cpu.c revision 1.37 1 1.37 joerg /* $NetBSD: cpu.c,v 1.37 2008/05/09 18:11:29 joerg Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.7 ad * Copyright (c) 2000, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.37 joerg __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.37 2008/05/09 18:11:29 joerg Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_multiprocessor.h"
69 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
70 1.2 ad #include "opt_mtrr.h"
71 1.2 ad
72 1.2 ad #include "lapic.h"
73 1.2 ad #include "ioapic.h"
74 1.2 ad
75 1.2 ad #include <sys/param.h>
76 1.2 ad #include <sys/proc.h>
77 1.2 ad #include <sys/user.h>
78 1.2 ad #include <sys/systm.h>
79 1.2 ad #include <sys/device.h>
80 1.2 ad #include <sys/malloc.h>
81 1.9 ad #include <sys/cpu.h>
82 1.9 ad #include <sys/atomic.h>
83 1.35 ad #include <sys/reboot.h>
84 1.2 ad
85 1.2 ad #include <uvm/uvm_extern.h>
86 1.2 ad
87 1.2 ad #include <machine/cpufunc.h>
88 1.2 ad #include <machine/cpuvar.h>
89 1.2 ad #include <machine/pmap.h>
90 1.2 ad #include <machine/vmparam.h>
91 1.2 ad #include <machine/mpbiosvar.h>
92 1.2 ad #include <machine/pcb.h>
93 1.2 ad #include <machine/specialreg.h>
94 1.2 ad #include <machine/segments.h>
95 1.2 ad #include <machine/gdt.h>
96 1.2 ad #include <machine/mtrr.h>
97 1.2 ad #include <machine/pio.h>
98 1.2 ad
99 1.2 ad #ifdef i386
100 1.2 ad #include <machine/tlog.h>
101 1.2 ad #endif
102 1.2 ad
103 1.2 ad #if NLAPIC > 0
104 1.2 ad #include <machine/apicvar.h>
105 1.2 ad #include <machine/i82489reg.h>
106 1.2 ad #include <machine/i82489var.h>
107 1.2 ad #endif
108 1.2 ad
109 1.2 ad #include <dev/ic/mc146818reg.h>
110 1.2 ad #include <i386/isa/nvram.h>
111 1.2 ad #include <dev/isa/isareg.h>
112 1.2 ad
113 1.23 cube int cpu_match(device_t, cfdata_t, void *);
114 1.23 cube void cpu_attach(device_t, device_t, void *);
115 1.2 ad
116 1.22 dyoung static bool cpu_suspend(device_t PMF_FN_PROTO);
117 1.22 dyoung static bool cpu_resume(device_t PMF_FN_PROTO);
118 1.12 jmcneill
119 1.2 ad struct cpu_softc {
120 1.23 cube device_t sc_dev; /* device tree glue */
121 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
122 1.20 jmcneill bool sc_wasonline;
123 1.2 ad };
124 1.2 ad
125 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
126 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
127 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
128 1.2 ad mp_cpu_start_cleanup };
129 1.2 ad
130 1.2 ad
131 1.23 cube CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
132 1.2 ad cpu_match, cpu_attach, NULL, NULL);
133 1.2 ad
134 1.2 ad /*
135 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
136 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
137 1.2 ad * point at it.
138 1.2 ad */
139 1.2 ad #ifdef TRAPLOG
140 1.2 ad struct tlog tlog_primary;
141 1.2 ad #endif
142 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
143 1.2 ad .ci_dev = 0,
144 1.2 ad .ci_self = &cpu_info_primary,
145 1.2 ad .ci_idepth = -1,
146 1.2 ad .ci_curlwp = &lwp0,
147 1.2 ad #ifdef TRAPLOG
148 1.2 ad .ci_tlog_base = &tlog_primary,
149 1.2 ad #endif /* !TRAPLOG */
150 1.2 ad };
151 1.2 ad
152 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
153 1.2 ad
154 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
155 1.2 ad
156 1.2 ad #ifdef i386
157 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
158 1.2 ad #endif
159 1.2 ad
160 1.12 jmcneill #ifdef MULTIPROCESSOR
161 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
162 1.12 jmcneill #endif
163 1.12 jmcneill
164 1.2 ad uint32_t cpus_attached = 0;
165 1.9 ad uint32_t cpus_running = 0;
166 1.2 ad
167 1.2 ad extern char x86_64_doubleflt_stack[];
168 1.2 ad
169 1.12 jmcneill bool x86_mp_online;
170 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
171 1.12 jmcneill
172 1.14 joerg static vaddr_t cmos_data_mapping;
173 1.14 joerg
174 1.2 ad #ifdef MULTIPROCESSOR
175 1.2 ad /*
176 1.2 ad * Array of CPU info structures. Must be statically-allocated because
177 1.2 ad * curproc, etc. are used early.
178 1.2 ad */
179 1.2 ad struct cpu_info *cpu_info[X86_MAXPROCS] = { &cpu_info_primary, };
180 1.2 ad
181 1.2 ad void cpu_hatch(void *);
182 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
183 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
184 1.2 ad static void cpu_copy_trampoline(void);
185 1.2 ad
186 1.2 ad /*
187 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
188 1.2 ad * the local APIC on the boot processor has been mapped.
189 1.2 ad *
190 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
191 1.2 ad */
192 1.2 ad void
193 1.9 ad cpu_init_first(void)
194 1.2 ad {
195 1.2 ad int cpunum = lapic_cpu_number();
196 1.2 ad
197 1.2 ad if (cpunum != 0) {
198 1.2 ad cpu_info[0] = NULL;
199 1.2 ad cpu_info[cpunum] = &cpu_info_primary;
200 1.2 ad }
201 1.2 ad
202 1.2 ad cpu_info_primary.ci_cpuid = cpunum;
203 1.2 ad cpu_copy_trampoline();
204 1.14 joerg
205 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
206 1.14 joerg if (cmos_data_mapping == 0)
207 1.14 joerg panic("No KVA for page 0");
208 1.14 joerg pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
209 1.14 joerg pmap_update(pmap_kernel());
210 1.2 ad }
211 1.2 ad #endif
212 1.2 ad
213 1.2 ad int
214 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
215 1.2 ad {
216 1.2 ad
217 1.2 ad return 1;
218 1.2 ad }
219 1.2 ad
220 1.2 ad static void
221 1.2 ad cpu_vm_init(struct cpu_info *ci)
222 1.2 ad {
223 1.2 ad int ncolors = 2, i;
224 1.2 ad
225 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
226 1.2 ad struct x86_cache_info *cai;
227 1.2 ad int tcolors;
228 1.2 ad
229 1.2 ad cai = &ci->ci_cinfo[i];
230 1.2 ad
231 1.2 ad tcolors = atop(cai->cai_totalsize);
232 1.2 ad switch(cai->cai_associativity) {
233 1.2 ad case 0xff:
234 1.2 ad tcolors = 1; /* fully associative */
235 1.2 ad break;
236 1.2 ad case 0:
237 1.2 ad case 1:
238 1.2 ad break;
239 1.2 ad default:
240 1.2 ad tcolors /= cai->cai_associativity;
241 1.2 ad }
242 1.2 ad ncolors = max(ncolors, tcolors);
243 1.32 tls /*
244 1.32 tls * If the desired number of colors is not a power of
245 1.32 tls * two, it won't be good. Find the greatest power of
246 1.32 tls * two which is an even divisor of the number of colors,
247 1.32 tls * to preserve even coloring of pages.
248 1.32 tls */
249 1.32 tls if (ncolors & (ncolors - 1) ) {
250 1.32 tls int try, picked = 1;
251 1.32 tls for (try = 1; try < ncolors; try *= 2) {
252 1.32 tls if (ncolors % try == 0) picked = try;
253 1.32 tls }
254 1.32 tls if (picked == 1) {
255 1.32 tls panic("desired number of cache colors %d is "
256 1.32 tls " > 1, but not even!", ncolors);
257 1.32 tls }
258 1.32 tls ncolors = picked;
259 1.32 tls }
260 1.2 ad }
261 1.2 ad
262 1.2 ad /*
263 1.2 ad * Knowing the size of the largest cache on this CPU, re-color
264 1.2 ad * our pages.
265 1.2 ad */
266 1.2 ad if (ncolors <= uvmexp.ncolors)
267 1.2 ad return;
268 1.27 cegger aprint_verbose_dev(ci->ci_dev, "%d page colors\n", ncolors);
269 1.2 ad uvm_page_recolor(ncolors);
270 1.2 ad }
271 1.2 ad
272 1.2 ad
273 1.2 ad void
274 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
275 1.2 ad {
276 1.23 cube struct cpu_softc *sc = device_private(self);
277 1.2 ad struct cpu_attach_args *caa = aux;
278 1.2 ad struct cpu_info *ci;
279 1.21 ad uintptr_t ptr;
280 1.2 ad int cpunum = caa->cpu_number;
281 1.2 ad
282 1.23 cube sc->sc_dev = self;
283 1.23 cube
284 1.2 ad /*
285 1.2 ad * If we're an Application Processor, allocate a cpu_info
286 1.2 ad * structure, otherwise use the primary's.
287 1.2 ad */
288 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
289 1.36 ad if ((boothowto & RB_MD1) != 0) {
290 1.35 ad aprint_error(": multiprocessor boot disabled\n");
291 1.35 ad return;
292 1.35 ad }
293 1.33 jmcneill if (cpunum >= X86_MAXPROCS) {
294 1.33 jmcneill aprint_error(": apic id %d ignored, "
295 1.33 jmcneill "please increase X86_MAXPROCS\n", cpunum);
296 1.33 jmcneill return;
297 1.33 jmcneill }
298 1.2 ad aprint_naive(": Application Processor\n");
299 1.21 ad ptr = (uintptr_t)malloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
300 1.21 ad M_DEVBUF, M_WAITOK);
301 1.21 ad ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
302 1.21 ad ~(CACHE_LINE_SIZE - 1));
303 1.2 ad memset(ci, 0, sizeof(*ci));
304 1.2 ad #if defined(MULTIPROCESSOR)
305 1.2 ad if (cpu_info[cpunum] != NULL) {
306 1.2 ad printf("\n");
307 1.2 ad panic("cpu at apic id %d already attached?", cpunum);
308 1.2 ad }
309 1.2 ad cpu_info[cpunum] = ci;
310 1.2 ad #endif
311 1.2 ad #ifdef TRAPLOG
312 1.2 ad ci->ci_tlog_base = malloc(sizeof(struct tlog),
313 1.2 ad M_DEVBUF, M_WAITOK);
314 1.2 ad #endif
315 1.2 ad } else {
316 1.2 ad aprint_naive(": %s Processor\n",
317 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
318 1.2 ad ci = &cpu_info_primary;
319 1.2 ad #if defined(MULTIPROCESSOR)
320 1.2 ad if (cpunum != lapic_cpu_number()) {
321 1.2 ad printf("\n");
322 1.2 ad panic("%s: running CPU is at apic %d"
323 1.2 ad " instead of at expected %d",
324 1.23 cube device_xname(sc->sc_dev), lapic_cpu_number(),
325 1.23 cube cpunum);
326 1.2 ad }
327 1.2 ad #endif
328 1.2 ad }
329 1.2 ad
330 1.2 ad ci->ci_self = ci;
331 1.2 ad sc->sc_info = ci;
332 1.2 ad
333 1.2 ad ci->ci_dev = self;
334 1.2 ad ci->ci_apicid = caa->cpu_number;
335 1.2 ad #ifdef MULTIPROCESSOR
336 1.2 ad ci->ci_cpuid = ci->ci_apicid;
337 1.2 ad #else
338 1.2 ad ci->ci_cpuid = 0; /* False for APs, but they're not used anyway */
339 1.2 ad #endif
340 1.2 ad ci->ci_cpumask = (1 << ci->ci_cpuid);
341 1.2 ad ci->ci_func = caa->cpu_func;
342 1.2 ad
343 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
344 1.2 ad #ifdef MULTIPROCESSOR
345 1.2 ad int error;
346 1.2 ad
347 1.2 ad error = mi_cpu_attach(ci);
348 1.2 ad if (error != 0) {
349 1.2 ad aprint_normal("\n");
350 1.30 cegger aprint_error_dev(sc->sc_dev,
351 1.30 cegger "mi_cpu_attach failed with %d\n", error);
352 1.2 ad return;
353 1.2 ad }
354 1.2 ad #endif
355 1.15 yamt cpu_init_tss(ci);
356 1.2 ad } else {
357 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
358 1.2 ad }
359 1.2 ad
360 1.2 ad pmap_reference(pmap_kernel());
361 1.2 ad ci->ci_pmap = pmap_kernel();
362 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
363 1.2 ad
364 1.2 ad /* further PCB init done later. */
365 1.2 ad
366 1.2 ad switch (caa->cpu_role) {
367 1.2 ad case CPU_ROLE_SP:
368 1.2 ad aprint_normal(": (uniprocessor)\n");
369 1.9 ad atomic_or_32(&ci->ci_flags,
370 1.9 ad CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY);
371 1.2 ad cpu_intr_init(ci);
372 1.2 ad identifycpu(ci);
373 1.2 ad cpu_init(ci);
374 1.2 ad cpu_set_tss_gates(ci);
375 1.2 ad pmap_cpu_init_late(ci);
376 1.6 ad x86_errata();
377 1.37 joerg x86_cpu_idle_init();
378 1.2 ad break;
379 1.2 ad
380 1.2 ad case CPU_ROLE_BP:
381 1.2 ad aprint_normal(": (boot processor)\n");
382 1.9 ad atomic_or_32(&ci->ci_flags,
383 1.9 ad CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY);
384 1.2 ad cpu_intr_init(ci);
385 1.2 ad identifycpu(ci);
386 1.2 ad cpu_init(ci);
387 1.2 ad cpu_set_tss_gates(ci);
388 1.2 ad pmap_cpu_init_late(ci);
389 1.2 ad #if NLAPIC > 0
390 1.2 ad /*
391 1.2 ad * Enable local apic
392 1.2 ad */
393 1.2 ad lapic_enable();
394 1.19 joerg lapic_set_lvt();
395 1.2 ad lapic_calibrate_timer(ci);
396 1.2 ad #endif
397 1.6 ad x86_errata();
398 1.37 joerg x86_cpu_idle_init();
399 1.2 ad break;
400 1.2 ad
401 1.2 ad case CPU_ROLE_AP:
402 1.2 ad /*
403 1.2 ad * report on an AP
404 1.2 ad */
405 1.2 ad aprint_normal(": (application processor)\n");
406 1.2 ad
407 1.2 ad #if defined(MULTIPROCESSOR)
408 1.2 ad cpu_intr_init(ci);
409 1.2 ad gdt_alloc_cpu(ci);
410 1.2 ad cpu_set_tss_gates(ci);
411 1.2 ad pmap_cpu_init_early(ci);
412 1.2 ad pmap_cpu_init_late(ci);
413 1.2 ad cpu_start_secondary(ci);
414 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
415 1.2 ad identifycpu(ci);
416 1.2 ad ci->ci_next = cpu_info_list->ci_next;
417 1.2 ad cpu_info_list->ci_next = ci;
418 1.2 ad }
419 1.2 ad #else
420 1.28 cegger aprint_normal_dev(sc->sc_dev, "not started\n");
421 1.2 ad #endif
422 1.2 ad break;
423 1.2 ad
424 1.2 ad default:
425 1.28 cegger aprint_normal("\n");
426 1.2 ad panic("unknown processor type??\n");
427 1.2 ad }
428 1.2 ad cpu_vm_init(ci);
429 1.2 ad
430 1.2 ad cpus_attached |= ci->ci_cpumask;
431 1.2 ad
432 1.12 jmcneill if (!pmf_device_register(self, cpu_suspend, cpu_resume))
433 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
434 1.12 jmcneill
435 1.2 ad #if defined(MULTIPROCESSOR)
436 1.2 ad if (mp_verbose) {
437 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
438 1.2 ad
439 1.28 cegger aprint_verbose_dev(sc->sc_dev,
440 1.28 cegger "idle lwp at %p, idle sp at %p\n",
441 1.28 cegger l,
442 1.2 ad #ifdef i386
443 1.2 ad (void *)l->l_addr->u_pcb.pcb_esp
444 1.2 ad #else
445 1.2 ad (void *)l->l_addr->u_pcb.pcb_rsp
446 1.2 ad #endif
447 1.2 ad );
448 1.2 ad }
449 1.2 ad #endif
450 1.2 ad }
451 1.2 ad
452 1.2 ad /*
453 1.2 ad * Initialize the processor appropriately.
454 1.2 ad */
455 1.2 ad
456 1.2 ad void
457 1.9 ad cpu_init(struct cpu_info *ci)
458 1.2 ad {
459 1.2 ad /* configure the CPU if needed */
460 1.2 ad if (ci->cpu_setup != NULL)
461 1.2 ad (*ci->cpu_setup)(ci);
462 1.2 ad
463 1.2 ad #ifdef i386
464 1.2 ad /*
465 1.2 ad * On a 486 or above, enable ring 0 write protection.
466 1.2 ad */
467 1.2 ad if (ci->ci_cpu_class >= CPUCLASS_486)
468 1.2 ad lcr0(rcr0() | CR0_WP);
469 1.2 ad #else
470 1.2 ad lcr0(rcr0() | CR0_WP);
471 1.2 ad #endif
472 1.2 ad
473 1.2 ad /*
474 1.2 ad * On a P6 or above, enable global TLB caching if the
475 1.2 ad * hardware supports it.
476 1.2 ad */
477 1.2 ad if (cpu_feature & CPUID_PGE)
478 1.2 ad lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
479 1.2 ad
480 1.2 ad /*
481 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
482 1.2 ad */
483 1.2 ad if (cpu_feature & CPUID_FXSR) {
484 1.2 ad lcr4(rcr4() | CR4_OSFXSR);
485 1.2 ad
486 1.2 ad /*
487 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
488 1.2 ad */
489 1.2 ad if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
490 1.2 ad lcr4(rcr4() | CR4_OSXMMEXCPT);
491 1.2 ad }
492 1.2 ad
493 1.2 ad #ifdef MTRR
494 1.2 ad /*
495 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
496 1.2 ad */
497 1.2 ad if (cpu_feature & CPUID_MTRR) {
498 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
499 1.2 ad i686_mtrr_init_first();
500 1.2 ad mtrr_init_cpu(ci);
501 1.2 ad }
502 1.2 ad
503 1.2 ad #ifdef i386
504 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
505 1.2 ad /*
506 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
507 1.2 ad */
508 1.2 ad if (CPUID2FAMILY(ci->ci_signature) == 5) {
509 1.2 ad if (CPUID2MODEL(ci->ci_signature) > 8 ||
510 1.2 ad (CPUID2MODEL(ci->ci_signature) == 8 &&
511 1.2 ad CPUID2STEPPING(ci->ci_signature) >= 7)) {
512 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
513 1.2 ad k6_mtrr_init_first();
514 1.2 ad mtrr_init_cpu(ci);
515 1.2 ad }
516 1.2 ad }
517 1.2 ad }
518 1.2 ad #endif /* i386 */
519 1.2 ad #endif /* MTRR */
520 1.2 ad
521 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
522 1.9 ad atomic_or_32(&cpus_running, ci->ci_cpumask);
523 1.9 ad
524 1.9 ad #ifndef MULTIPROCESSOR
525 1.5 ad /* XXX */
526 1.5 ad x86_patch();
527 1.2 ad #endif
528 1.2 ad }
529 1.2 ad
530 1.2 ad #ifdef MULTIPROCESSOR
531 1.2 ad void
532 1.12 jmcneill cpu_boot_secondary_processors(void)
533 1.2 ad {
534 1.2 ad struct cpu_info *ci;
535 1.2 ad u_long i;
536 1.2 ad
537 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
538 1.5 ad x86_patch();
539 1.5 ad
540 1.2 ad for (i=0; i < X86_MAXPROCS; i++) {
541 1.2 ad ci = cpu_info[i];
542 1.2 ad if (ci == NULL)
543 1.2 ad continue;
544 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
545 1.2 ad continue;
546 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
547 1.2 ad continue;
548 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
549 1.2 ad continue;
550 1.2 ad cpu_boot_secondary(ci);
551 1.2 ad }
552 1.2 ad
553 1.2 ad x86_mp_online = true;
554 1.2 ad }
555 1.2 ad
556 1.2 ad static void
557 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
558 1.2 ad {
559 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
560 1.2 ad struct pcb *pcb = &l->l_addr->u_pcb;
561 1.2 ad
562 1.2 ad pcb->pcb_cr0 = rcr0();
563 1.2 ad }
564 1.2 ad
565 1.2 ad void
566 1.12 jmcneill cpu_init_idle_lwps(void)
567 1.2 ad {
568 1.2 ad struct cpu_info *ci;
569 1.2 ad u_long i;
570 1.2 ad
571 1.2 ad for (i = 0; i < X86_MAXPROCS; i++) {
572 1.2 ad ci = cpu_info[i];
573 1.2 ad if (ci == NULL)
574 1.2 ad continue;
575 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
576 1.2 ad continue;
577 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
578 1.2 ad continue;
579 1.2 ad cpu_init_idle_lwp(ci);
580 1.2 ad }
581 1.2 ad }
582 1.2 ad
583 1.2 ad void
584 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
585 1.2 ad {
586 1.2 ad int i;
587 1.2 ad extern paddr_t mp_pdirpa;
588 1.2 ad
589 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
590 1.2 ad
591 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
592 1.2 ad
593 1.26 cegger aprint_debug_dev(ci->ci_dev, "starting\n");
594 1.2 ad
595 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
596 1.25 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
597 1.25 ad return;
598 1.2 ad
599 1.2 ad /*
600 1.2 ad * wait for it to become ready
601 1.2 ad */
602 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
603 1.24 ad #ifdef MPDEBUG
604 1.24 ad extern int cpu_trace[3];
605 1.24 ad static int otrace[3];
606 1.24 ad if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
607 1.26 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
608 1.26 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
609 1.24 ad memcpy(otrace, cpu_trace, sizeof(otrace));
610 1.24 ad }
611 1.24 ad #endif
612 1.11 ad i8254_delay(10);
613 1.2 ad }
614 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
615 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
616 1.2 ad #if defined(MPDEBUG) && defined(DDB)
617 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
618 1.2 ad Debugger();
619 1.2 ad #endif
620 1.2 ad }
621 1.2 ad
622 1.2 ad CPU_START_CLEANUP(ci);
623 1.2 ad }
624 1.2 ad
625 1.2 ad void
626 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
627 1.2 ad {
628 1.2 ad int i;
629 1.2 ad
630 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
631 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
632 1.11 ad i8254_delay(10);
633 1.2 ad }
634 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
635 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
636 1.2 ad #if defined(MPDEBUG) && defined(DDB)
637 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
638 1.2 ad Debugger();
639 1.2 ad #endif
640 1.2 ad }
641 1.2 ad }
642 1.2 ad
643 1.2 ad /*
644 1.2 ad * The CPU ends up here when its ready to run
645 1.2 ad * This is called from code in mptramp.s; at this point, we are running
646 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
647 1.2 ad * this processor will enter the idle loop and start looking for work.
648 1.2 ad */
649 1.2 ad void
650 1.2 ad cpu_hatch(void *v)
651 1.2 ad {
652 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
653 1.6 ad int s, i;
654 1.2 ad
655 1.2 ad #ifdef __x86_64__
656 1.12 jmcneill cpu_init_msrs(ci, true);
657 1.2 ad #endif
658 1.2 ad cpu_probe_features(ci);
659 1.2 ad cpu_feature &= ci->ci_feature_flags;
660 1.2 ad cpu_feature2 &= ci->ci_feature2_flags;
661 1.2 ad
662 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
663 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
664 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
665 1.6 ad /* Don't use delay, boot CPU may be patching the text. */
666 1.6 ad for (i = 10000; i != 0; i--)
667 1.6 ad x86_pause();
668 1.6 ad }
669 1.5 ad
670 1.26 cegger /* Because the text may have been patched in x86_patch(). */
671 1.5 ad wbinvd();
672 1.5 ad x86_flush();
673 1.5 ad
674 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
675 1.2 ad
676 1.12 jmcneill lcr3(pmap_kernel()->pm_pdirpa);
677 1.12 jmcneill curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
678 1.2 ad lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
679 1.2 ad cpu_init_idt();
680 1.8 ad gdt_init_cpu(ci);
681 1.8 ad lapic_enable();
682 1.2 ad lapic_set_lvt();
683 1.8 ad lapic_initclocks();
684 1.2 ad
685 1.2 ad #ifdef i386
686 1.2 ad npxinit(ci);
687 1.2 ad #else
688 1.2 ad fpuinit(ci);
689 1.4 yamt #endif
690 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
691 1.15 yamt ltr(ci->ci_tss_sel);
692 1.2 ad
693 1.2 ad cpu_init(ci);
694 1.7 ad cpu_get_tsc_freq(ci);
695 1.2 ad
696 1.2 ad s = splhigh();
697 1.2 ad #ifdef i386
698 1.2 ad lapic_tpr = 0;
699 1.2 ad #else
700 1.2 ad lcr8(0);
701 1.2 ad #endif
702 1.3 ad x86_enable_intr();
703 1.2 ad splx(s);
704 1.6 ad x86_errata();
705 1.2 ad
706 1.26 cegger aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
707 1.2 ad (long)ci->ci_cpuid);
708 1.2 ad }
709 1.2 ad
710 1.2 ad #if defined(DDB)
711 1.2 ad
712 1.2 ad #include <ddb/db_output.h>
713 1.2 ad #include <machine/db_machdep.h>
714 1.2 ad
715 1.2 ad /*
716 1.2 ad * Dump CPU information from ddb.
717 1.2 ad */
718 1.2 ad void
719 1.2 ad cpu_debug_dump(void)
720 1.2 ad {
721 1.2 ad struct cpu_info *ci;
722 1.2 ad CPU_INFO_ITERATOR cii;
723 1.2 ad
724 1.29 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
725 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
726 1.2 ad db_printf("%p %s %ld %x %x %10p %10p\n",
727 1.2 ad ci,
728 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
729 1.2 ad (long)ci->ci_cpuid,
730 1.2 ad ci->ci_flags, ci->ci_ipis,
731 1.2 ad ci->ci_curlwp,
732 1.2 ad ci->ci_fpcurlwp);
733 1.2 ad }
734 1.2 ad }
735 1.2 ad #endif
736 1.2 ad
737 1.2 ad static void
738 1.12 jmcneill cpu_copy_trampoline(void)
739 1.2 ad {
740 1.2 ad /*
741 1.2 ad * Copy boot code.
742 1.2 ad */
743 1.2 ad extern u_char cpu_spinup_trampoline[];
744 1.2 ad extern u_char cpu_spinup_trampoline_end[];
745 1.12 jmcneill
746 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
747 1.12 jmcneill
748 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
749 1.12 jmcneill UVM_KMF_VAONLY);
750 1.12 jmcneill
751 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
752 1.12 jmcneill VM_PROT_READ | VM_PROT_WRITE);
753 1.2 ad pmap_update(pmap_kernel());
754 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
755 1.2 ad cpu_spinup_trampoline,
756 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
757 1.12 jmcneill
758 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
759 1.12 jmcneill pmap_update(pmap_kernel());
760 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
761 1.2 ad }
762 1.2 ad
763 1.2 ad #endif
764 1.2 ad
765 1.2 ad #ifdef i386
766 1.2 ad static void
767 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
768 1.2 ad {
769 1.2 ad memset(tss, 0, sizeof *tss);
770 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
771 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
772 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
773 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
774 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
775 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
776 1.2 ad tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
777 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
778 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
779 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
780 1.2 ad tss->__tss_eip = (int)func;
781 1.2 ad }
782 1.2 ad
783 1.2 ad /* XXX */
784 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
785 1.2 ad typedef void (vector)(void);
786 1.2 ad extern vector IDTVEC(tss_trap08);
787 1.2 ad #ifdef DDB
788 1.2 ad extern vector Xintrddbipi;
789 1.2 ad extern int ddb_vec;
790 1.2 ad #endif
791 1.2 ad
792 1.2 ad static void
793 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
794 1.2 ad {
795 1.2 ad struct segment_descriptor sd;
796 1.2 ad
797 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
798 1.2 ad UVM_KMF_WIRED);
799 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
800 1.2 ad IDTVEC(tss_trap08));
801 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
802 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
803 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
804 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
805 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
806 1.2 ad
807 1.2 ad #if defined(DDB) && defined(MULTIPROCESSOR)
808 1.2 ad /*
809 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
810 1.2 ad * stomp on a possibly corrupted stack.
811 1.2 ad *
812 1.2 ad * XXX overwriting the gate set in db_machine_init.
813 1.2 ad * Should rearrange the code so that it's set only once.
814 1.2 ad */
815 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
816 1.2 ad UVM_KMF_WIRED);
817 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
818 1.2 ad
819 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
820 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
821 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
822 1.2 ad
823 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
824 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
825 1.2 ad #endif
826 1.2 ad }
827 1.2 ad #else
828 1.2 ad static void
829 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
830 1.2 ad {
831 1.2 ad
832 1.2 ad }
833 1.2 ad #endif /* i386 */
834 1.2 ad
835 1.2 ad int
836 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
837 1.2 ad {
838 1.2 ad #if NLAPIC > 0
839 1.2 ad int error;
840 1.2 ad #endif
841 1.2 ad unsigned short dwordptr[2];
842 1.14 joerg
843 1.14 joerg /*
844 1.14 joerg * Bootstrap code must be addressable in real mode
845 1.14 joerg * and it must be page aligned.
846 1.14 joerg */
847 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
848 1.2 ad
849 1.2 ad /*
850 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
851 1.2 ad */
852 1.2 ad
853 1.2 ad outb(IO_RTC, NVRAM_RESET);
854 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
855 1.2 ad
856 1.2 ad /*
857 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
858 1.2 ad * to the AP startup code ..."
859 1.2 ad */
860 1.2 ad
861 1.2 ad dwordptr[0] = 0;
862 1.14 joerg dwordptr[1] = target >> 4;
863 1.2 ad
864 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
865 1.2 ad
866 1.2 ad #if NLAPIC > 0
867 1.25 ad if ((cpu_feature & CPUID_APIC) == 0) {
868 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
869 1.25 ad return ENODEV;
870 1.25 ad }
871 1.25 ad
872 1.2 ad /*
873 1.2 ad * ... prior to executing the following sequence:"
874 1.2 ad */
875 1.2 ad
876 1.2 ad if (ci->ci_flags & CPUF_AP) {
877 1.26 cegger error = x86_ipi_init(ci->ci_apicid);
878 1.26 cegger if (error != 0) {
879 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
880 1.26 cegger __func__);
881 1.2 ad return error;
882 1.25 ad }
883 1.2 ad
884 1.11 ad i8254_delay(10000);
885 1.2 ad
886 1.26 cegger error = x86_ipi(target / PAGE_SIZE, ci->ci_apicid,
887 1.26 cegger LAPIC_DLMODE_STARTUP);
888 1.26 cegger if (error != 0) {
889 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
890 1.26 cegger __func__);
891 1.25 ad return error;
892 1.25 ad }
893 1.25 ad i8254_delay(200);
894 1.2 ad
895 1.26 cegger error = x86_ipi(target / PAGE_SIZE, ci->ci_apicid,
896 1.26 cegger LAPIC_DLMODE_STARTUP);
897 1.26 cegger if (error != 0) {
898 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
899 1.26 cegger __func__);
900 1.25 ad return error;
901 1.2 ad }
902 1.25 ad i8254_delay(200);
903 1.2 ad }
904 1.2 ad #endif
905 1.2 ad return 0;
906 1.2 ad }
907 1.2 ad
908 1.2 ad void
909 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
910 1.2 ad {
911 1.2 ad /*
912 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
913 1.2 ad */
914 1.2 ad
915 1.2 ad outb(IO_RTC, NVRAM_RESET);
916 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
917 1.2 ad }
918 1.2 ad
919 1.2 ad #ifdef __x86_64__
920 1.2 ad typedef void (vector)(void);
921 1.2 ad extern vector Xsyscall, Xsyscall32;
922 1.2 ad
923 1.2 ad void
924 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
925 1.2 ad {
926 1.2 ad wrmsr(MSR_STAR,
927 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
928 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
929 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
930 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
931 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
932 1.2 ad
933 1.12 jmcneill if (full) {
934 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
935 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
936 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
937 1.12 jmcneill }
938 1.2 ad
939 1.2 ad if (cpu_feature & CPUID_NOX)
940 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
941 1.2 ad }
942 1.2 ad #endif /* __x86_64__ */
943 1.7 ad
944 1.18 joerg void
945 1.18 joerg cpu_offline_md(void)
946 1.18 joerg {
947 1.18 joerg int s;
948 1.18 joerg
949 1.18 joerg s = splhigh();
950 1.18 joerg #ifdef __i386__
951 1.18 joerg npxsave_cpu(true);
952 1.18 joerg #else
953 1.18 joerg fpusave_cpu(true);
954 1.18 joerg #endif
955 1.18 joerg splx(s);
956 1.18 joerg }
957 1.18 joerg
958 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
959 1.12 jmcneill static bool
960 1.22 dyoung cpu_suspend(device_t dv PMF_FN_ARGS)
961 1.12 jmcneill {
962 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
963 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
964 1.18 joerg int err;
965 1.12 jmcneill
966 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
967 1.12 jmcneill return true;
968 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
969 1.12 jmcneill return true;
970 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
971 1.12 jmcneill return true;
972 1.12 jmcneill
973 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
974 1.17 joerg
975 1.20 jmcneill if (sc->sc_wasonline) {
976 1.20 jmcneill mutex_enter(&cpu_lock);
977 1.20 jmcneill err = cpu_setonline(ci, false);
978 1.20 jmcneill mutex_exit(&cpu_lock);
979 1.20 jmcneill
980 1.20 jmcneill if (err)
981 1.20 jmcneill return false;
982 1.20 jmcneill }
983 1.17 joerg
984 1.17 joerg return true;
985 1.12 jmcneill }
986 1.12 jmcneill
987 1.12 jmcneill static bool
988 1.22 dyoung cpu_resume(device_t dv PMF_FN_ARGS)
989 1.12 jmcneill {
990 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
991 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
992 1.20 jmcneill int err = 0;
993 1.12 jmcneill
994 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
995 1.12 jmcneill return true;
996 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
997 1.12 jmcneill return true;
998 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
999 1.12 jmcneill return true;
1000 1.12 jmcneill
1001 1.20 jmcneill if (sc->sc_wasonline) {
1002 1.20 jmcneill mutex_enter(&cpu_lock);
1003 1.20 jmcneill err = cpu_setonline(ci, true);
1004 1.20 jmcneill mutex_exit(&cpu_lock);
1005 1.20 jmcneill }
1006 1.13 joerg
1007 1.13 joerg return err == 0;
1008 1.12 jmcneill }
1009 1.12 jmcneill
1010 1.7 ad void
1011 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1012 1.7 ad {
1013 1.7 ad uint64_t last_tsc;
1014 1.7 ad u_int junk[4];
1015 1.7 ad
1016 1.7 ad if (ci->ci_feature_flags & CPUID_TSC) {
1017 1.7 ad /* Serialize. */
1018 1.7 ad x86_cpuid(0, junk);
1019 1.7 ad last_tsc = rdtsc();
1020 1.7 ad i8254_delay(100000);
1021 1.7 ad ci->ci_tsc_freq = (rdtsc() - last_tsc) * 10;
1022 1.7 ad }
1023 1.7 ad }
1024 1.37 joerg
1025 1.37 joerg void
1026 1.37 joerg x86_cpu_idle_mwait(void)
1027 1.37 joerg {
1028 1.37 joerg struct cpu_info *ci = curcpu();
1029 1.37 joerg
1030 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1031 1.37 joerg
1032 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1033 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1034 1.37 joerg return;
1035 1.37 joerg }
1036 1.37 joerg x86_mwait(0, 0);
1037 1.37 joerg }
1038 1.37 joerg
1039 1.37 joerg void
1040 1.37 joerg x86_cpu_idle_halt(void)
1041 1.37 joerg {
1042 1.37 joerg struct cpu_info *ci = curcpu();
1043 1.37 joerg
1044 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1045 1.37 joerg
1046 1.37 joerg x86_disable_intr();
1047 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1048 1.37 joerg x86_stihlt();
1049 1.37 joerg } else {
1050 1.37 joerg x86_enable_intr();
1051 1.37 joerg }
1052 1.37 joerg }
1053