cpu.c revision 1.33 1 1.33 jmcneill /* $NetBSD: cpu.c,v 1.33 2008/04/24 15:59:57 jmcneill Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.7 ad * Copyright (c) 2000, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad * 3. All advertising materials mentioning features or use of this software
19 1.2 ad * must display the following acknowledgement:
20 1.2 ad * This product includes software developed by the NetBSD
21 1.2 ad * Foundation, Inc. and its contributors.
22 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 ad * contributors may be used to endorse or promote products derived
24 1.2 ad * from this software without specific prior written permission.
25 1.2 ad *
26 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.2 ad */
38 1.2 ad
39 1.2 ad /*
40 1.2 ad * Copyright (c) 1999 Stefan Grefen
41 1.2 ad *
42 1.2 ad * Redistribution and use in source and binary forms, with or without
43 1.2 ad * modification, are permitted provided that the following conditions
44 1.2 ad * are met:
45 1.2 ad * 1. Redistributions of source code must retain the above copyright
46 1.2 ad * notice, this list of conditions and the following disclaimer.
47 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
48 1.2 ad * notice, this list of conditions and the following disclaimer in the
49 1.2 ad * documentation and/or other materials provided with the distribution.
50 1.2 ad * 3. All advertising materials mentioning features or use of this software
51 1.2 ad * must display the following acknowledgement:
52 1.2 ad * This product includes software developed by the NetBSD
53 1.2 ad * Foundation, Inc. and its contributors.
54 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
55 1.2 ad * contributors may be used to endorse or promote products derived
56 1.2 ad * from this software without specific prior written permission.
57 1.2 ad *
58 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
59 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
62 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.2 ad * SUCH DAMAGE.
69 1.2 ad */
70 1.2 ad
71 1.2 ad #include <sys/cdefs.h>
72 1.33 jmcneill __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.33 2008/04/24 15:59:57 jmcneill Exp $");
73 1.2 ad
74 1.2 ad #include "opt_ddb.h"
75 1.2 ad #include "opt_multiprocessor.h"
76 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
77 1.2 ad #include "opt_mtrr.h"
78 1.2 ad
79 1.2 ad #include "lapic.h"
80 1.2 ad #include "ioapic.h"
81 1.2 ad
82 1.2 ad #include <sys/param.h>
83 1.2 ad #include <sys/proc.h>
84 1.2 ad #include <sys/user.h>
85 1.2 ad #include <sys/systm.h>
86 1.2 ad #include <sys/device.h>
87 1.2 ad #include <sys/malloc.h>
88 1.9 ad #include <sys/cpu.h>
89 1.9 ad #include <sys/atomic.h>
90 1.2 ad
91 1.2 ad #include <uvm/uvm_extern.h>
92 1.2 ad
93 1.2 ad #include <machine/cpufunc.h>
94 1.2 ad #include <machine/cpuvar.h>
95 1.2 ad #include <machine/pmap.h>
96 1.2 ad #include <machine/vmparam.h>
97 1.2 ad #include <machine/mpbiosvar.h>
98 1.2 ad #include <machine/pcb.h>
99 1.2 ad #include <machine/specialreg.h>
100 1.2 ad #include <machine/segments.h>
101 1.2 ad #include <machine/gdt.h>
102 1.2 ad #include <machine/mtrr.h>
103 1.2 ad #include <machine/pio.h>
104 1.2 ad
105 1.2 ad #ifdef i386
106 1.2 ad #include <machine/tlog.h>
107 1.2 ad #endif
108 1.2 ad
109 1.2 ad #if NLAPIC > 0
110 1.2 ad #include <machine/apicvar.h>
111 1.2 ad #include <machine/i82489reg.h>
112 1.2 ad #include <machine/i82489var.h>
113 1.2 ad #endif
114 1.2 ad
115 1.2 ad #include <dev/ic/mc146818reg.h>
116 1.2 ad #include <i386/isa/nvram.h>
117 1.2 ad #include <dev/isa/isareg.h>
118 1.2 ad
119 1.23 cube int cpu_match(device_t, cfdata_t, void *);
120 1.23 cube void cpu_attach(device_t, device_t, void *);
121 1.2 ad
122 1.22 dyoung static bool cpu_suspend(device_t PMF_FN_PROTO);
123 1.22 dyoung static bool cpu_resume(device_t PMF_FN_PROTO);
124 1.12 jmcneill
125 1.2 ad struct cpu_softc {
126 1.23 cube device_t sc_dev; /* device tree glue */
127 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
128 1.20 jmcneill bool sc_wasonline;
129 1.2 ad };
130 1.2 ad
131 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
132 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
133 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
134 1.2 ad mp_cpu_start_cleanup };
135 1.2 ad
136 1.2 ad
137 1.23 cube CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
138 1.2 ad cpu_match, cpu_attach, NULL, NULL);
139 1.2 ad
140 1.2 ad /*
141 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
142 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
143 1.2 ad * point at it.
144 1.2 ad */
145 1.2 ad #ifdef TRAPLOG
146 1.2 ad struct tlog tlog_primary;
147 1.2 ad #endif
148 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
149 1.2 ad .ci_dev = 0,
150 1.2 ad .ci_self = &cpu_info_primary,
151 1.2 ad .ci_idepth = -1,
152 1.2 ad .ci_curlwp = &lwp0,
153 1.2 ad #ifdef TRAPLOG
154 1.2 ad .ci_tlog_base = &tlog_primary,
155 1.2 ad #endif /* !TRAPLOG */
156 1.2 ad };
157 1.2 ad
158 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
159 1.2 ad
160 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
161 1.2 ad
162 1.2 ad #ifdef i386
163 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
164 1.2 ad #endif
165 1.2 ad
166 1.12 jmcneill #ifdef MULTIPROCESSOR
167 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
168 1.12 jmcneill #endif
169 1.12 jmcneill
170 1.2 ad uint32_t cpus_attached = 0;
171 1.9 ad uint32_t cpus_running = 0;
172 1.2 ad
173 1.2 ad extern char x86_64_doubleflt_stack[];
174 1.2 ad
175 1.12 jmcneill bool x86_mp_online;
176 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
177 1.12 jmcneill
178 1.14 joerg static vaddr_t cmos_data_mapping;
179 1.14 joerg
180 1.2 ad #ifdef MULTIPROCESSOR
181 1.2 ad /*
182 1.2 ad * Array of CPU info structures. Must be statically-allocated because
183 1.2 ad * curproc, etc. are used early.
184 1.2 ad */
185 1.2 ad struct cpu_info *cpu_info[X86_MAXPROCS] = { &cpu_info_primary, };
186 1.2 ad
187 1.2 ad void cpu_hatch(void *);
188 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
189 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
190 1.2 ad static void cpu_copy_trampoline(void);
191 1.2 ad
192 1.2 ad /*
193 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
194 1.2 ad * the local APIC on the boot processor has been mapped.
195 1.2 ad *
196 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
197 1.2 ad */
198 1.2 ad void
199 1.9 ad cpu_init_first(void)
200 1.2 ad {
201 1.2 ad int cpunum = lapic_cpu_number();
202 1.2 ad
203 1.2 ad if (cpunum != 0) {
204 1.2 ad cpu_info[0] = NULL;
205 1.2 ad cpu_info[cpunum] = &cpu_info_primary;
206 1.2 ad }
207 1.2 ad
208 1.2 ad cpu_info_primary.ci_cpuid = cpunum;
209 1.2 ad cpu_copy_trampoline();
210 1.14 joerg
211 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
212 1.14 joerg if (cmos_data_mapping == 0)
213 1.14 joerg panic("No KVA for page 0");
214 1.14 joerg pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
215 1.14 joerg pmap_update(pmap_kernel());
216 1.2 ad }
217 1.2 ad #endif
218 1.2 ad
219 1.2 ad int
220 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
221 1.2 ad {
222 1.2 ad
223 1.2 ad return 1;
224 1.2 ad }
225 1.2 ad
226 1.2 ad static void
227 1.2 ad cpu_vm_init(struct cpu_info *ci)
228 1.2 ad {
229 1.2 ad int ncolors = 2, i;
230 1.2 ad
231 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
232 1.2 ad struct x86_cache_info *cai;
233 1.2 ad int tcolors;
234 1.2 ad
235 1.2 ad cai = &ci->ci_cinfo[i];
236 1.2 ad
237 1.2 ad tcolors = atop(cai->cai_totalsize);
238 1.2 ad switch(cai->cai_associativity) {
239 1.2 ad case 0xff:
240 1.2 ad tcolors = 1; /* fully associative */
241 1.2 ad break;
242 1.2 ad case 0:
243 1.2 ad case 1:
244 1.2 ad break;
245 1.2 ad default:
246 1.2 ad tcolors /= cai->cai_associativity;
247 1.2 ad }
248 1.2 ad ncolors = max(ncolors, tcolors);
249 1.32 tls /*
250 1.32 tls * If the desired number of colors is not a power of
251 1.32 tls * two, it won't be good. Find the greatest power of
252 1.32 tls * two which is an even divisor of the number of colors,
253 1.32 tls * to preserve even coloring of pages.
254 1.32 tls */
255 1.32 tls if (ncolors & (ncolors - 1) ) {
256 1.32 tls int try, picked = 1;
257 1.32 tls for (try = 1; try < ncolors; try *= 2) {
258 1.32 tls if (ncolors % try == 0) picked = try;
259 1.32 tls }
260 1.32 tls if (picked == 1) {
261 1.32 tls panic("desired number of cache colors %d is "
262 1.32 tls " > 1, but not even!", ncolors);
263 1.32 tls }
264 1.32 tls ncolors = picked;
265 1.32 tls }
266 1.2 ad }
267 1.2 ad
268 1.2 ad /*
269 1.2 ad * Knowing the size of the largest cache on this CPU, re-color
270 1.2 ad * our pages.
271 1.2 ad */
272 1.2 ad if (ncolors <= uvmexp.ncolors)
273 1.2 ad return;
274 1.27 cegger aprint_verbose_dev(ci->ci_dev, "%d page colors\n", ncolors);
275 1.2 ad uvm_page_recolor(ncolors);
276 1.2 ad }
277 1.2 ad
278 1.2 ad
279 1.2 ad void
280 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
281 1.2 ad {
282 1.23 cube struct cpu_softc *sc = device_private(self);
283 1.2 ad struct cpu_attach_args *caa = aux;
284 1.2 ad struct cpu_info *ci;
285 1.21 ad uintptr_t ptr;
286 1.2 ad #if defined(MULTIPROCESSOR)
287 1.2 ad int cpunum = caa->cpu_number;
288 1.2 ad #endif
289 1.2 ad
290 1.23 cube sc->sc_dev = self;
291 1.23 cube
292 1.2 ad /*
293 1.2 ad * If we're an Application Processor, allocate a cpu_info
294 1.2 ad * structure, otherwise use the primary's.
295 1.2 ad */
296 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
297 1.33 jmcneill #if defined(MULTIPROCESSOR)
298 1.33 jmcneill if (cpunum >= X86_MAXPROCS) {
299 1.33 jmcneill aprint_error(": apic id %d ignored, "
300 1.33 jmcneill "please increase X86_MAXPROCS\n", cpunum);
301 1.33 jmcneill return;
302 1.33 jmcneill }
303 1.33 jmcneill #endif
304 1.2 ad aprint_naive(": Application Processor\n");
305 1.21 ad ptr = (uintptr_t)malloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
306 1.21 ad M_DEVBUF, M_WAITOK);
307 1.21 ad ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
308 1.21 ad ~(CACHE_LINE_SIZE - 1));
309 1.2 ad memset(ci, 0, sizeof(*ci));
310 1.2 ad #if defined(MULTIPROCESSOR)
311 1.2 ad if (cpu_info[cpunum] != NULL) {
312 1.2 ad printf("\n");
313 1.2 ad panic("cpu at apic id %d already attached?", cpunum);
314 1.2 ad }
315 1.2 ad cpu_info[cpunum] = ci;
316 1.2 ad #endif
317 1.2 ad #ifdef TRAPLOG
318 1.2 ad ci->ci_tlog_base = malloc(sizeof(struct tlog),
319 1.2 ad M_DEVBUF, M_WAITOK);
320 1.2 ad #endif
321 1.2 ad } else {
322 1.2 ad aprint_naive(": %s Processor\n",
323 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
324 1.2 ad ci = &cpu_info_primary;
325 1.2 ad #if defined(MULTIPROCESSOR)
326 1.2 ad if (cpunum != lapic_cpu_number()) {
327 1.2 ad printf("\n");
328 1.2 ad panic("%s: running CPU is at apic %d"
329 1.2 ad " instead of at expected %d",
330 1.23 cube device_xname(sc->sc_dev), lapic_cpu_number(),
331 1.23 cube cpunum);
332 1.2 ad }
333 1.2 ad #endif
334 1.2 ad }
335 1.2 ad
336 1.2 ad ci->ci_self = ci;
337 1.2 ad sc->sc_info = ci;
338 1.2 ad
339 1.2 ad ci->ci_dev = self;
340 1.2 ad ci->ci_apicid = caa->cpu_number;
341 1.2 ad #ifdef MULTIPROCESSOR
342 1.2 ad ci->ci_cpuid = ci->ci_apicid;
343 1.2 ad #else
344 1.2 ad ci->ci_cpuid = 0; /* False for APs, but they're not used anyway */
345 1.2 ad #endif
346 1.2 ad ci->ci_cpumask = (1 << ci->ci_cpuid);
347 1.2 ad ci->ci_func = caa->cpu_func;
348 1.2 ad
349 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
350 1.2 ad #ifdef MULTIPROCESSOR
351 1.2 ad int error;
352 1.2 ad
353 1.2 ad error = mi_cpu_attach(ci);
354 1.2 ad if (error != 0) {
355 1.2 ad aprint_normal("\n");
356 1.30 cegger aprint_error_dev(sc->sc_dev,
357 1.30 cegger "mi_cpu_attach failed with %d\n", error);
358 1.2 ad return;
359 1.2 ad }
360 1.2 ad #endif
361 1.15 yamt cpu_init_tss(ci);
362 1.2 ad } else {
363 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
364 1.2 ad }
365 1.2 ad
366 1.2 ad pmap_reference(pmap_kernel());
367 1.2 ad ci->ci_pmap = pmap_kernel();
368 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
369 1.2 ad
370 1.2 ad /* further PCB init done later. */
371 1.2 ad
372 1.2 ad switch (caa->cpu_role) {
373 1.2 ad case CPU_ROLE_SP:
374 1.2 ad aprint_normal(": (uniprocessor)\n");
375 1.9 ad atomic_or_32(&ci->ci_flags,
376 1.9 ad CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY);
377 1.2 ad cpu_intr_init(ci);
378 1.2 ad identifycpu(ci);
379 1.2 ad cpu_init(ci);
380 1.2 ad cpu_set_tss_gates(ci);
381 1.2 ad pmap_cpu_init_late(ci);
382 1.6 ad x86_errata();
383 1.2 ad break;
384 1.2 ad
385 1.2 ad case CPU_ROLE_BP:
386 1.2 ad aprint_normal(": (boot processor)\n");
387 1.9 ad atomic_or_32(&ci->ci_flags,
388 1.9 ad CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY);
389 1.2 ad cpu_intr_init(ci);
390 1.2 ad identifycpu(ci);
391 1.2 ad cpu_init(ci);
392 1.2 ad cpu_set_tss_gates(ci);
393 1.2 ad pmap_cpu_init_late(ci);
394 1.2 ad #if NLAPIC > 0
395 1.2 ad /*
396 1.2 ad * Enable local apic
397 1.2 ad */
398 1.2 ad lapic_enable();
399 1.19 joerg lapic_set_lvt();
400 1.2 ad lapic_calibrate_timer(ci);
401 1.2 ad #endif
402 1.6 ad x86_errata();
403 1.2 ad break;
404 1.2 ad
405 1.2 ad case CPU_ROLE_AP:
406 1.2 ad /*
407 1.2 ad * report on an AP
408 1.2 ad */
409 1.2 ad aprint_normal(": (application processor)\n");
410 1.2 ad
411 1.2 ad #if defined(MULTIPROCESSOR)
412 1.2 ad cpu_intr_init(ci);
413 1.2 ad gdt_alloc_cpu(ci);
414 1.2 ad cpu_set_tss_gates(ci);
415 1.2 ad pmap_cpu_init_early(ci);
416 1.2 ad pmap_cpu_init_late(ci);
417 1.2 ad cpu_start_secondary(ci);
418 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
419 1.2 ad identifycpu(ci);
420 1.2 ad ci->ci_next = cpu_info_list->ci_next;
421 1.2 ad cpu_info_list->ci_next = ci;
422 1.2 ad }
423 1.2 ad #else
424 1.28 cegger aprint_normal_dev(sc->sc_dev, "not started\n");
425 1.2 ad #endif
426 1.2 ad break;
427 1.2 ad
428 1.2 ad default:
429 1.28 cegger aprint_normal("\n");
430 1.2 ad panic("unknown processor type??\n");
431 1.2 ad }
432 1.2 ad cpu_vm_init(ci);
433 1.2 ad
434 1.2 ad cpus_attached |= ci->ci_cpumask;
435 1.2 ad
436 1.12 jmcneill if (!pmf_device_register(self, cpu_suspend, cpu_resume))
437 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
438 1.12 jmcneill
439 1.2 ad #if defined(MULTIPROCESSOR)
440 1.2 ad if (mp_verbose) {
441 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
442 1.2 ad
443 1.28 cegger aprint_verbose_dev(sc->sc_dev,
444 1.28 cegger "idle lwp at %p, idle sp at %p\n",
445 1.28 cegger l,
446 1.2 ad #ifdef i386
447 1.2 ad (void *)l->l_addr->u_pcb.pcb_esp
448 1.2 ad #else
449 1.2 ad (void *)l->l_addr->u_pcb.pcb_rsp
450 1.2 ad #endif
451 1.2 ad );
452 1.2 ad }
453 1.2 ad #endif
454 1.2 ad }
455 1.2 ad
456 1.2 ad /*
457 1.2 ad * Initialize the processor appropriately.
458 1.2 ad */
459 1.2 ad
460 1.2 ad void
461 1.9 ad cpu_init(struct cpu_info *ci)
462 1.2 ad {
463 1.2 ad /* configure the CPU if needed */
464 1.2 ad if (ci->cpu_setup != NULL)
465 1.2 ad (*ci->cpu_setup)(ci);
466 1.2 ad
467 1.2 ad #ifdef i386
468 1.2 ad /*
469 1.2 ad * On a 486 or above, enable ring 0 write protection.
470 1.2 ad */
471 1.2 ad if (ci->ci_cpu_class >= CPUCLASS_486)
472 1.2 ad lcr0(rcr0() | CR0_WP);
473 1.2 ad #else
474 1.2 ad lcr0(rcr0() | CR0_WP);
475 1.2 ad #endif
476 1.2 ad
477 1.2 ad /*
478 1.2 ad * On a P6 or above, enable global TLB caching if the
479 1.2 ad * hardware supports it.
480 1.2 ad */
481 1.2 ad if (cpu_feature & CPUID_PGE)
482 1.2 ad lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
483 1.2 ad
484 1.2 ad /*
485 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
486 1.2 ad */
487 1.2 ad if (cpu_feature & CPUID_FXSR) {
488 1.2 ad lcr4(rcr4() | CR4_OSFXSR);
489 1.2 ad
490 1.2 ad /*
491 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
492 1.2 ad */
493 1.2 ad if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
494 1.2 ad lcr4(rcr4() | CR4_OSXMMEXCPT);
495 1.2 ad }
496 1.2 ad
497 1.2 ad #ifdef MTRR
498 1.2 ad /*
499 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
500 1.2 ad */
501 1.2 ad if (cpu_feature & CPUID_MTRR) {
502 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
503 1.2 ad i686_mtrr_init_first();
504 1.2 ad mtrr_init_cpu(ci);
505 1.2 ad }
506 1.2 ad
507 1.2 ad #ifdef i386
508 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
509 1.2 ad /*
510 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
511 1.2 ad */
512 1.2 ad if (CPUID2FAMILY(ci->ci_signature) == 5) {
513 1.2 ad if (CPUID2MODEL(ci->ci_signature) > 8 ||
514 1.2 ad (CPUID2MODEL(ci->ci_signature) == 8 &&
515 1.2 ad CPUID2STEPPING(ci->ci_signature) >= 7)) {
516 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
517 1.2 ad k6_mtrr_init_first();
518 1.2 ad mtrr_init_cpu(ci);
519 1.2 ad }
520 1.2 ad }
521 1.2 ad }
522 1.2 ad #endif /* i386 */
523 1.2 ad #endif /* MTRR */
524 1.2 ad
525 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
526 1.9 ad atomic_or_32(&cpus_running, ci->ci_cpumask);
527 1.9 ad
528 1.9 ad #ifndef MULTIPROCESSOR
529 1.5 ad /* XXX */
530 1.5 ad x86_patch();
531 1.2 ad #endif
532 1.2 ad }
533 1.2 ad
534 1.2 ad #ifdef MULTIPROCESSOR
535 1.2 ad void
536 1.12 jmcneill cpu_boot_secondary_processors(void)
537 1.2 ad {
538 1.2 ad struct cpu_info *ci;
539 1.2 ad u_long i;
540 1.2 ad
541 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
542 1.5 ad x86_patch();
543 1.5 ad
544 1.2 ad for (i=0; i < X86_MAXPROCS; i++) {
545 1.2 ad ci = cpu_info[i];
546 1.2 ad if (ci == NULL)
547 1.2 ad continue;
548 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
549 1.2 ad continue;
550 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
551 1.2 ad continue;
552 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
553 1.2 ad continue;
554 1.2 ad cpu_boot_secondary(ci);
555 1.2 ad }
556 1.2 ad
557 1.2 ad x86_mp_online = true;
558 1.2 ad }
559 1.2 ad
560 1.2 ad static void
561 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
562 1.2 ad {
563 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
564 1.2 ad struct pcb *pcb = &l->l_addr->u_pcb;
565 1.2 ad
566 1.2 ad pcb->pcb_cr0 = rcr0();
567 1.2 ad }
568 1.2 ad
569 1.2 ad void
570 1.12 jmcneill cpu_init_idle_lwps(void)
571 1.2 ad {
572 1.2 ad struct cpu_info *ci;
573 1.2 ad u_long i;
574 1.2 ad
575 1.2 ad for (i = 0; i < X86_MAXPROCS; i++) {
576 1.2 ad ci = cpu_info[i];
577 1.2 ad if (ci == NULL)
578 1.2 ad continue;
579 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
580 1.2 ad continue;
581 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
582 1.2 ad continue;
583 1.2 ad cpu_init_idle_lwp(ci);
584 1.2 ad }
585 1.2 ad }
586 1.2 ad
587 1.2 ad void
588 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
589 1.2 ad {
590 1.2 ad int i;
591 1.2 ad extern paddr_t mp_pdirpa;
592 1.2 ad
593 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
594 1.2 ad
595 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
596 1.2 ad
597 1.26 cegger aprint_debug_dev(ci->ci_dev, "starting\n");
598 1.2 ad
599 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
600 1.25 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
601 1.25 ad return;
602 1.2 ad
603 1.2 ad /*
604 1.2 ad * wait for it to become ready
605 1.2 ad */
606 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
607 1.24 ad #ifdef MPDEBUG
608 1.24 ad extern int cpu_trace[3];
609 1.24 ad static int otrace[3];
610 1.24 ad if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
611 1.26 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
612 1.26 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
613 1.24 ad memcpy(otrace, cpu_trace, sizeof(otrace));
614 1.24 ad }
615 1.24 ad #endif
616 1.11 ad i8254_delay(10);
617 1.2 ad }
618 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
619 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
620 1.2 ad #if defined(MPDEBUG) && defined(DDB)
621 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
622 1.2 ad Debugger();
623 1.2 ad #endif
624 1.2 ad }
625 1.2 ad
626 1.2 ad CPU_START_CLEANUP(ci);
627 1.2 ad }
628 1.2 ad
629 1.2 ad void
630 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
631 1.2 ad {
632 1.2 ad int i;
633 1.2 ad
634 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
635 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
636 1.11 ad i8254_delay(10);
637 1.2 ad }
638 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
639 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
640 1.2 ad #if defined(MPDEBUG) && defined(DDB)
641 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
642 1.2 ad Debugger();
643 1.2 ad #endif
644 1.2 ad }
645 1.2 ad }
646 1.2 ad
647 1.2 ad /*
648 1.2 ad * The CPU ends up here when its ready to run
649 1.2 ad * This is called from code in mptramp.s; at this point, we are running
650 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
651 1.2 ad * this processor will enter the idle loop and start looking for work.
652 1.2 ad */
653 1.2 ad void
654 1.2 ad cpu_hatch(void *v)
655 1.2 ad {
656 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
657 1.6 ad int s, i;
658 1.2 ad
659 1.2 ad #ifdef __x86_64__
660 1.12 jmcneill cpu_init_msrs(ci, true);
661 1.2 ad #endif
662 1.2 ad cpu_probe_features(ci);
663 1.2 ad cpu_feature &= ci->ci_feature_flags;
664 1.2 ad cpu_feature2 &= ci->ci_feature2_flags;
665 1.2 ad
666 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
667 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
668 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
669 1.6 ad /* Don't use delay, boot CPU may be patching the text. */
670 1.6 ad for (i = 10000; i != 0; i--)
671 1.6 ad x86_pause();
672 1.6 ad }
673 1.5 ad
674 1.26 cegger /* Because the text may have been patched in x86_patch(). */
675 1.5 ad wbinvd();
676 1.5 ad x86_flush();
677 1.5 ad
678 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
679 1.2 ad
680 1.12 jmcneill lcr3(pmap_kernel()->pm_pdirpa);
681 1.12 jmcneill curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
682 1.2 ad lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
683 1.2 ad cpu_init_idt();
684 1.8 ad gdt_init_cpu(ci);
685 1.8 ad lapic_enable();
686 1.2 ad lapic_set_lvt();
687 1.8 ad lapic_initclocks();
688 1.2 ad
689 1.2 ad #ifdef i386
690 1.2 ad npxinit(ci);
691 1.2 ad #else
692 1.2 ad fpuinit(ci);
693 1.4 yamt #endif
694 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
695 1.15 yamt ltr(ci->ci_tss_sel);
696 1.2 ad
697 1.2 ad cpu_init(ci);
698 1.7 ad cpu_get_tsc_freq(ci);
699 1.2 ad
700 1.2 ad s = splhigh();
701 1.2 ad #ifdef i386
702 1.2 ad lapic_tpr = 0;
703 1.2 ad #else
704 1.2 ad lcr8(0);
705 1.2 ad #endif
706 1.3 ad x86_enable_intr();
707 1.2 ad splx(s);
708 1.6 ad x86_errata();
709 1.2 ad
710 1.26 cegger aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
711 1.2 ad (long)ci->ci_cpuid);
712 1.2 ad }
713 1.2 ad
714 1.2 ad #if defined(DDB)
715 1.2 ad
716 1.2 ad #include <ddb/db_output.h>
717 1.2 ad #include <machine/db_machdep.h>
718 1.2 ad
719 1.2 ad /*
720 1.2 ad * Dump CPU information from ddb.
721 1.2 ad */
722 1.2 ad void
723 1.2 ad cpu_debug_dump(void)
724 1.2 ad {
725 1.2 ad struct cpu_info *ci;
726 1.2 ad CPU_INFO_ITERATOR cii;
727 1.2 ad
728 1.29 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
729 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
730 1.2 ad db_printf("%p %s %ld %x %x %10p %10p\n",
731 1.2 ad ci,
732 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
733 1.2 ad (long)ci->ci_cpuid,
734 1.2 ad ci->ci_flags, ci->ci_ipis,
735 1.2 ad ci->ci_curlwp,
736 1.2 ad ci->ci_fpcurlwp);
737 1.2 ad }
738 1.2 ad }
739 1.2 ad #endif
740 1.2 ad
741 1.2 ad static void
742 1.12 jmcneill cpu_copy_trampoline(void)
743 1.2 ad {
744 1.2 ad /*
745 1.2 ad * Copy boot code.
746 1.2 ad */
747 1.2 ad extern u_char cpu_spinup_trampoline[];
748 1.2 ad extern u_char cpu_spinup_trampoline_end[];
749 1.12 jmcneill
750 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
751 1.12 jmcneill
752 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
753 1.12 jmcneill UVM_KMF_VAONLY);
754 1.12 jmcneill
755 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
756 1.12 jmcneill VM_PROT_READ | VM_PROT_WRITE);
757 1.2 ad pmap_update(pmap_kernel());
758 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
759 1.2 ad cpu_spinup_trampoline,
760 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
761 1.12 jmcneill
762 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
763 1.12 jmcneill pmap_update(pmap_kernel());
764 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
765 1.2 ad }
766 1.2 ad
767 1.2 ad #endif
768 1.2 ad
769 1.2 ad #ifdef i386
770 1.2 ad static void
771 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
772 1.2 ad {
773 1.2 ad memset(tss, 0, sizeof *tss);
774 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
775 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
776 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
777 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
778 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
779 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
780 1.2 ad tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
781 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
782 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
783 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
784 1.2 ad tss->__tss_eip = (int)func;
785 1.2 ad }
786 1.2 ad
787 1.2 ad /* XXX */
788 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
789 1.2 ad typedef void (vector)(void);
790 1.2 ad extern vector IDTVEC(tss_trap08);
791 1.2 ad #ifdef DDB
792 1.2 ad extern vector Xintrddbipi;
793 1.2 ad extern int ddb_vec;
794 1.2 ad #endif
795 1.2 ad
796 1.2 ad static void
797 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
798 1.2 ad {
799 1.2 ad struct segment_descriptor sd;
800 1.2 ad
801 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
802 1.2 ad UVM_KMF_WIRED);
803 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
804 1.2 ad IDTVEC(tss_trap08));
805 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
806 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
807 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
808 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
809 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
810 1.2 ad
811 1.2 ad #if defined(DDB) && defined(MULTIPROCESSOR)
812 1.2 ad /*
813 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
814 1.2 ad * stomp on a possibly corrupted stack.
815 1.2 ad *
816 1.2 ad * XXX overwriting the gate set in db_machine_init.
817 1.2 ad * Should rearrange the code so that it's set only once.
818 1.2 ad */
819 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
820 1.2 ad UVM_KMF_WIRED);
821 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
822 1.2 ad
823 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
824 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
825 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
826 1.2 ad
827 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
828 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
829 1.2 ad #endif
830 1.2 ad }
831 1.2 ad #else
832 1.2 ad static void
833 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
834 1.2 ad {
835 1.2 ad
836 1.2 ad }
837 1.2 ad #endif /* i386 */
838 1.2 ad
839 1.2 ad int
840 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
841 1.2 ad {
842 1.2 ad #if NLAPIC > 0
843 1.2 ad int error;
844 1.2 ad #endif
845 1.2 ad unsigned short dwordptr[2];
846 1.14 joerg
847 1.14 joerg /*
848 1.14 joerg * Bootstrap code must be addressable in real mode
849 1.14 joerg * and it must be page aligned.
850 1.14 joerg */
851 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
852 1.2 ad
853 1.2 ad /*
854 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
855 1.2 ad */
856 1.2 ad
857 1.2 ad outb(IO_RTC, NVRAM_RESET);
858 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
859 1.2 ad
860 1.2 ad /*
861 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
862 1.2 ad * to the AP startup code ..."
863 1.2 ad */
864 1.2 ad
865 1.2 ad dwordptr[0] = 0;
866 1.14 joerg dwordptr[1] = target >> 4;
867 1.2 ad
868 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
869 1.2 ad
870 1.2 ad #if NLAPIC > 0
871 1.25 ad if ((cpu_feature & CPUID_APIC) == 0) {
872 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
873 1.25 ad return ENODEV;
874 1.25 ad }
875 1.25 ad
876 1.2 ad /*
877 1.2 ad * ... prior to executing the following sequence:"
878 1.2 ad */
879 1.2 ad
880 1.2 ad if (ci->ci_flags & CPUF_AP) {
881 1.26 cegger error = x86_ipi_init(ci->ci_apicid);
882 1.26 cegger if (error != 0) {
883 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
884 1.26 cegger __func__);
885 1.2 ad return error;
886 1.25 ad }
887 1.2 ad
888 1.11 ad i8254_delay(10000);
889 1.2 ad
890 1.26 cegger error = x86_ipi(target / PAGE_SIZE, ci->ci_apicid,
891 1.26 cegger LAPIC_DLMODE_STARTUP);
892 1.26 cegger if (error != 0) {
893 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
894 1.26 cegger __func__);
895 1.25 ad return error;
896 1.25 ad }
897 1.25 ad i8254_delay(200);
898 1.2 ad
899 1.26 cegger error = x86_ipi(target / PAGE_SIZE, ci->ci_apicid,
900 1.26 cegger LAPIC_DLMODE_STARTUP);
901 1.26 cegger if (error != 0) {
902 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
903 1.26 cegger __func__);
904 1.25 ad return error;
905 1.2 ad }
906 1.25 ad i8254_delay(200);
907 1.2 ad }
908 1.2 ad #endif
909 1.2 ad return 0;
910 1.2 ad }
911 1.2 ad
912 1.2 ad void
913 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
914 1.2 ad {
915 1.2 ad /*
916 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
917 1.2 ad */
918 1.2 ad
919 1.2 ad outb(IO_RTC, NVRAM_RESET);
920 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
921 1.2 ad }
922 1.2 ad
923 1.2 ad #ifdef __x86_64__
924 1.2 ad typedef void (vector)(void);
925 1.2 ad extern vector Xsyscall, Xsyscall32;
926 1.2 ad
927 1.2 ad void
928 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
929 1.2 ad {
930 1.2 ad wrmsr(MSR_STAR,
931 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
932 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
933 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
934 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
935 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
936 1.2 ad
937 1.12 jmcneill if (full) {
938 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
939 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
940 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
941 1.12 jmcneill }
942 1.2 ad
943 1.2 ad if (cpu_feature & CPUID_NOX)
944 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
945 1.2 ad }
946 1.2 ad #endif /* __x86_64__ */
947 1.7 ad
948 1.18 joerg void
949 1.18 joerg cpu_offline_md(void)
950 1.18 joerg {
951 1.18 joerg int s;
952 1.18 joerg
953 1.18 joerg s = splhigh();
954 1.18 joerg #ifdef __i386__
955 1.18 joerg npxsave_cpu(true);
956 1.18 joerg #else
957 1.18 joerg fpusave_cpu(true);
958 1.18 joerg #endif
959 1.18 joerg splx(s);
960 1.18 joerg }
961 1.18 joerg
962 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
963 1.12 jmcneill static bool
964 1.22 dyoung cpu_suspend(device_t dv PMF_FN_ARGS)
965 1.12 jmcneill {
966 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
967 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
968 1.18 joerg int err;
969 1.12 jmcneill
970 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
971 1.12 jmcneill return true;
972 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
973 1.12 jmcneill return true;
974 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
975 1.12 jmcneill return true;
976 1.12 jmcneill
977 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
978 1.17 joerg
979 1.20 jmcneill if (sc->sc_wasonline) {
980 1.20 jmcneill mutex_enter(&cpu_lock);
981 1.20 jmcneill err = cpu_setonline(ci, false);
982 1.20 jmcneill mutex_exit(&cpu_lock);
983 1.20 jmcneill
984 1.20 jmcneill if (err)
985 1.20 jmcneill return false;
986 1.20 jmcneill }
987 1.17 joerg
988 1.17 joerg return true;
989 1.12 jmcneill }
990 1.12 jmcneill
991 1.12 jmcneill static bool
992 1.22 dyoung cpu_resume(device_t dv PMF_FN_ARGS)
993 1.12 jmcneill {
994 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
995 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
996 1.20 jmcneill int err = 0;
997 1.12 jmcneill
998 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
999 1.12 jmcneill return true;
1000 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1001 1.12 jmcneill return true;
1002 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
1003 1.12 jmcneill return true;
1004 1.12 jmcneill
1005 1.20 jmcneill if (sc->sc_wasonline) {
1006 1.20 jmcneill mutex_enter(&cpu_lock);
1007 1.20 jmcneill err = cpu_setonline(ci, true);
1008 1.20 jmcneill mutex_exit(&cpu_lock);
1009 1.20 jmcneill }
1010 1.13 joerg
1011 1.13 joerg return err == 0;
1012 1.12 jmcneill }
1013 1.12 jmcneill
1014 1.7 ad void
1015 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1016 1.7 ad {
1017 1.7 ad uint64_t last_tsc;
1018 1.7 ad u_int junk[4];
1019 1.7 ad
1020 1.7 ad if (ci->ci_feature_flags & CPUID_TSC) {
1021 1.7 ad /* Serialize. */
1022 1.7 ad x86_cpuid(0, junk);
1023 1.7 ad last_tsc = rdtsc();
1024 1.7 ad i8254_delay(100000);
1025 1.7 ad ci->ci_tsc_freq = (rdtsc() - last_tsc) * 10;
1026 1.7 ad }
1027 1.7 ad }
1028