585 1.176 ad * Send a dummy ipi to a cpu to force it to run splraise()/spllower(),
1586 1.176 ad * and trigger an AST on the running LWP.
1587 1.91 cherry */
1588 1.91 cherry
1589 1.91 cherry void
1590 1.91 cherry cpu_kick(struct cpu_info *ci)
1591 1.91 cherry {
1592 1.176 ad x86_send_ipi(ci, X86_IPI_AST);
1593 1.91 cherry }
1594