Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.32
      1  1.32       tls /*	$NetBSD: cpu.c,v 1.32 2008/04/22 02:23:05 tls Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4   1.7        ad  * Copyright (c) 2000, 2006, 2007 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.11        ad  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  * 3. All advertising materials mentioning features or use of this software
     19   1.2        ad  *    must display the following acknowledgement:
     20   1.2        ad  *        This product includes software developed by the NetBSD
     21   1.2        ad  *        Foundation, Inc. and its contributors.
     22   1.2        ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.2        ad  *    contributors may be used to endorse or promote products derived
     24   1.2        ad  *    from this software without specific prior written permission.
     25   1.2        ad  *
     26   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     37   1.2        ad  */
     38   1.2        ad 
     39   1.2        ad /*
     40   1.2        ad  * Copyright (c) 1999 Stefan Grefen
     41   1.2        ad  *
     42   1.2        ad  * Redistribution and use in source and binary forms, with or without
     43   1.2        ad  * modification, are permitted provided that the following conditions
     44   1.2        ad  * are met:
     45   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     46   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     47   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     48   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     49   1.2        ad  *    documentation and/or other materials provided with the distribution.
     50   1.2        ad  * 3. All advertising materials mentioning features or use of this software
     51   1.2        ad  *    must display the following acknowledgement:
     52   1.2        ad  *      This product includes software developed by the NetBSD
     53   1.2        ad  *      Foundation, Inc. and its contributors.
     54   1.2        ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     55   1.2        ad  *    contributors may be used to endorse or promote products derived
     56   1.2        ad  *    from this software without specific prior written permission.
     57   1.2        ad  *
     58   1.2        ad  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     59   1.2        ad  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60   1.2        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61   1.2        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     62   1.2        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63   1.2        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64   1.2        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65   1.2        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66   1.2        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67   1.2        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68   1.2        ad  * SUCH DAMAGE.
     69   1.2        ad  */
     70   1.2        ad 
     71   1.2        ad #include <sys/cdefs.h>
     72  1.32       tls __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.32 2008/04/22 02:23:05 tls Exp $");
     73   1.2        ad 
     74   1.2        ad #include "opt_ddb.h"
     75   1.2        ad #include "opt_multiprocessor.h"
     76   1.2        ad #include "opt_mpbios.h"		/* for MPDEBUG */
     77   1.2        ad #include "opt_mtrr.h"
     78   1.2        ad 
     79   1.2        ad #include "lapic.h"
     80   1.2        ad #include "ioapic.h"
     81   1.2        ad 
     82   1.2        ad #include <sys/param.h>
     83   1.2        ad #include <sys/proc.h>
     84   1.2        ad #include <sys/user.h>
     85   1.2        ad #include <sys/systm.h>
     86   1.2        ad #include <sys/device.h>
     87   1.2        ad #include <sys/malloc.h>
     88   1.9        ad #include <sys/cpu.h>
     89   1.9        ad #include <sys/atomic.h>
     90   1.2        ad 
     91   1.2        ad #include <uvm/uvm_extern.h>
     92   1.2        ad 
     93   1.2        ad #include <machine/cpufunc.h>
     94   1.2        ad #include <machine/cpuvar.h>
     95   1.2        ad #include <machine/pmap.h>
     96   1.2        ad #include <machine/vmparam.h>
     97   1.2        ad #include <machine/mpbiosvar.h>
     98   1.2        ad #include <machine/pcb.h>
     99   1.2        ad #include <machine/specialreg.h>
    100   1.2        ad #include <machine/segments.h>
    101   1.2        ad #include <machine/gdt.h>
    102   1.2        ad #include <machine/mtrr.h>
    103   1.2        ad #include <machine/pio.h>
    104   1.2        ad 
    105   1.2        ad #ifdef i386
    106   1.2        ad #include <machine/tlog.h>
    107   1.2        ad #endif
    108   1.2        ad 
    109   1.2        ad #if NLAPIC > 0
    110   1.2        ad #include <machine/apicvar.h>
    111   1.2        ad #include <machine/i82489reg.h>
    112   1.2        ad #include <machine/i82489var.h>
    113   1.2        ad #endif
    114   1.2        ad 
    115   1.2        ad #include <dev/ic/mc146818reg.h>
    116   1.2        ad #include <i386/isa/nvram.h>
    117   1.2        ad #include <dev/isa/isareg.h>
    118   1.2        ad 
    119  1.23      cube int     cpu_match(device_t, cfdata_t, void *);
    120  1.23      cube void    cpu_attach(device_t, device_t, void *);
    121   1.2        ad 
    122  1.22    dyoung static bool	cpu_suspend(device_t PMF_FN_PROTO);
    123  1.22    dyoung static bool	cpu_resume(device_t PMF_FN_PROTO);
    124  1.12  jmcneill 
    125   1.2        ad struct cpu_softc {
    126  1.23      cube 	device_t sc_dev;		/* device tree glue */
    127   1.2        ad 	struct cpu_info *sc_info;	/* pointer to CPU info */
    128  1.20  jmcneill 	bool sc_wasonline;
    129   1.2        ad };
    130   1.2        ad 
    131  1.14     joerg int mp_cpu_start(struct cpu_info *, paddr_t);
    132   1.2        ad void mp_cpu_start_cleanup(struct cpu_info *);
    133   1.2        ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    134   1.2        ad 					    mp_cpu_start_cleanup };
    135   1.2        ad 
    136   1.2        ad 
    137  1.23      cube CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    138   1.2        ad     cpu_match, cpu_attach, NULL, NULL);
    139   1.2        ad 
    140   1.2        ad /*
    141   1.2        ad  * Statically-allocated CPU info for the primary CPU (or the only
    142   1.2        ad  * CPU, on uniprocessors).  The CPU info list is initialized to
    143   1.2        ad  * point at it.
    144   1.2        ad  */
    145   1.2        ad #ifdef TRAPLOG
    146   1.2        ad struct tlog tlog_primary;
    147   1.2        ad #endif
    148  1.21        ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    149   1.2        ad 	.ci_dev = 0,
    150   1.2        ad 	.ci_self = &cpu_info_primary,
    151   1.2        ad 	.ci_idepth = -1,
    152   1.2        ad 	.ci_curlwp = &lwp0,
    153   1.2        ad #ifdef TRAPLOG
    154   1.2        ad 	.ci_tlog_base = &tlog_primary,
    155   1.2        ad #endif /* !TRAPLOG */
    156   1.2        ad };
    157   1.2        ad 
    158   1.2        ad struct cpu_info *cpu_info_list = &cpu_info_primary;
    159   1.2        ad 
    160  1.12  jmcneill static void	cpu_set_tss_gates(struct cpu_info *);
    161   1.2        ad 
    162   1.2        ad #ifdef i386
    163  1.15      yamt static void	tss_init(struct i386tss *, void *, void *);
    164   1.2        ad #endif
    165   1.2        ad 
    166  1.12  jmcneill #ifdef MULTIPROCESSOR
    167  1.12  jmcneill static void	cpu_init_idle_lwp(struct cpu_info *);
    168  1.12  jmcneill #endif
    169  1.12  jmcneill 
    170   1.2        ad uint32_t cpus_attached = 0;
    171   1.9        ad uint32_t cpus_running = 0;
    172   1.2        ad 
    173   1.2        ad extern char x86_64_doubleflt_stack[];
    174   1.2        ad 
    175  1.12  jmcneill bool x86_mp_online;
    176  1.12  jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    177  1.12  jmcneill 
    178  1.14     joerg static vaddr_t cmos_data_mapping;
    179  1.14     joerg 
    180   1.2        ad #ifdef MULTIPROCESSOR
    181   1.2        ad /*
    182   1.2        ad  * Array of CPU info structures.  Must be statically-allocated because
    183   1.2        ad  * curproc, etc. are used early.
    184   1.2        ad  */
    185   1.2        ad struct cpu_info *cpu_info[X86_MAXPROCS] = { &cpu_info_primary, };
    186   1.2        ad 
    187   1.2        ad void    	cpu_hatch(void *);
    188   1.2        ad static void    	cpu_boot_secondary(struct cpu_info *ci);
    189   1.2        ad static void    	cpu_start_secondary(struct cpu_info *ci);
    190   1.2        ad static void	cpu_copy_trampoline(void);
    191   1.2        ad 
    192   1.2        ad /*
    193   1.2        ad  * Runs once per boot once multiprocessor goo has been detected and
    194   1.2        ad  * the local APIC on the boot processor has been mapped.
    195   1.2        ad  *
    196   1.2        ad  * Called from lapic_boot_init() (from mpbios_scan()).
    197   1.2        ad  */
    198   1.2        ad void
    199   1.9        ad cpu_init_first(void)
    200   1.2        ad {
    201   1.2        ad 	int cpunum = lapic_cpu_number();
    202   1.2        ad 
    203   1.2        ad 	if (cpunum != 0) {
    204   1.2        ad 		cpu_info[0] = NULL;
    205   1.2        ad 		cpu_info[cpunum] = &cpu_info_primary;
    206   1.2        ad 	}
    207   1.2        ad 
    208   1.2        ad 	cpu_info_primary.ci_cpuid = cpunum;
    209   1.2        ad 	cpu_copy_trampoline();
    210  1.14     joerg 
    211  1.14     joerg 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    212  1.14     joerg 	if (cmos_data_mapping == 0)
    213  1.14     joerg 		panic("No KVA for page 0");
    214  1.14     joerg 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
    215  1.14     joerg 	pmap_update(pmap_kernel());
    216   1.2        ad }
    217   1.2        ad #endif
    218   1.2        ad 
    219   1.2        ad int
    220  1.23      cube cpu_match(device_t parent, cfdata_t match, void *aux)
    221   1.2        ad {
    222   1.2        ad 
    223   1.2        ad 	return 1;
    224   1.2        ad }
    225   1.2        ad 
    226   1.2        ad static void
    227   1.2        ad cpu_vm_init(struct cpu_info *ci)
    228   1.2        ad {
    229   1.2        ad 	int ncolors = 2, i;
    230   1.2        ad 
    231   1.2        ad 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    232   1.2        ad 		struct x86_cache_info *cai;
    233   1.2        ad 		int tcolors;
    234   1.2        ad 
    235   1.2        ad 		cai = &ci->ci_cinfo[i];
    236   1.2        ad 
    237   1.2        ad 		tcolors = atop(cai->cai_totalsize);
    238   1.2        ad 		switch(cai->cai_associativity) {
    239   1.2        ad 		case 0xff:
    240   1.2        ad 			tcolors = 1; /* fully associative */
    241   1.2        ad 			break;
    242   1.2        ad 		case 0:
    243   1.2        ad 		case 1:
    244   1.2        ad 			break;
    245   1.2        ad 		default:
    246   1.2        ad 			tcolors /= cai->cai_associativity;
    247   1.2        ad 		}
    248   1.2        ad 		ncolors = max(ncolors, tcolors);
    249  1.32       tls 		/*
    250  1.32       tls 		 * If the desired number of colors is not a power of
    251  1.32       tls 		 * two, it won't be good.  Find the greatest power of
    252  1.32       tls 		 * two which is an even divisor of the number of colors,
    253  1.32       tls 		 * to preserve even coloring of pages.
    254  1.32       tls 		 */
    255  1.32       tls 		if (ncolors & (ncolors - 1) ) {
    256  1.32       tls 			int try, picked = 1;
    257  1.32       tls 			for (try = 1; try < ncolors; try *= 2) {
    258  1.32       tls 				if (ncolors % try == 0) picked = try;
    259  1.32       tls 			}
    260  1.32       tls 			if (picked == 1) {
    261  1.32       tls 				panic("desired number of cache colors %d is "
    262  1.32       tls 			      	" > 1, but not even!", ncolors);
    263  1.32       tls 			}
    264  1.32       tls 			ncolors = picked;
    265  1.32       tls 		}
    266   1.2        ad 	}
    267   1.2        ad 
    268   1.2        ad 	/*
    269   1.2        ad 	 * Knowing the size of the largest cache on this CPU, re-color
    270   1.2        ad 	 * our pages.
    271   1.2        ad 	 */
    272   1.2        ad 	if (ncolors <= uvmexp.ncolors)
    273   1.2        ad 		return;
    274  1.27    cegger 	aprint_verbose_dev(ci->ci_dev, "%d page colors\n", ncolors);
    275   1.2        ad 	uvm_page_recolor(ncolors);
    276   1.2        ad }
    277   1.2        ad 
    278   1.2        ad 
    279   1.2        ad void
    280  1.23      cube cpu_attach(device_t parent, device_t self, void *aux)
    281   1.2        ad {
    282  1.23      cube 	struct cpu_softc *sc = device_private(self);
    283   1.2        ad 	struct cpu_attach_args *caa = aux;
    284   1.2        ad 	struct cpu_info *ci;
    285  1.21        ad 	uintptr_t ptr;
    286   1.2        ad #if defined(MULTIPROCESSOR)
    287   1.2        ad 	int cpunum = caa->cpu_number;
    288   1.2        ad #endif
    289   1.2        ad 
    290  1.23      cube 	sc->sc_dev = self;
    291  1.23      cube 
    292   1.2        ad 	/*
    293   1.2        ad 	 * If we're an Application Processor, allocate a cpu_info
    294   1.2        ad 	 * structure, otherwise use the primary's.
    295   1.2        ad 	 */
    296   1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    297   1.2        ad 		aprint_naive(": Application Processor\n");
    298  1.21        ad 		ptr = (uintptr_t)malloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    299  1.21        ad 		    M_DEVBUF, M_WAITOK);
    300  1.21        ad 		ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
    301  1.21        ad 		    ~(CACHE_LINE_SIZE - 1));
    302   1.2        ad 		memset(ci, 0, sizeof(*ci));
    303   1.2        ad #if defined(MULTIPROCESSOR)
    304   1.2        ad 		if (cpu_info[cpunum] != NULL) {
    305   1.2        ad 			printf("\n");
    306   1.2        ad 			panic("cpu at apic id %d already attached?", cpunum);
    307   1.2        ad 		}
    308   1.2        ad 		cpu_info[cpunum] = ci;
    309   1.2        ad #endif
    310   1.2        ad #ifdef TRAPLOG
    311   1.2        ad 		ci->ci_tlog_base = malloc(sizeof(struct tlog),
    312   1.2        ad 		    M_DEVBUF, M_WAITOK);
    313   1.2        ad #endif
    314   1.2        ad 	} else {
    315   1.2        ad 		aprint_naive(": %s Processor\n",
    316   1.2        ad 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    317   1.2        ad 		ci = &cpu_info_primary;
    318   1.2        ad #if defined(MULTIPROCESSOR)
    319   1.2        ad 		if (cpunum != lapic_cpu_number()) {
    320   1.2        ad 			printf("\n");
    321   1.2        ad 			panic("%s: running CPU is at apic %d"
    322   1.2        ad 			    " instead of at expected %d",
    323  1.23      cube 			    device_xname(sc->sc_dev), lapic_cpu_number(),
    324  1.23      cube 			    cpunum);
    325   1.2        ad 		}
    326   1.2        ad #endif
    327   1.2        ad 	}
    328   1.2        ad 
    329   1.2        ad 	ci->ci_self = ci;
    330   1.2        ad 	sc->sc_info = ci;
    331   1.2        ad 
    332   1.2        ad 	ci->ci_dev = self;
    333   1.2        ad 	ci->ci_apicid = caa->cpu_number;
    334   1.2        ad #ifdef MULTIPROCESSOR
    335   1.2        ad 	ci->ci_cpuid = ci->ci_apicid;
    336   1.2        ad #else
    337   1.2        ad 	ci->ci_cpuid = 0;	/* False for APs, but they're not used anyway */
    338   1.2        ad #endif
    339   1.2        ad 	ci->ci_cpumask = (1 << ci->ci_cpuid);
    340   1.2        ad 	ci->ci_func = caa->cpu_func;
    341   1.2        ad 
    342   1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    343   1.2        ad #ifdef MULTIPROCESSOR
    344   1.2        ad 		int error;
    345   1.2        ad 
    346   1.2        ad 		error = mi_cpu_attach(ci);
    347   1.2        ad 		if (error != 0) {
    348   1.2        ad 			aprint_normal("\n");
    349  1.30    cegger 			aprint_error_dev(sc->sc_dev,
    350  1.30    cegger 			    "mi_cpu_attach failed with %d\n", error);
    351   1.2        ad 			return;
    352   1.2        ad 		}
    353   1.2        ad #endif
    354  1.15      yamt 		cpu_init_tss(ci);
    355   1.2        ad 	} else {
    356   1.2        ad 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    357   1.2        ad 	}
    358   1.2        ad 
    359   1.2        ad 	pmap_reference(pmap_kernel());
    360   1.2        ad 	ci->ci_pmap = pmap_kernel();
    361   1.2        ad 	ci->ci_tlbstate = TLBSTATE_STALE;
    362   1.2        ad 
    363   1.2        ad 	/* further PCB init done later. */
    364   1.2        ad 
    365   1.2        ad 	switch (caa->cpu_role) {
    366   1.2        ad 	case CPU_ROLE_SP:
    367   1.2        ad 		aprint_normal(": (uniprocessor)\n");
    368   1.9        ad 		atomic_or_32(&ci->ci_flags,
    369   1.9        ad 		    CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY);
    370   1.2        ad 		cpu_intr_init(ci);
    371   1.2        ad 		identifycpu(ci);
    372   1.2        ad 		cpu_init(ci);
    373   1.2        ad 		cpu_set_tss_gates(ci);
    374   1.2        ad 		pmap_cpu_init_late(ci);
    375   1.6        ad 		x86_errata();
    376   1.2        ad 		break;
    377   1.2        ad 
    378   1.2        ad 	case CPU_ROLE_BP:
    379   1.2        ad 		aprint_normal(": (boot processor)\n");
    380   1.9        ad 		atomic_or_32(&ci->ci_flags,
    381   1.9        ad 		    CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY);
    382   1.2        ad 		cpu_intr_init(ci);
    383   1.2        ad 		identifycpu(ci);
    384   1.2        ad 		cpu_init(ci);
    385   1.2        ad 		cpu_set_tss_gates(ci);
    386   1.2        ad 		pmap_cpu_init_late(ci);
    387   1.2        ad #if NLAPIC > 0
    388   1.2        ad 		/*
    389   1.2        ad 		 * Enable local apic
    390   1.2        ad 		 */
    391   1.2        ad 		lapic_enable();
    392  1.19     joerg 		lapic_set_lvt();
    393   1.2        ad 		lapic_calibrate_timer(ci);
    394   1.2        ad #endif
    395   1.6        ad 		x86_errata();
    396   1.2        ad 		break;
    397   1.2        ad 
    398   1.2        ad 	case CPU_ROLE_AP:
    399   1.2        ad 		/*
    400   1.2        ad 		 * report on an AP
    401   1.2        ad 		 */
    402   1.2        ad 		aprint_normal(": (application processor)\n");
    403   1.2        ad 
    404   1.2        ad #if defined(MULTIPROCESSOR)
    405   1.2        ad 		cpu_intr_init(ci);
    406   1.2        ad 		gdt_alloc_cpu(ci);
    407   1.2        ad 		cpu_set_tss_gates(ci);
    408   1.2        ad 		pmap_cpu_init_early(ci);
    409   1.2        ad 		pmap_cpu_init_late(ci);
    410   1.2        ad 		cpu_start_secondary(ci);
    411   1.2        ad 		if (ci->ci_flags & CPUF_PRESENT) {
    412   1.2        ad 			identifycpu(ci);
    413   1.2        ad 			ci->ci_next = cpu_info_list->ci_next;
    414   1.2        ad 			cpu_info_list->ci_next = ci;
    415   1.2        ad 		}
    416   1.2        ad #else
    417  1.28    cegger 		aprint_normal_dev(sc->sc_dev, "not started\n");
    418   1.2        ad #endif
    419   1.2        ad 		break;
    420   1.2        ad 
    421   1.2        ad 	default:
    422  1.28    cegger 		aprint_normal("\n");
    423   1.2        ad 		panic("unknown processor type??\n");
    424   1.2        ad 	}
    425   1.2        ad 	cpu_vm_init(ci);
    426   1.2        ad 
    427   1.2        ad 	cpus_attached |= ci->ci_cpumask;
    428   1.2        ad 
    429  1.12  jmcneill 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    430  1.12  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    431  1.12  jmcneill 
    432   1.2        ad #if defined(MULTIPROCESSOR)
    433   1.2        ad 	if (mp_verbose) {
    434   1.2        ad 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    435   1.2        ad 
    436  1.28    cegger 		aprint_verbose_dev(sc->sc_dev,
    437  1.28    cegger 		    "idle lwp at %p, idle sp at %p\n",
    438  1.28    cegger 		    l,
    439   1.2        ad #ifdef i386
    440   1.2        ad 		    (void *)l->l_addr->u_pcb.pcb_esp
    441   1.2        ad #else
    442   1.2        ad 		    (void *)l->l_addr->u_pcb.pcb_rsp
    443   1.2        ad #endif
    444   1.2        ad 		);
    445   1.2        ad 	}
    446   1.2        ad #endif
    447   1.2        ad }
    448   1.2        ad 
    449   1.2        ad /*
    450   1.2        ad  * Initialize the processor appropriately.
    451   1.2        ad  */
    452   1.2        ad 
    453   1.2        ad void
    454   1.9        ad cpu_init(struct cpu_info *ci)
    455   1.2        ad {
    456   1.2        ad 	/* configure the CPU if needed */
    457   1.2        ad 	if (ci->cpu_setup != NULL)
    458   1.2        ad 		(*ci->cpu_setup)(ci);
    459   1.2        ad 
    460   1.2        ad #ifdef i386
    461   1.2        ad 	/*
    462   1.2        ad 	 * On a 486 or above, enable ring 0 write protection.
    463   1.2        ad 	 */
    464   1.2        ad 	if (ci->ci_cpu_class >= CPUCLASS_486)
    465   1.2        ad 		lcr0(rcr0() | CR0_WP);
    466   1.2        ad #else
    467   1.2        ad 	lcr0(rcr0() | CR0_WP);
    468   1.2        ad #endif
    469   1.2        ad 
    470   1.2        ad 	/*
    471   1.2        ad 	 * On a P6 or above, enable global TLB caching if the
    472   1.2        ad 	 * hardware supports it.
    473   1.2        ad 	 */
    474   1.2        ad 	if (cpu_feature & CPUID_PGE)
    475   1.2        ad 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    476   1.2        ad 
    477   1.2        ad 	/*
    478   1.2        ad 	 * If we have FXSAVE/FXRESTOR, use them.
    479   1.2        ad 	 */
    480   1.2        ad 	if (cpu_feature & CPUID_FXSR) {
    481   1.2        ad 		lcr4(rcr4() | CR4_OSFXSR);
    482   1.2        ad 
    483   1.2        ad 		/*
    484   1.2        ad 		 * If we have SSE/SSE2, enable XMM exceptions.
    485   1.2        ad 		 */
    486   1.2        ad 		if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
    487   1.2        ad 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    488   1.2        ad 	}
    489   1.2        ad 
    490   1.2        ad #ifdef MTRR
    491   1.2        ad 	/*
    492   1.2        ad 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    493   1.2        ad 	 */
    494   1.2        ad 	if (cpu_feature & CPUID_MTRR) {
    495   1.2        ad 		if ((ci->ci_flags & CPUF_AP) == 0)
    496   1.2        ad 			i686_mtrr_init_first();
    497   1.2        ad 		mtrr_init_cpu(ci);
    498   1.2        ad 	}
    499   1.2        ad 
    500   1.2        ad #ifdef i386
    501   1.2        ad 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    502   1.2        ad 		/*
    503   1.2        ad 		 * Must be a K6-2 Step >= 7 or a K6-III.
    504   1.2        ad 		 */
    505   1.2        ad 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    506   1.2        ad 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    507   1.2        ad 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    508   1.2        ad 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    509   1.2        ad 				mtrr_funcs = &k6_mtrr_funcs;
    510   1.2        ad 				k6_mtrr_init_first();
    511   1.2        ad 				mtrr_init_cpu(ci);
    512   1.2        ad 			}
    513   1.2        ad 		}
    514   1.2        ad 	}
    515   1.2        ad #endif	/* i386 */
    516   1.2        ad #endif /* MTRR */
    517   1.2        ad 
    518   1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    519   1.9        ad 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    520   1.9        ad 
    521   1.9        ad #ifndef MULTIPROCESSOR
    522   1.5        ad 	/* XXX */
    523   1.5        ad 	x86_patch();
    524   1.2        ad #endif
    525   1.2        ad }
    526   1.2        ad 
    527   1.2        ad #ifdef MULTIPROCESSOR
    528   1.2        ad void
    529  1.12  jmcneill cpu_boot_secondary_processors(void)
    530   1.2        ad {
    531   1.2        ad 	struct cpu_info *ci;
    532   1.2        ad 	u_long i;
    533   1.2        ad 
    534   1.5        ad 	/* Now that we know the number of CPUs, patch the text segment. */
    535   1.5        ad 	x86_patch();
    536   1.5        ad 
    537   1.2        ad 	for (i=0; i < X86_MAXPROCS; i++) {
    538   1.2        ad 		ci = cpu_info[i];
    539   1.2        ad 		if (ci == NULL)
    540   1.2        ad 			continue;
    541   1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    542   1.2        ad 			continue;
    543   1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    544   1.2        ad 			continue;
    545   1.2        ad 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    546   1.2        ad 			continue;
    547   1.2        ad 		cpu_boot_secondary(ci);
    548   1.2        ad 	}
    549   1.2        ad 
    550   1.2        ad 	x86_mp_online = true;
    551   1.2        ad }
    552   1.2        ad 
    553   1.2        ad static void
    554   1.2        ad cpu_init_idle_lwp(struct cpu_info *ci)
    555   1.2        ad {
    556   1.2        ad 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    557   1.2        ad 	struct pcb *pcb = &l->l_addr->u_pcb;
    558   1.2        ad 
    559   1.2        ad 	pcb->pcb_cr0 = rcr0();
    560   1.2        ad }
    561   1.2        ad 
    562   1.2        ad void
    563  1.12  jmcneill cpu_init_idle_lwps(void)
    564   1.2        ad {
    565   1.2        ad 	struct cpu_info *ci;
    566   1.2        ad 	u_long i;
    567   1.2        ad 
    568   1.2        ad 	for (i = 0; i < X86_MAXPROCS; i++) {
    569   1.2        ad 		ci = cpu_info[i];
    570   1.2        ad 		if (ci == NULL)
    571   1.2        ad 			continue;
    572   1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    573   1.2        ad 			continue;
    574   1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    575   1.2        ad 			continue;
    576   1.2        ad 		cpu_init_idle_lwp(ci);
    577   1.2        ad 	}
    578   1.2        ad }
    579   1.2        ad 
    580   1.2        ad void
    581  1.12  jmcneill cpu_start_secondary(struct cpu_info *ci)
    582   1.2        ad {
    583   1.2        ad 	int i;
    584   1.2        ad 	extern paddr_t mp_pdirpa;
    585   1.2        ad 
    586  1.12  jmcneill 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    587   1.2        ad 
    588   1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    589   1.2        ad 
    590  1.26    cegger 	aprint_debug_dev(ci->ci_dev, "starting\n");
    591   1.2        ad 
    592   1.2        ad 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    593  1.25        ad 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
    594  1.25        ad 		return;
    595   1.2        ad 
    596   1.2        ad 	/*
    597   1.2        ad 	 * wait for it to become ready
    598   1.2        ad 	 */
    599  1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    600  1.24        ad #ifdef MPDEBUG
    601  1.24        ad 		extern int cpu_trace[3];
    602  1.24        ad 		static int otrace[3];
    603  1.24        ad 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    604  1.26    cegger 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    605  1.26    cegger 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    606  1.24        ad 			memcpy(otrace, cpu_trace, sizeof(otrace));
    607  1.24        ad 		}
    608  1.24        ad #endif
    609  1.11        ad 		i8254_delay(10);
    610   1.2        ad 	}
    611   1.9        ad 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    612  1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    613   1.2        ad #if defined(MPDEBUG) && defined(DDB)
    614   1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    615   1.2        ad 		Debugger();
    616   1.2        ad #endif
    617   1.2        ad 	}
    618   1.2        ad 
    619   1.2        ad 	CPU_START_CLEANUP(ci);
    620   1.2        ad }
    621   1.2        ad 
    622   1.2        ad void
    623  1.12  jmcneill cpu_boot_secondary(struct cpu_info *ci)
    624   1.2        ad {
    625   1.2        ad 	int i;
    626   1.2        ad 
    627   1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    628  1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    629  1.11        ad 		i8254_delay(10);
    630   1.2        ad 	}
    631   1.9        ad 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    632  1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    633   1.2        ad #if defined(MPDEBUG) && defined(DDB)
    634   1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    635   1.2        ad 		Debugger();
    636   1.2        ad #endif
    637   1.2        ad 	}
    638   1.2        ad }
    639   1.2        ad 
    640   1.2        ad /*
    641   1.2        ad  * The CPU ends up here when its ready to run
    642   1.2        ad  * This is called from code in mptramp.s; at this point, we are running
    643   1.2        ad  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    644   1.2        ad  * this processor will enter the idle loop and start looking for work.
    645   1.2        ad  */
    646   1.2        ad void
    647   1.2        ad cpu_hatch(void *v)
    648   1.2        ad {
    649   1.2        ad 	struct cpu_info *ci = (struct cpu_info *)v;
    650   1.6        ad 	int s, i;
    651   1.2        ad 
    652   1.2        ad #ifdef __x86_64__
    653  1.12  jmcneill 	cpu_init_msrs(ci, true);
    654   1.2        ad #endif
    655   1.2        ad 	cpu_probe_features(ci);
    656   1.2        ad 	cpu_feature &= ci->ci_feature_flags;
    657   1.2        ad 	cpu_feature2 &= ci->ci_feature2_flags;
    658   1.2        ad 
    659   1.8        ad 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    660   1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    661   1.6        ad 	while ((ci->ci_flags & CPUF_GO) == 0) {
    662   1.6        ad 		/* Don't use delay, boot CPU may be patching the text. */
    663   1.6        ad 		for (i = 10000; i != 0; i--)
    664   1.6        ad 			x86_pause();
    665   1.6        ad 	}
    666   1.5        ad 
    667  1.26    cegger 	/* Because the text may have been patched in x86_patch(). */
    668   1.5        ad 	wbinvd();
    669   1.5        ad 	x86_flush();
    670   1.5        ad 
    671   1.8        ad 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    672   1.2        ad 
    673  1.12  jmcneill 	lcr3(pmap_kernel()->pm_pdirpa);
    674  1.12  jmcneill 	curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
    675   1.2        ad 	lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
    676   1.2        ad 	cpu_init_idt();
    677   1.8        ad 	gdt_init_cpu(ci);
    678   1.8        ad 	lapic_enable();
    679   1.2        ad 	lapic_set_lvt();
    680   1.8        ad 	lapic_initclocks();
    681   1.2        ad 
    682   1.2        ad #ifdef i386
    683   1.2        ad 	npxinit(ci);
    684   1.2        ad #else
    685   1.2        ad 	fpuinit(ci);
    686   1.4      yamt #endif
    687   1.2        ad 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    688  1.15      yamt 	ltr(ci->ci_tss_sel);
    689   1.2        ad 
    690   1.2        ad 	cpu_init(ci);
    691   1.7        ad 	cpu_get_tsc_freq(ci);
    692   1.2        ad 
    693   1.2        ad 	s = splhigh();
    694   1.2        ad #ifdef i386
    695   1.2        ad 	lapic_tpr = 0;
    696   1.2        ad #else
    697   1.2        ad 	lcr8(0);
    698   1.2        ad #endif
    699   1.3        ad 	x86_enable_intr();
    700   1.2        ad 	splx(s);
    701   1.6        ad 	x86_errata();
    702   1.2        ad 
    703  1.26    cegger 	aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
    704   1.2        ad 	    (long)ci->ci_cpuid);
    705   1.2        ad }
    706   1.2        ad 
    707   1.2        ad #if defined(DDB)
    708   1.2        ad 
    709   1.2        ad #include <ddb/db_output.h>
    710   1.2        ad #include <machine/db_machdep.h>
    711   1.2        ad 
    712   1.2        ad /*
    713   1.2        ad  * Dump CPU information from ddb.
    714   1.2        ad  */
    715   1.2        ad void
    716   1.2        ad cpu_debug_dump(void)
    717   1.2        ad {
    718   1.2        ad 	struct cpu_info *ci;
    719   1.2        ad 	CPU_INFO_ITERATOR cii;
    720   1.2        ad 
    721  1.29      yamt 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    722   1.2        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    723   1.2        ad 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    724   1.2        ad 		    ci,
    725  1.27    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    726   1.2        ad 		    (long)ci->ci_cpuid,
    727   1.2        ad 		    ci->ci_flags, ci->ci_ipis,
    728   1.2        ad 		    ci->ci_curlwp,
    729   1.2        ad 		    ci->ci_fpcurlwp);
    730   1.2        ad 	}
    731   1.2        ad }
    732   1.2        ad #endif
    733   1.2        ad 
    734   1.2        ad static void
    735  1.12  jmcneill cpu_copy_trampoline(void)
    736   1.2        ad {
    737   1.2        ad 	/*
    738   1.2        ad 	 * Copy boot code.
    739   1.2        ad 	 */
    740   1.2        ad 	extern u_char cpu_spinup_trampoline[];
    741   1.2        ad 	extern u_char cpu_spinup_trampoline_end[];
    742  1.12  jmcneill 
    743  1.12  jmcneill 	vaddr_t mp_trampoline_vaddr;
    744  1.12  jmcneill 
    745  1.12  jmcneill 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    746  1.12  jmcneill 	    UVM_KMF_VAONLY);
    747  1.12  jmcneill 
    748  1.12  jmcneill 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    749  1.12  jmcneill 	    VM_PROT_READ | VM_PROT_WRITE);
    750   1.2        ad 	pmap_update(pmap_kernel());
    751  1.12  jmcneill 	memcpy((void *)mp_trampoline_vaddr,
    752   1.2        ad 	    cpu_spinup_trampoline,
    753  1.26    cegger 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    754  1.12  jmcneill 
    755  1.12  jmcneill 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    756  1.12  jmcneill 	pmap_update(pmap_kernel());
    757  1.12  jmcneill 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    758   1.2        ad }
    759   1.2        ad 
    760   1.2        ad #endif
    761   1.2        ad 
    762   1.2        ad #ifdef i386
    763   1.2        ad static void
    764  1.15      yamt tss_init(struct i386tss *tss, void *stack, void *func)
    765   1.2        ad {
    766   1.2        ad 	memset(tss, 0, sizeof *tss);
    767   1.2        ad 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    768   1.2        ad 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    769   1.2        ad 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    770   1.2        ad 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    771   1.2        ad 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    772   1.2        ad 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    773   1.2        ad 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    774   1.2        ad 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    775   1.2        ad 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    776   1.2        ad 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    777   1.2        ad 	tss->__tss_eip = (int)func;
    778   1.2        ad }
    779   1.2        ad 
    780   1.2        ad /* XXX */
    781   1.2        ad #define IDTVEC(name)	__CONCAT(X, name)
    782   1.2        ad typedef void (vector)(void);
    783   1.2        ad extern vector IDTVEC(tss_trap08);
    784   1.2        ad #ifdef DDB
    785   1.2        ad extern vector Xintrddbipi;
    786   1.2        ad extern int ddb_vec;
    787   1.2        ad #endif
    788   1.2        ad 
    789   1.2        ad static void
    790   1.2        ad cpu_set_tss_gates(struct cpu_info *ci)
    791   1.2        ad {
    792   1.2        ad 	struct segment_descriptor sd;
    793   1.2        ad 
    794   1.2        ad 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    795   1.2        ad 	    UVM_KMF_WIRED);
    796  1.15      yamt 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    797   1.2        ad 	    IDTVEC(tss_trap08));
    798   1.2        ad 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    799   1.2        ad 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    800   1.2        ad 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    801   1.2        ad 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    802   1.2        ad 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    803   1.2        ad 
    804   1.2        ad #if defined(DDB) && defined(MULTIPROCESSOR)
    805   1.2        ad 	/*
    806   1.2        ad 	 * Set up separate handler for the DDB IPI, so that it doesn't
    807   1.2        ad 	 * stomp on a possibly corrupted stack.
    808   1.2        ad 	 *
    809   1.2        ad 	 * XXX overwriting the gate set in db_machine_init.
    810   1.2        ad 	 * Should rearrange the code so that it's set only once.
    811   1.2        ad 	 */
    812   1.2        ad 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    813   1.2        ad 	    UVM_KMF_WIRED);
    814  1.15      yamt 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    815   1.2        ad 
    816   1.2        ad 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    817   1.2        ad 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    818   1.2        ad 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    819   1.2        ad 
    820   1.2        ad 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    821   1.2        ad 	    GSEL(GIPITSS_SEL, SEL_KPL));
    822   1.2        ad #endif
    823   1.2        ad }
    824   1.2        ad #else
    825   1.2        ad static void
    826   1.2        ad cpu_set_tss_gates(struct cpu_info *ci)
    827   1.2        ad {
    828   1.2        ad 
    829   1.2        ad }
    830   1.2        ad #endif	/* i386 */
    831   1.2        ad 
    832   1.2        ad int
    833  1.14     joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
    834   1.2        ad {
    835   1.2        ad #if NLAPIC > 0
    836   1.2        ad 	int error;
    837   1.2        ad #endif
    838   1.2        ad 	unsigned short dwordptr[2];
    839  1.14     joerg 
    840  1.14     joerg 	/*
    841  1.14     joerg 	 * Bootstrap code must be addressable in real mode
    842  1.14     joerg 	 * and it must be page aligned.
    843  1.14     joerg 	 */
    844  1.14     joerg 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    845   1.2        ad 
    846   1.2        ad 	/*
    847   1.2        ad 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    848   1.2        ad 	 */
    849   1.2        ad 
    850   1.2        ad 	outb(IO_RTC, NVRAM_RESET);
    851   1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    852   1.2        ad 
    853   1.2        ad 	/*
    854   1.2        ad 	 * "and the warm reset vector (DWORD based at 40:67) to point
    855   1.2        ad 	 * to the AP startup code ..."
    856   1.2        ad 	 */
    857   1.2        ad 
    858   1.2        ad 	dwordptr[0] = 0;
    859  1.14     joerg 	dwordptr[1] = target >> 4;
    860   1.2        ad 
    861  1.25        ad 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    862   1.2        ad 
    863   1.2        ad #if NLAPIC > 0
    864  1.25        ad 	if ((cpu_feature & CPUID_APIC) == 0) {
    865  1.25        ad 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
    866  1.25        ad 		return ENODEV;
    867  1.25        ad 	}
    868  1.25        ad 
    869   1.2        ad 	/*
    870   1.2        ad 	 * ... prior to executing the following sequence:"
    871   1.2        ad 	 */
    872   1.2        ad 
    873   1.2        ad 	if (ci->ci_flags & CPUF_AP) {
    874  1.26    cegger 		error = x86_ipi_init(ci->ci_apicid);
    875  1.26    cegger 		if (error != 0) {
    876  1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    877  1.26    cegger 					__func__);
    878   1.2        ad 			return error;
    879  1.25        ad 		}
    880   1.2        ad 
    881  1.11        ad 		i8254_delay(10000);
    882   1.2        ad 
    883  1.26    cegger 		error = x86_ipi(target / PAGE_SIZE, ci->ci_apicid,
    884  1.26    cegger 		    LAPIC_DLMODE_STARTUP);
    885  1.26    cegger 		if (error != 0) {
    886  1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    887  1.26    cegger 					__func__);
    888  1.25        ad 			return error;
    889  1.25        ad 		}
    890  1.25        ad 		i8254_delay(200);
    891   1.2        ad 
    892  1.26    cegger 		error = x86_ipi(target / PAGE_SIZE, ci->ci_apicid,
    893  1.26    cegger 		    LAPIC_DLMODE_STARTUP);
    894  1.26    cegger 		if (error != 0) {
    895  1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
    896  1.26    cegger 					__func__);
    897  1.25        ad 			return error;
    898   1.2        ad 		}
    899  1.25        ad 		i8254_delay(200);
    900   1.2        ad 	}
    901   1.2        ad #endif
    902   1.2        ad 	return 0;
    903   1.2        ad }
    904   1.2        ad 
    905   1.2        ad void
    906   1.2        ad mp_cpu_start_cleanup(struct cpu_info *ci)
    907   1.2        ad {
    908   1.2        ad 	/*
    909   1.2        ad 	 * Ensure the NVRAM reset byte contains something vaguely sane.
    910   1.2        ad 	 */
    911   1.2        ad 
    912   1.2        ad 	outb(IO_RTC, NVRAM_RESET);
    913   1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_RST);
    914   1.2        ad }
    915   1.2        ad 
    916   1.2        ad #ifdef __x86_64__
    917   1.2        ad typedef void (vector)(void);
    918   1.2        ad extern vector Xsyscall, Xsyscall32;
    919   1.2        ad 
    920   1.2        ad void
    921  1.12  jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
    922   1.2        ad {
    923   1.2        ad 	wrmsr(MSR_STAR,
    924   1.2        ad 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
    925   1.2        ad 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
    926   1.2        ad 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
    927   1.2        ad 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
    928   1.2        ad 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
    929   1.2        ad 
    930  1.12  jmcneill 	if (full) {
    931  1.12  jmcneill 		wrmsr(MSR_FSBASE, 0);
    932  1.27    cegger 		wrmsr(MSR_GSBASE, (uint64_t)ci);
    933  1.12  jmcneill 		wrmsr(MSR_KERNELGSBASE, 0);
    934  1.12  jmcneill 	}
    935   1.2        ad 
    936   1.2        ad 	if (cpu_feature & CPUID_NOX)
    937   1.2        ad 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
    938   1.2        ad }
    939   1.2        ad #endif	/* __x86_64__ */
    940   1.7        ad 
    941  1.18     joerg void
    942  1.18     joerg cpu_offline_md(void)
    943  1.18     joerg {
    944  1.18     joerg 	int s;
    945  1.18     joerg 
    946  1.18     joerg 	s = splhigh();
    947  1.18     joerg #ifdef __i386__
    948  1.18     joerg 	npxsave_cpu(true);
    949  1.18     joerg #else
    950  1.18     joerg 	fpusave_cpu(true);
    951  1.18     joerg #endif
    952  1.18     joerg 	splx(s);
    953  1.18     joerg }
    954  1.18     joerg 
    955  1.12  jmcneill /* XXX joerg restructure and restart CPUs individually */
    956  1.12  jmcneill static bool
    957  1.22    dyoung cpu_suspend(device_t dv PMF_FN_ARGS)
    958  1.12  jmcneill {
    959  1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
    960  1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
    961  1.18     joerg 	int err;
    962  1.12  jmcneill 
    963  1.13     joerg 	if (ci->ci_flags & CPUF_PRIMARY)
    964  1.12  jmcneill 		return true;
    965  1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
    966  1.12  jmcneill 		return true;
    967  1.12  jmcneill 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
    968  1.12  jmcneill 		return true;
    969  1.12  jmcneill 
    970  1.20  jmcneill 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
    971  1.17     joerg 
    972  1.20  jmcneill 	if (sc->sc_wasonline) {
    973  1.20  jmcneill 		mutex_enter(&cpu_lock);
    974  1.20  jmcneill 		err = cpu_setonline(ci, false);
    975  1.20  jmcneill 		mutex_exit(&cpu_lock);
    976  1.20  jmcneill 
    977  1.20  jmcneill 		if (err)
    978  1.20  jmcneill 			return false;
    979  1.20  jmcneill 	}
    980  1.17     joerg 
    981  1.17     joerg 	return true;
    982  1.12  jmcneill }
    983  1.12  jmcneill 
    984  1.12  jmcneill static bool
    985  1.22    dyoung cpu_resume(device_t dv PMF_FN_ARGS)
    986  1.12  jmcneill {
    987  1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
    988  1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
    989  1.20  jmcneill 	int err = 0;
    990  1.12  jmcneill 
    991  1.13     joerg 	if (ci->ci_flags & CPUF_PRIMARY)
    992  1.12  jmcneill 		return true;
    993  1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
    994  1.12  jmcneill 		return true;
    995  1.12  jmcneill 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
    996  1.12  jmcneill 		return true;
    997  1.12  jmcneill 
    998  1.20  jmcneill 	if (sc->sc_wasonline) {
    999  1.20  jmcneill 		mutex_enter(&cpu_lock);
   1000  1.20  jmcneill 		err = cpu_setonline(ci, true);
   1001  1.20  jmcneill 		mutex_exit(&cpu_lock);
   1002  1.20  jmcneill 	}
   1003  1.13     joerg 
   1004  1.13     joerg 	return err == 0;
   1005  1.12  jmcneill }
   1006  1.12  jmcneill 
   1007   1.7        ad void
   1008   1.7        ad cpu_get_tsc_freq(struct cpu_info *ci)
   1009   1.7        ad {
   1010   1.7        ad 	uint64_t last_tsc;
   1011   1.7        ad 	u_int junk[4];
   1012   1.7        ad 
   1013   1.7        ad 	if (ci->ci_feature_flags & CPUID_TSC) {
   1014   1.7        ad 		/* Serialize. */
   1015   1.7        ad 		x86_cpuid(0, junk);
   1016   1.7        ad 		last_tsc = rdtsc();
   1017   1.7        ad 		i8254_delay(100000);
   1018   1.7        ad 		ci->ci_tsc_freq = (rdtsc() - last_tsc) * 10;
   1019   1.7        ad 	}
   1020   1.7        ad }
   1021