cpu.c revision 1.24 1 1.24 ad /* $NetBSD: cpu.c,v 1.24 2008/04/01 11:09:58 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.7 ad * Copyright (c) 2000, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad * 3. All advertising materials mentioning features or use of this software
19 1.2 ad * must display the following acknowledgement:
20 1.2 ad * This product includes software developed by the NetBSD
21 1.2 ad * Foundation, Inc. and its contributors.
22 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 ad * contributors may be used to endorse or promote products derived
24 1.2 ad * from this software without specific prior written permission.
25 1.2 ad *
26 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.2 ad */
38 1.2 ad
39 1.2 ad /*
40 1.2 ad * Copyright (c) 1999 Stefan Grefen
41 1.2 ad *
42 1.2 ad * Redistribution and use in source and binary forms, with or without
43 1.2 ad * modification, are permitted provided that the following conditions
44 1.2 ad * are met:
45 1.2 ad * 1. Redistributions of source code must retain the above copyright
46 1.2 ad * notice, this list of conditions and the following disclaimer.
47 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
48 1.2 ad * notice, this list of conditions and the following disclaimer in the
49 1.2 ad * documentation and/or other materials provided with the distribution.
50 1.2 ad * 3. All advertising materials mentioning features or use of this software
51 1.2 ad * must display the following acknowledgement:
52 1.2 ad * This product includes software developed by the NetBSD
53 1.2 ad * Foundation, Inc. and its contributors.
54 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
55 1.2 ad * contributors may be used to endorse or promote products derived
56 1.2 ad * from this software without specific prior written permission.
57 1.2 ad *
58 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
59 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
62 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.2 ad * SUCH DAMAGE.
69 1.2 ad */
70 1.2 ad
71 1.2 ad #include <sys/cdefs.h>
72 1.24 ad __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.24 2008/04/01 11:09:58 ad Exp $");
73 1.2 ad
74 1.2 ad #include "opt_ddb.h"
75 1.2 ad #include "opt_multiprocessor.h"
76 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
77 1.2 ad #include "opt_mtrr.h"
78 1.2 ad
79 1.2 ad #include "lapic.h"
80 1.2 ad #include "ioapic.h"
81 1.2 ad
82 1.2 ad #include <sys/param.h>
83 1.2 ad #include <sys/proc.h>
84 1.2 ad #include <sys/user.h>
85 1.2 ad #include <sys/systm.h>
86 1.2 ad #include <sys/device.h>
87 1.2 ad #include <sys/malloc.h>
88 1.9 ad #include <sys/cpu.h>
89 1.9 ad #include <sys/atomic.h>
90 1.2 ad
91 1.2 ad #include <uvm/uvm_extern.h>
92 1.2 ad
93 1.2 ad #include <machine/cpufunc.h>
94 1.2 ad #include <machine/cpuvar.h>
95 1.2 ad #include <machine/pmap.h>
96 1.2 ad #include <machine/vmparam.h>
97 1.2 ad #include <machine/mpbiosvar.h>
98 1.2 ad #include <machine/pcb.h>
99 1.2 ad #include <machine/specialreg.h>
100 1.2 ad #include <machine/segments.h>
101 1.2 ad #include <machine/gdt.h>
102 1.2 ad #include <machine/mtrr.h>
103 1.2 ad #include <machine/pio.h>
104 1.2 ad
105 1.2 ad #ifdef i386
106 1.2 ad #include <machine/tlog.h>
107 1.2 ad #endif
108 1.2 ad
109 1.2 ad #if NLAPIC > 0
110 1.2 ad #include <machine/apicvar.h>
111 1.2 ad #include <machine/i82489reg.h>
112 1.2 ad #include <machine/i82489var.h>
113 1.2 ad #endif
114 1.2 ad
115 1.2 ad #if NIOAPIC > 0
116 1.2 ad #include <machine/i82093var.h>
117 1.2 ad #endif
118 1.2 ad
119 1.2 ad #include <dev/ic/mc146818reg.h>
120 1.2 ad #include <i386/isa/nvram.h>
121 1.2 ad #include <dev/isa/isareg.h>
122 1.2 ad
123 1.23 cube int cpu_match(device_t, cfdata_t, void *);
124 1.23 cube void cpu_attach(device_t, device_t, void *);
125 1.2 ad
126 1.22 dyoung static bool cpu_suspend(device_t PMF_FN_PROTO);
127 1.22 dyoung static bool cpu_resume(device_t PMF_FN_PROTO);
128 1.12 jmcneill
129 1.2 ad struct cpu_softc {
130 1.23 cube device_t sc_dev; /* device tree glue */
131 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
132 1.20 jmcneill bool sc_wasonline;
133 1.2 ad };
134 1.2 ad
135 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
136 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
137 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
138 1.2 ad mp_cpu_start_cleanup };
139 1.2 ad
140 1.2 ad
141 1.23 cube CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
142 1.2 ad cpu_match, cpu_attach, NULL, NULL);
143 1.2 ad
144 1.2 ad /*
145 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
146 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
147 1.2 ad * point at it.
148 1.2 ad */
149 1.2 ad #ifdef TRAPLOG
150 1.2 ad struct tlog tlog_primary;
151 1.2 ad #endif
152 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 1.2 ad .ci_dev = 0,
154 1.2 ad .ci_self = &cpu_info_primary,
155 1.2 ad .ci_idepth = -1,
156 1.2 ad .ci_curlwp = &lwp0,
157 1.2 ad #ifdef TRAPLOG
158 1.2 ad .ci_tlog_base = &tlog_primary,
159 1.2 ad #endif /* !TRAPLOG */
160 1.2 ad };
161 1.2 ad
162 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
163 1.2 ad
164 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
165 1.2 ad
166 1.2 ad #ifdef i386
167 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
168 1.2 ad #endif
169 1.2 ad
170 1.12 jmcneill #ifdef MULTIPROCESSOR
171 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
172 1.12 jmcneill #endif
173 1.12 jmcneill
174 1.2 ad uint32_t cpus_attached = 0;
175 1.9 ad uint32_t cpus_running = 0;
176 1.2 ad
177 1.2 ad extern char x86_64_doubleflt_stack[];
178 1.2 ad
179 1.12 jmcneill bool x86_mp_online;
180 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
181 1.12 jmcneill
182 1.14 joerg static vaddr_t cmos_data_mapping;
183 1.14 joerg
184 1.2 ad #ifdef MULTIPROCESSOR
185 1.2 ad /*
186 1.2 ad * Array of CPU info structures. Must be statically-allocated because
187 1.2 ad * curproc, etc. are used early.
188 1.2 ad */
189 1.2 ad struct cpu_info *cpu_info[X86_MAXPROCS] = { &cpu_info_primary, };
190 1.2 ad
191 1.2 ad void cpu_hatch(void *);
192 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
193 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
194 1.2 ad static void cpu_copy_trampoline(void);
195 1.2 ad
196 1.2 ad /*
197 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
198 1.2 ad * the local APIC on the boot processor has been mapped.
199 1.2 ad *
200 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
201 1.2 ad */
202 1.2 ad void
203 1.9 ad cpu_init_first(void)
204 1.2 ad {
205 1.2 ad int cpunum = lapic_cpu_number();
206 1.2 ad
207 1.2 ad if (cpunum != 0) {
208 1.2 ad cpu_info[0] = NULL;
209 1.2 ad cpu_info[cpunum] = &cpu_info_primary;
210 1.2 ad }
211 1.2 ad
212 1.2 ad cpu_info_primary.ci_cpuid = cpunum;
213 1.2 ad cpu_copy_trampoline();
214 1.14 joerg
215 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
216 1.14 joerg if (cmos_data_mapping == 0)
217 1.14 joerg panic("No KVA for page 0");
218 1.14 joerg pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
219 1.14 joerg pmap_update(pmap_kernel());
220 1.2 ad }
221 1.2 ad #endif
222 1.2 ad
223 1.2 ad int
224 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
225 1.2 ad {
226 1.2 ad
227 1.2 ad return 1;
228 1.2 ad }
229 1.2 ad
230 1.2 ad static void
231 1.2 ad cpu_vm_init(struct cpu_info *ci)
232 1.2 ad {
233 1.2 ad int ncolors = 2, i;
234 1.2 ad
235 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
236 1.2 ad struct x86_cache_info *cai;
237 1.2 ad int tcolors;
238 1.2 ad
239 1.2 ad cai = &ci->ci_cinfo[i];
240 1.2 ad
241 1.2 ad tcolors = atop(cai->cai_totalsize);
242 1.2 ad switch(cai->cai_associativity) {
243 1.2 ad case 0xff:
244 1.2 ad tcolors = 1; /* fully associative */
245 1.2 ad break;
246 1.2 ad case 0:
247 1.2 ad case 1:
248 1.2 ad break;
249 1.2 ad default:
250 1.2 ad tcolors /= cai->cai_associativity;
251 1.2 ad }
252 1.2 ad ncolors = max(ncolors, tcolors);
253 1.2 ad }
254 1.2 ad
255 1.2 ad /*
256 1.2 ad * Knowing the size of the largest cache on this CPU, re-color
257 1.2 ad * our pages.
258 1.2 ad */
259 1.2 ad if (ncolors <= uvmexp.ncolors)
260 1.2 ad return;
261 1.2 ad aprint_verbose("%s: %d page colors\n", ci->ci_dev->dv_xname, ncolors);
262 1.2 ad uvm_page_recolor(ncolors);
263 1.2 ad }
264 1.2 ad
265 1.2 ad
266 1.2 ad void
267 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
268 1.2 ad {
269 1.23 cube struct cpu_softc *sc = device_private(self);
270 1.2 ad struct cpu_attach_args *caa = aux;
271 1.2 ad struct cpu_info *ci;
272 1.21 ad uintptr_t ptr;
273 1.2 ad #if defined(MULTIPROCESSOR)
274 1.2 ad int cpunum = caa->cpu_number;
275 1.2 ad #endif
276 1.2 ad
277 1.23 cube sc->sc_dev = self;
278 1.23 cube
279 1.2 ad /*
280 1.2 ad * If we're an Application Processor, allocate a cpu_info
281 1.2 ad * structure, otherwise use the primary's.
282 1.2 ad */
283 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
284 1.2 ad aprint_naive(": Application Processor\n");
285 1.21 ad ptr = (uintptr_t)malloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
286 1.21 ad M_DEVBUF, M_WAITOK);
287 1.21 ad ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
288 1.21 ad ~(CACHE_LINE_SIZE - 1));
289 1.2 ad memset(ci, 0, sizeof(*ci));
290 1.2 ad #if defined(MULTIPROCESSOR)
291 1.2 ad if (cpu_info[cpunum] != NULL) {
292 1.2 ad printf("\n");
293 1.2 ad panic("cpu at apic id %d already attached?", cpunum);
294 1.2 ad }
295 1.2 ad cpu_info[cpunum] = ci;
296 1.2 ad #endif
297 1.2 ad #ifdef TRAPLOG
298 1.2 ad ci->ci_tlog_base = malloc(sizeof(struct tlog),
299 1.2 ad M_DEVBUF, M_WAITOK);
300 1.2 ad #endif
301 1.2 ad } else {
302 1.2 ad aprint_naive(": %s Processor\n",
303 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
304 1.2 ad ci = &cpu_info_primary;
305 1.2 ad #if defined(MULTIPROCESSOR)
306 1.2 ad if (cpunum != lapic_cpu_number()) {
307 1.2 ad printf("\n");
308 1.2 ad panic("%s: running CPU is at apic %d"
309 1.2 ad " instead of at expected %d",
310 1.23 cube device_xname(sc->sc_dev), lapic_cpu_number(),
311 1.23 cube cpunum);
312 1.2 ad }
313 1.2 ad #endif
314 1.2 ad }
315 1.2 ad
316 1.2 ad ci->ci_self = ci;
317 1.2 ad sc->sc_info = ci;
318 1.2 ad
319 1.2 ad ci->ci_dev = self;
320 1.2 ad ci->ci_apicid = caa->cpu_number;
321 1.2 ad #ifdef MULTIPROCESSOR
322 1.2 ad ci->ci_cpuid = ci->ci_apicid;
323 1.2 ad #else
324 1.2 ad ci->ci_cpuid = 0; /* False for APs, but they're not used anyway */
325 1.2 ad #endif
326 1.2 ad ci->ci_cpumask = (1 << ci->ci_cpuid);
327 1.2 ad ci->ci_func = caa->cpu_func;
328 1.2 ad
329 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
330 1.2 ad #ifdef MULTIPROCESSOR
331 1.2 ad int error;
332 1.2 ad
333 1.2 ad error = mi_cpu_attach(ci);
334 1.2 ad if (error != 0) {
335 1.2 ad aprint_normal("\n");
336 1.2 ad aprint_error("%s: mi_cpu_attach failed with %d\n",
337 1.23 cube device_xname(sc->sc_dev), error);
338 1.2 ad return;
339 1.2 ad }
340 1.2 ad #endif
341 1.15 yamt cpu_init_tss(ci);
342 1.2 ad } else {
343 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
344 1.2 ad }
345 1.2 ad
346 1.2 ad pmap_reference(pmap_kernel());
347 1.2 ad ci->ci_pmap = pmap_kernel();
348 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
349 1.2 ad
350 1.2 ad /* further PCB init done later. */
351 1.2 ad
352 1.2 ad switch (caa->cpu_role) {
353 1.2 ad case CPU_ROLE_SP:
354 1.2 ad aprint_normal(": (uniprocessor)\n");
355 1.9 ad atomic_or_32(&ci->ci_flags,
356 1.9 ad CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY);
357 1.2 ad cpu_intr_init(ci);
358 1.2 ad identifycpu(ci);
359 1.2 ad cpu_init(ci);
360 1.2 ad cpu_set_tss_gates(ci);
361 1.2 ad pmap_cpu_init_late(ci);
362 1.6 ad x86_errata();
363 1.2 ad break;
364 1.2 ad
365 1.2 ad case CPU_ROLE_BP:
366 1.2 ad aprint_normal(": (boot processor)\n");
367 1.9 ad atomic_or_32(&ci->ci_flags,
368 1.9 ad CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY);
369 1.2 ad cpu_intr_init(ci);
370 1.2 ad identifycpu(ci);
371 1.2 ad cpu_init(ci);
372 1.2 ad cpu_set_tss_gates(ci);
373 1.2 ad pmap_cpu_init_late(ci);
374 1.2 ad #if NLAPIC > 0
375 1.2 ad /*
376 1.2 ad * Enable local apic
377 1.2 ad */
378 1.2 ad lapic_enable();
379 1.19 joerg lapic_set_lvt();
380 1.2 ad lapic_calibrate_timer(ci);
381 1.2 ad #endif
382 1.2 ad #if NIOAPIC > 0
383 1.2 ad ioapic_bsp_id = caa->cpu_number;
384 1.2 ad #endif
385 1.6 ad x86_errata();
386 1.2 ad break;
387 1.2 ad
388 1.2 ad case CPU_ROLE_AP:
389 1.2 ad /*
390 1.2 ad * report on an AP
391 1.2 ad */
392 1.2 ad aprint_normal(": (application processor)\n");
393 1.2 ad
394 1.2 ad #if defined(MULTIPROCESSOR)
395 1.2 ad cpu_intr_init(ci);
396 1.2 ad gdt_alloc_cpu(ci);
397 1.2 ad cpu_set_tss_gates(ci);
398 1.2 ad pmap_cpu_init_early(ci);
399 1.2 ad pmap_cpu_init_late(ci);
400 1.2 ad cpu_start_secondary(ci);
401 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
402 1.2 ad identifycpu(ci);
403 1.2 ad ci->ci_next = cpu_info_list->ci_next;
404 1.2 ad cpu_info_list->ci_next = ci;
405 1.2 ad }
406 1.2 ad #else
407 1.23 cube aprint_normal("%s: not started\n", device_xname(sc->sc_dev));
408 1.2 ad #endif
409 1.2 ad break;
410 1.2 ad
411 1.2 ad default:
412 1.2 ad printf("\n");
413 1.2 ad panic("unknown processor type??\n");
414 1.2 ad }
415 1.2 ad cpu_vm_init(ci);
416 1.2 ad
417 1.2 ad cpus_attached |= ci->ci_cpumask;
418 1.2 ad
419 1.12 jmcneill if (!pmf_device_register(self, cpu_suspend, cpu_resume))
420 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
421 1.12 jmcneill
422 1.2 ad #if defined(MULTIPROCESSOR)
423 1.2 ad if (mp_verbose) {
424 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
425 1.2 ad
426 1.2 ad aprint_verbose(
427 1.2 ad "%s: idle lwp at %p, idle sp at %p\n",
428 1.23 cube device_xname(sc->sc_dev), l,
429 1.2 ad #ifdef i386
430 1.2 ad (void *)l->l_addr->u_pcb.pcb_esp
431 1.2 ad #else
432 1.2 ad (void *)l->l_addr->u_pcb.pcb_rsp
433 1.2 ad #endif
434 1.2 ad );
435 1.2 ad }
436 1.2 ad #endif
437 1.2 ad }
438 1.2 ad
439 1.2 ad /*
440 1.2 ad * Initialize the processor appropriately.
441 1.2 ad */
442 1.2 ad
443 1.2 ad void
444 1.9 ad cpu_init(struct cpu_info *ci)
445 1.2 ad {
446 1.2 ad /* configure the CPU if needed */
447 1.2 ad if (ci->cpu_setup != NULL)
448 1.2 ad (*ci->cpu_setup)(ci);
449 1.2 ad
450 1.2 ad #ifdef i386
451 1.2 ad /*
452 1.2 ad * On a 486 or above, enable ring 0 write protection.
453 1.2 ad */
454 1.2 ad if (ci->ci_cpu_class >= CPUCLASS_486)
455 1.2 ad lcr0(rcr0() | CR0_WP);
456 1.2 ad #else
457 1.2 ad lcr0(rcr0() | CR0_WP);
458 1.2 ad #endif
459 1.2 ad
460 1.2 ad /*
461 1.2 ad * On a P6 or above, enable global TLB caching if the
462 1.2 ad * hardware supports it.
463 1.2 ad */
464 1.2 ad if (cpu_feature & CPUID_PGE)
465 1.2 ad lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
466 1.2 ad
467 1.2 ad /*
468 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
469 1.2 ad */
470 1.2 ad if (cpu_feature & CPUID_FXSR) {
471 1.2 ad lcr4(rcr4() | CR4_OSFXSR);
472 1.2 ad
473 1.2 ad /*
474 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
475 1.2 ad */
476 1.2 ad if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
477 1.2 ad lcr4(rcr4() | CR4_OSXMMEXCPT);
478 1.2 ad }
479 1.2 ad
480 1.2 ad #ifdef MTRR
481 1.2 ad /*
482 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
483 1.2 ad */
484 1.2 ad if (cpu_feature & CPUID_MTRR) {
485 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
486 1.2 ad i686_mtrr_init_first();
487 1.2 ad mtrr_init_cpu(ci);
488 1.2 ad }
489 1.2 ad
490 1.2 ad #ifdef i386
491 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
492 1.2 ad /*
493 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
494 1.2 ad */
495 1.2 ad if (CPUID2FAMILY(ci->ci_signature) == 5) {
496 1.2 ad if (CPUID2MODEL(ci->ci_signature) > 8 ||
497 1.2 ad (CPUID2MODEL(ci->ci_signature) == 8 &&
498 1.2 ad CPUID2STEPPING(ci->ci_signature) >= 7)) {
499 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
500 1.2 ad k6_mtrr_init_first();
501 1.2 ad mtrr_init_cpu(ci);
502 1.2 ad }
503 1.2 ad }
504 1.2 ad }
505 1.2 ad #endif /* i386 */
506 1.2 ad #endif /* MTRR */
507 1.2 ad
508 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
509 1.9 ad atomic_or_32(&cpus_running, ci->ci_cpumask);
510 1.9 ad
511 1.9 ad #ifndef MULTIPROCESSOR
512 1.5 ad /* XXX */
513 1.5 ad x86_patch();
514 1.2 ad #endif
515 1.2 ad }
516 1.2 ad
517 1.2 ad #ifdef MULTIPROCESSOR
518 1.2 ad void
519 1.12 jmcneill cpu_boot_secondary_processors(void)
520 1.2 ad {
521 1.2 ad struct cpu_info *ci;
522 1.2 ad u_long i;
523 1.2 ad
524 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
525 1.5 ad x86_patch();
526 1.5 ad
527 1.2 ad for (i=0; i < X86_MAXPROCS; i++) {
528 1.2 ad ci = cpu_info[i];
529 1.2 ad if (ci == NULL)
530 1.2 ad continue;
531 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
532 1.2 ad continue;
533 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
534 1.2 ad continue;
535 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
536 1.2 ad continue;
537 1.2 ad cpu_boot_secondary(ci);
538 1.2 ad }
539 1.2 ad
540 1.2 ad x86_mp_online = true;
541 1.2 ad }
542 1.2 ad
543 1.2 ad static void
544 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
545 1.2 ad {
546 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
547 1.2 ad struct pcb *pcb = &l->l_addr->u_pcb;
548 1.2 ad
549 1.2 ad pcb->pcb_cr0 = rcr0();
550 1.2 ad }
551 1.2 ad
552 1.2 ad void
553 1.12 jmcneill cpu_init_idle_lwps(void)
554 1.2 ad {
555 1.2 ad struct cpu_info *ci;
556 1.2 ad u_long i;
557 1.2 ad
558 1.2 ad for (i = 0; i < X86_MAXPROCS; i++) {
559 1.2 ad ci = cpu_info[i];
560 1.2 ad if (ci == NULL)
561 1.2 ad continue;
562 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
563 1.2 ad continue;
564 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
565 1.2 ad continue;
566 1.2 ad cpu_init_idle_lwp(ci);
567 1.2 ad }
568 1.2 ad }
569 1.2 ad
570 1.2 ad void
571 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
572 1.2 ad {
573 1.2 ad int i;
574 1.2 ad extern paddr_t mp_pdirpa;
575 1.2 ad
576 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
577 1.2 ad
578 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
579 1.2 ad
580 1.2 ad aprint_debug("%s: starting\n", ci->ci_dev->dv_xname);
581 1.2 ad
582 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
583 1.14 joerg CPU_STARTUP(ci, mp_trampoline_paddr);
584 1.2 ad
585 1.2 ad /*
586 1.2 ad * wait for it to become ready
587 1.2 ad */
588 1.2 ad for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i>0;i--) {
589 1.24 ad #ifdef MPDEBUG
590 1.24 ad extern int cpu_trace[3];
591 1.24 ad static int otrace[3];
592 1.24 ad if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
593 1.24 ad aprint_debug("%s: trace %02x %02x %02x\n",
594 1.24 ad ci->ci_dev->dv_xname, cpu_trace[0], cpu_trace[1],
595 1.24 ad cpu_trace[2]);
596 1.24 ad memcpy(otrace, cpu_trace, sizeof(otrace));
597 1.24 ad }
598 1.24 ad #endif
599 1.11 ad i8254_delay(10);
600 1.2 ad }
601 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
602 1.2 ad aprint_error("%s: failed to become ready\n",
603 1.2 ad ci->ci_dev->dv_xname);
604 1.2 ad #if defined(MPDEBUG) && defined(DDB)
605 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
606 1.2 ad Debugger();
607 1.2 ad #endif
608 1.2 ad }
609 1.2 ad
610 1.2 ad CPU_START_CLEANUP(ci);
611 1.2 ad }
612 1.2 ad
613 1.2 ad void
614 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
615 1.2 ad {
616 1.2 ad int i;
617 1.2 ad
618 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
619 1.2 ad for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i>0;i--) {
620 1.11 ad i8254_delay(10);
621 1.2 ad }
622 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
623 1.2 ad aprint_error("%s: failed to start\n", ci->ci_dev->dv_xname);
624 1.2 ad #if defined(MPDEBUG) && defined(DDB)
625 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
626 1.2 ad Debugger();
627 1.2 ad #endif
628 1.2 ad }
629 1.2 ad }
630 1.2 ad
631 1.2 ad /*
632 1.2 ad * The CPU ends up here when its ready to run
633 1.2 ad * This is called from code in mptramp.s; at this point, we are running
634 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
635 1.2 ad * this processor will enter the idle loop and start looking for work.
636 1.2 ad */
637 1.2 ad void
638 1.2 ad cpu_hatch(void *v)
639 1.2 ad {
640 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
641 1.6 ad int s, i;
642 1.2 ad
643 1.2 ad #ifdef __x86_64__
644 1.12 jmcneill cpu_init_msrs(ci, true);
645 1.2 ad #endif
646 1.2 ad cpu_probe_features(ci);
647 1.2 ad cpu_feature &= ci->ci_feature_flags;
648 1.2 ad cpu_feature2 &= ci->ci_feature2_flags;
649 1.2 ad
650 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
651 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
652 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
653 1.6 ad /* Don't use delay, boot CPU may be patching the text. */
654 1.6 ad for (i = 10000; i != 0; i--)
655 1.6 ad x86_pause();
656 1.6 ad }
657 1.5 ad
658 1.5 ad /* Beacuse the text may have been patched in x86_patch(). */
659 1.5 ad wbinvd();
660 1.5 ad x86_flush();
661 1.5 ad
662 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
663 1.2 ad
664 1.12 jmcneill lcr3(pmap_kernel()->pm_pdirpa);
665 1.12 jmcneill curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
666 1.2 ad lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
667 1.2 ad cpu_init_idt();
668 1.8 ad gdt_init_cpu(ci);
669 1.8 ad lapic_enable();
670 1.2 ad lapic_set_lvt();
671 1.8 ad lapic_initclocks();
672 1.2 ad
673 1.2 ad #ifdef i386
674 1.2 ad npxinit(ci);
675 1.2 ad #else
676 1.2 ad fpuinit(ci);
677 1.4 yamt #endif
678 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
679 1.15 yamt ltr(ci->ci_tss_sel);
680 1.2 ad
681 1.2 ad cpu_init(ci);
682 1.7 ad cpu_get_tsc_freq(ci);
683 1.2 ad
684 1.2 ad s = splhigh();
685 1.2 ad #ifdef i386
686 1.2 ad lapic_tpr = 0;
687 1.2 ad #else
688 1.2 ad lcr8(0);
689 1.2 ad #endif
690 1.3 ad x86_enable_intr();
691 1.2 ad splx(s);
692 1.6 ad x86_errata();
693 1.2 ad
694 1.2 ad aprint_debug("%s: CPU %ld running\n", ci->ci_dev->dv_xname,
695 1.2 ad (long)ci->ci_cpuid);
696 1.2 ad }
697 1.2 ad
698 1.2 ad #if defined(DDB)
699 1.2 ad
700 1.2 ad #include <ddb/db_output.h>
701 1.2 ad #include <machine/db_machdep.h>
702 1.2 ad
703 1.2 ad /*
704 1.2 ad * Dump CPU information from ddb.
705 1.2 ad */
706 1.2 ad void
707 1.2 ad cpu_debug_dump(void)
708 1.2 ad {
709 1.2 ad struct cpu_info *ci;
710 1.2 ad CPU_INFO_ITERATOR cii;
711 1.2 ad
712 1.2 ad db_printf("addr dev id flags ipis curproc fpcurproc\n");
713 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
714 1.2 ad db_printf("%p %s %ld %x %x %10p %10p\n",
715 1.2 ad ci,
716 1.2 ad ci->ci_dev == NULL ? "BOOT" : ci->ci_dev->dv_xname,
717 1.2 ad (long)ci->ci_cpuid,
718 1.2 ad ci->ci_flags, ci->ci_ipis,
719 1.2 ad ci->ci_curlwp,
720 1.2 ad ci->ci_fpcurlwp);
721 1.2 ad }
722 1.2 ad }
723 1.2 ad #endif
724 1.2 ad
725 1.2 ad static void
726 1.12 jmcneill cpu_copy_trampoline(void)
727 1.2 ad {
728 1.2 ad /*
729 1.2 ad * Copy boot code.
730 1.2 ad */
731 1.2 ad extern u_char cpu_spinup_trampoline[];
732 1.2 ad extern u_char cpu_spinup_trampoline_end[];
733 1.12 jmcneill
734 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
735 1.12 jmcneill
736 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
737 1.12 jmcneill UVM_KMF_VAONLY);
738 1.12 jmcneill
739 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
740 1.12 jmcneill VM_PROT_READ | VM_PROT_WRITE);
741 1.2 ad pmap_update(pmap_kernel());
742 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
743 1.2 ad cpu_spinup_trampoline,
744 1.2 ad cpu_spinup_trampoline_end-cpu_spinup_trampoline);
745 1.12 jmcneill
746 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
747 1.12 jmcneill pmap_update(pmap_kernel());
748 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
749 1.2 ad }
750 1.2 ad
751 1.2 ad #endif
752 1.2 ad
753 1.2 ad #ifdef i386
754 1.2 ad static void
755 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
756 1.2 ad {
757 1.2 ad memset(tss, 0, sizeof *tss);
758 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
759 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
760 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
761 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
762 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
763 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
764 1.2 ad tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
765 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
766 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
767 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
768 1.2 ad tss->__tss_eip = (int)func;
769 1.2 ad }
770 1.2 ad
771 1.2 ad /* XXX */
772 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
773 1.2 ad typedef void (vector)(void);
774 1.2 ad extern vector IDTVEC(tss_trap08);
775 1.2 ad #ifdef DDB
776 1.2 ad extern vector Xintrddbipi;
777 1.2 ad extern int ddb_vec;
778 1.2 ad #endif
779 1.2 ad
780 1.2 ad static void
781 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
782 1.2 ad {
783 1.2 ad struct segment_descriptor sd;
784 1.2 ad
785 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
786 1.2 ad UVM_KMF_WIRED);
787 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
788 1.2 ad IDTVEC(tss_trap08));
789 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
790 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
791 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
792 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
793 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
794 1.2 ad
795 1.2 ad #if defined(DDB) && defined(MULTIPROCESSOR)
796 1.2 ad /*
797 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
798 1.2 ad * stomp on a possibly corrupted stack.
799 1.2 ad *
800 1.2 ad * XXX overwriting the gate set in db_machine_init.
801 1.2 ad * Should rearrange the code so that it's set only once.
802 1.2 ad */
803 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
804 1.2 ad UVM_KMF_WIRED);
805 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
806 1.2 ad
807 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
808 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
809 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
810 1.2 ad
811 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
812 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
813 1.2 ad #endif
814 1.2 ad }
815 1.2 ad #else
816 1.2 ad static void
817 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
818 1.2 ad {
819 1.2 ad
820 1.2 ad }
821 1.2 ad #endif /* i386 */
822 1.2 ad
823 1.2 ad int
824 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
825 1.2 ad {
826 1.2 ad #if NLAPIC > 0
827 1.2 ad int error;
828 1.2 ad #endif
829 1.2 ad unsigned short dwordptr[2];
830 1.14 joerg
831 1.14 joerg /*
832 1.14 joerg * Bootstrap code must be addressable in real mode
833 1.14 joerg * and it must be page aligned.
834 1.14 joerg */
835 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
836 1.2 ad
837 1.2 ad /*
838 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
839 1.2 ad */
840 1.2 ad
841 1.2 ad outb(IO_RTC, NVRAM_RESET);
842 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
843 1.2 ad
844 1.2 ad /*
845 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
846 1.2 ad * to the AP startup code ..."
847 1.2 ad */
848 1.2 ad
849 1.2 ad dwordptr[0] = 0;
850 1.14 joerg dwordptr[1] = target >> 4;
851 1.2 ad
852 1.14 joerg memcpy((uint8_t *)(cmos_data_mapping + 0x467), dwordptr, 4);
853 1.2 ad
854 1.2 ad #if NLAPIC > 0
855 1.2 ad /*
856 1.2 ad * ... prior to executing the following sequence:"
857 1.2 ad */
858 1.2 ad
859 1.2 ad if (ci->ci_flags & CPUF_AP) {
860 1.2 ad if ((error = x86_ipi_init(ci->ci_apicid)) != 0)
861 1.2 ad return error;
862 1.2 ad
863 1.11 ad i8254_delay(10000);
864 1.2 ad
865 1.2 ad if (cpu_feature & CPUID_APIC) {
866 1.2 ad
867 1.14 joerg if ((error = x86_ipi(target / PAGE_SIZE,
868 1.2 ad ci->ci_apicid,
869 1.2 ad LAPIC_DLMODE_STARTUP)) != 0)
870 1.2 ad return error;
871 1.11 ad i8254_delay(200);
872 1.2 ad
873 1.14 joerg if ((error = x86_ipi(target / PAGE_SIZE,
874 1.2 ad ci->ci_apicid,
875 1.2 ad LAPIC_DLMODE_STARTUP)) != 0)
876 1.2 ad return error;
877 1.11 ad i8254_delay(200);
878 1.2 ad }
879 1.2 ad }
880 1.2 ad #endif
881 1.2 ad return 0;
882 1.2 ad }
883 1.2 ad
884 1.2 ad void
885 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
886 1.2 ad {
887 1.2 ad /*
888 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
889 1.2 ad */
890 1.2 ad
891 1.2 ad outb(IO_RTC, NVRAM_RESET);
892 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
893 1.2 ad }
894 1.2 ad
895 1.2 ad #ifdef __x86_64__
896 1.2 ad typedef void (vector)(void);
897 1.2 ad extern vector Xsyscall, Xsyscall32;
898 1.2 ad
899 1.2 ad void
900 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
901 1.2 ad {
902 1.2 ad wrmsr(MSR_STAR,
903 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
904 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
905 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
906 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
907 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
908 1.2 ad
909 1.12 jmcneill if (full) {
910 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
911 1.12 jmcneill wrmsr(MSR_GSBASE, (u_int64_t)ci);
912 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
913 1.12 jmcneill }
914 1.2 ad
915 1.2 ad if (cpu_feature & CPUID_NOX)
916 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
917 1.2 ad }
918 1.2 ad #endif /* __x86_64__ */
919 1.7 ad
920 1.18 joerg void
921 1.18 joerg cpu_offline_md(void)
922 1.18 joerg {
923 1.18 joerg int s;
924 1.18 joerg
925 1.18 joerg s = splhigh();
926 1.18 joerg #ifdef __i386__
927 1.18 joerg npxsave_cpu(true);
928 1.18 joerg #else
929 1.18 joerg fpusave_cpu(true);
930 1.18 joerg #endif
931 1.18 joerg splx(s);
932 1.18 joerg }
933 1.18 joerg
934 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
935 1.12 jmcneill static bool
936 1.22 dyoung cpu_suspend(device_t dv PMF_FN_ARGS)
937 1.12 jmcneill {
938 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
939 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
940 1.18 joerg int err;
941 1.12 jmcneill
942 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
943 1.12 jmcneill return true;
944 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
945 1.12 jmcneill return true;
946 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
947 1.12 jmcneill return true;
948 1.12 jmcneill
949 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
950 1.17 joerg
951 1.20 jmcneill if (sc->sc_wasonline) {
952 1.20 jmcneill mutex_enter(&cpu_lock);
953 1.20 jmcneill err = cpu_setonline(ci, false);
954 1.20 jmcneill mutex_exit(&cpu_lock);
955 1.20 jmcneill
956 1.20 jmcneill if (err)
957 1.20 jmcneill return false;
958 1.20 jmcneill }
959 1.17 joerg
960 1.17 joerg return true;
961 1.12 jmcneill }
962 1.12 jmcneill
963 1.12 jmcneill static bool
964 1.22 dyoung cpu_resume(device_t dv PMF_FN_ARGS)
965 1.12 jmcneill {
966 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
967 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
968 1.20 jmcneill int err = 0;
969 1.12 jmcneill
970 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
971 1.12 jmcneill return true;
972 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
973 1.12 jmcneill return true;
974 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
975 1.12 jmcneill return true;
976 1.12 jmcneill
977 1.20 jmcneill if (sc->sc_wasonline) {
978 1.20 jmcneill mutex_enter(&cpu_lock);
979 1.20 jmcneill err = cpu_setonline(ci, true);
980 1.20 jmcneill mutex_exit(&cpu_lock);
981 1.20 jmcneill }
982 1.13 joerg
983 1.13 joerg return err == 0;
984 1.12 jmcneill }
985 1.12 jmcneill
986 1.7 ad void
987 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
988 1.7 ad {
989 1.7 ad uint64_t last_tsc;
990 1.7 ad u_int junk[4];
991 1.7 ad
992 1.7 ad if (ci->ci_feature_flags & CPUID_TSC) {
993 1.7 ad /* Serialize. */
994 1.7 ad x86_cpuid(0, junk);
995 1.7 ad last_tsc = rdtsc();
996 1.7 ad i8254_delay(100000);
997 1.7 ad ci->ci_tsc_freq = (rdtsc() - last_tsc) * 10;
998 1.7 ad }
999 1.7 ad }
1000