cpu.c revision 1.40 1 1.40 ad /* $NetBSD: cpu.c,v 1.40 2008/05/11 14:44:54 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.38 ad * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.40 ad __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.40 2008/05/11 14:44:54 ad Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_multiprocessor.h"
69 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
70 1.2 ad #include "opt_mtrr.h"
71 1.2 ad
72 1.2 ad #include "lapic.h"
73 1.2 ad #include "ioapic.h"
74 1.2 ad
75 1.2 ad #include <sys/param.h>
76 1.2 ad #include <sys/proc.h>
77 1.2 ad #include <sys/user.h>
78 1.2 ad #include <sys/systm.h>
79 1.2 ad #include <sys/device.h>
80 1.2 ad #include <sys/malloc.h>
81 1.9 ad #include <sys/cpu.h>
82 1.9 ad #include <sys/atomic.h>
83 1.35 ad #include <sys/reboot.h>
84 1.2 ad
85 1.2 ad #include <uvm/uvm_extern.h>
86 1.2 ad
87 1.2 ad #include <machine/cpufunc.h>
88 1.2 ad #include <machine/cpuvar.h>
89 1.2 ad #include <machine/pmap.h>
90 1.2 ad #include <machine/vmparam.h>
91 1.2 ad #include <machine/mpbiosvar.h>
92 1.2 ad #include <machine/pcb.h>
93 1.2 ad #include <machine/specialreg.h>
94 1.2 ad #include <machine/segments.h>
95 1.2 ad #include <machine/gdt.h>
96 1.2 ad #include <machine/mtrr.h>
97 1.2 ad #include <machine/pio.h>
98 1.38 ad #include <machine/cpu_counter.h>
99 1.2 ad
100 1.2 ad #ifdef i386
101 1.2 ad #include <machine/tlog.h>
102 1.2 ad #endif
103 1.2 ad
104 1.2 ad #if NLAPIC > 0
105 1.2 ad #include <machine/apicvar.h>
106 1.2 ad #include <machine/i82489reg.h>
107 1.2 ad #include <machine/i82489var.h>
108 1.2 ad #endif
109 1.2 ad
110 1.2 ad #include <dev/ic/mc146818reg.h>
111 1.2 ad #include <i386/isa/nvram.h>
112 1.2 ad #include <dev/isa/isareg.h>
113 1.2 ad
114 1.38 ad #include "tsc.h"
115 1.38 ad
116 1.23 cube int cpu_match(device_t, cfdata_t, void *);
117 1.23 cube void cpu_attach(device_t, device_t, void *);
118 1.2 ad
119 1.22 dyoung static bool cpu_suspend(device_t PMF_FN_PROTO);
120 1.22 dyoung static bool cpu_resume(device_t PMF_FN_PROTO);
121 1.12 jmcneill
122 1.2 ad struct cpu_softc {
123 1.23 cube device_t sc_dev; /* device tree glue */
124 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
125 1.20 jmcneill bool sc_wasonline;
126 1.2 ad };
127 1.2 ad
128 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
129 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
130 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
131 1.2 ad mp_cpu_start_cleanup };
132 1.2 ad
133 1.2 ad
134 1.23 cube CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
135 1.2 ad cpu_match, cpu_attach, NULL, NULL);
136 1.2 ad
137 1.2 ad /*
138 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
139 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
140 1.2 ad * point at it.
141 1.2 ad */
142 1.2 ad #ifdef TRAPLOG
143 1.2 ad struct tlog tlog_primary;
144 1.2 ad #endif
145 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
146 1.2 ad .ci_dev = 0,
147 1.2 ad .ci_self = &cpu_info_primary,
148 1.2 ad .ci_idepth = -1,
149 1.2 ad .ci_curlwp = &lwp0,
150 1.2 ad #ifdef TRAPLOG
151 1.2 ad .ci_tlog_base = &tlog_primary,
152 1.2 ad #endif /* !TRAPLOG */
153 1.2 ad };
154 1.2 ad
155 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
156 1.2 ad
157 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
158 1.2 ad
159 1.2 ad #ifdef i386
160 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
161 1.2 ad #endif
162 1.2 ad
163 1.12 jmcneill #ifdef MULTIPROCESSOR
164 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
165 1.12 jmcneill #endif
166 1.12 jmcneill
167 1.2 ad uint32_t cpus_attached = 0;
168 1.9 ad uint32_t cpus_running = 0;
169 1.2 ad
170 1.2 ad extern char x86_64_doubleflt_stack[];
171 1.2 ad
172 1.12 jmcneill bool x86_mp_online;
173 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
174 1.12 jmcneill
175 1.14 joerg static vaddr_t cmos_data_mapping;
176 1.14 joerg
177 1.2 ad #ifdef MULTIPROCESSOR
178 1.2 ad /*
179 1.2 ad * Array of CPU info structures. Must be statically-allocated because
180 1.2 ad * curproc, etc. are used early.
181 1.2 ad */
182 1.2 ad struct cpu_info *cpu_info[X86_MAXPROCS] = { &cpu_info_primary, };
183 1.2 ad
184 1.2 ad void cpu_hatch(void *);
185 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
186 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
187 1.2 ad static void cpu_copy_trampoline(void);
188 1.2 ad
189 1.2 ad /*
190 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
191 1.2 ad * the local APIC on the boot processor has been mapped.
192 1.2 ad *
193 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
194 1.2 ad */
195 1.2 ad void
196 1.9 ad cpu_init_first(void)
197 1.2 ad {
198 1.2 ad int cpunum = lapic_cpu_number();
199 1.2 ad
200 1.2 ad if (cpunum != 0) {
201 1.2 ad cpu_info[0] = NULL;
202 1.2 ad cpu_info[cpunum] = &cpu_info_primary;
203 1.2 ad }
204 1.2 ad
205 1.2 ad cpu_info_primary.ci_cpuid = cpunum;
206 1.2 ad cpu_copy_trampoline();
207 1.14 joerg
208 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
209 1.14 joerg if (cmos_data_mapping == 0)
210 1.14 joerg panic("No KVA for page 0");
211 1.14 joerg pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
212 1.14 joerg pmap_update(pmap_kernel());
213 1.2 ad }
214 1.2 ad #endif
215 1.2 ad
216 1.2 ad int
217 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
218 1.2 ad {
219 1.2 ad
220 1.2 ad return 1;
221 1.2 ad }
222 1.2 ad
223 1.2 ad static void
224 1.2 ad cpu_vm_init(struct cpu_info *ci)
225 1.2 ad {
226 1.2 ad int ncolors = 2, i;
227 1.2 ad
228 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
229 1.2 ad struct x86_cache_info *cai;
230 1.2 ad int tcolors;
231 1.2 ad
232 1.2 ad cai = &ci->ci_cinfo[i];
233 1.2 ad
234 1.2 ad tcolors = atop(cai->cai_totalsize);
235 1.2 ad switch(cai->cai_associativity) {
236 1.2 ad case 0xff:
237 1.2 ad tcolors = 1; /* fully associative */
238 1.2 ad break;
239 1.2 ad case 0:
240 1.2 ad case 1:
241 1.2 ad break;
242 1.2 ad default:
243 1.2 ad tcolors /= cai->cai_associativity;
244 1.2 ad }
245 1.2 ad ncolors = max(ncolors, tcolors);
246 1.32 tls /*
247 1.32 tls * If the desired number of colors is not a power of
248 1.32 tls * two, it won't be good. Find the greatest power of
249 1.32 tls * two which is an even divisor of the number of colors,
250 1.32 tls * to preserve even coloring of pages.
251 1.32 tls */
252 1.32 tls if (ncolors & (ncolors - 1) ) {
253 1.32 tls int try, picked = 1;
254 1.32 tls for (try = 1; try < ncolors; try *= 2) {
255 1.32 tls if (ncolors % try == 0) picked = try;
256 1.32 tls }
257 1.32 tls if (picked == 1) {
258 1.32 tls panic("desired number of cache colors %d is "
259 1.32 tls " > 1, but not even!", ncolors);
260 1.32 tls }
261 1.32 tls ncolors = picked;
262 1.32 tls }
263 1.2 ad }
264 1.2 ad
265 1.2 ad /*
266 1.2 ad * Knowing the size of the largest cache on this CPU, re-color
267 1.2 ad * our pages.
268 1.2 ad */
269 1.2 ad if (ncolors <= uvmexp.ncolors)
270 1.2 ad return;
271 1.27 cegger aprint_verbose_dev(ci->ci_dev, "%d page colors\n", ncolors);
272 1.2 ad uvm_page_recolor(ncolors);
273 1.2 ad }
274 1.2 ad
275 1.2 ad
276 1.2 ad void
277 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
278 1.2 ad {
279 1.23 cube struct cpu_softc *sc = device_private(self);
280 1.2 ad struct cpu_attach_args *caa = aux;
281 1.2 ad struct cpu_info *ci;
282 1.21 ad uintptr_t ptr;
283 1.2 ad int cpunum = caa->cpu_number;
284 1.2 ad
285 1.23 cube sc->sc_dev = self;
286 1.23 cube
287 1.2 ad /*
288 1.2 ad * If we're an Application Processor, allocate a cpu_info
289 1.2 ad * structure, otherwise use the primary's.
290 1.2 ad */
291 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
292 1.36 ad if ((boothowto & RB_MD1) != 0) {
293 1.35 ad aprint_error(": multiprocessor boot disabled\n");
294 1.35 ad return;
295 1.35 ad }
296 1.33 jmcneill if (cpunum >= X86_MAXPROCS) {
297 1.33 jmcneill aprint_error(": apic id %d ignored, "
298 1.33 jmcneill "please increase X86_MAXPROCS\n", cpunum);
299 1.33 jmcneill return;
300 1.33 jmcneill }
301 1.2 ad aprint_naive(": Application Processor\n");
302 1.21 ad ptr = (uintptr_t)malloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
303 1.21 ad M_DEVBUF, M_WAITOK);
304 1.21 ad ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
305 1.21 ad ~(CACHE_LINE_SIZE - 1));
306 1.2 ad memset(ci, 0, sizeof(*ci));
307 1.2 ad #if defined(MULTIPROCESSOR)
308 1.2 ad if (cpu_info[cpunum] != NULL) {
309 1.2 ad printf("\n");
310 1.2 ad panic("cpu at apic id %d already attached?", cpunum);
311 1.2 ad }
312 1.2 ad cpu_info[cpunum] = ci;
313 1.2 ad #endif
314 1.2 ad #ifdef TRAPLOG
315 1.2 ad ci->ci_tlog_base = malloc(sizeof(struct tlog),
316 1.2 ad M_DEVBUF, M_WAITOK);
317 1.2 ad #endif
318 1.2 ad } else {
319 1.2 ad aprint_naive(": %s Processor\n",
320 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
321 1.2 ad ci = &cpu_info_primary;
322 1.2 ad #if defined(MULTIPROCESSOR)
323 1.2 ad if (cpunum != lapic_cpu_number()) {
324 1.39 ad uint32_t reg;
325 1.39 ad aprint_verbose("\n");
326 1.39 ad aprint_verbose("%s: running CPU is at apic %d"
327 1.2 ad " instead of at expected %d",
328 1.23 cube device_xname(sc->sc_dev), lapic_cpu_number(),
329 1.23 cube cpunum);
330 1.39 ad reg = i82489_readreg(LAPIC_ID);
331 1.39 ad i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
332 1.39 ad (cpunum << LAPIC_ID_SHIFT));
333 1.2 ad }
334 1.2 ad #endif
335 1.2 ad }
336 1.2 ad
337 1.2 ad ci->ci_self = ci;
338 1.2 ad sc->sc_info = ci;
339 1.2 ad
340 1.2 ad ci->ci_dev = self;
341 1.2 ad ci->ci_apicid = caa->cpu_number;
342 1.2 ad #ifdef MULTIPROCESSOR
343 1.2 ad ci->ci_cpuid = ci->ci_apicid;
344 1.2 ad #else
345 1.2 ad ci->ci_cpuid = 0; /* False for APs, but they're not used anyway */
346 1.2 ad #endif
347 1.2 ad ci->ci_cpumask = (1 << ci->ci_cpuid);
348 1.2 ad ci->ci_func = caa->cpu_func;
349 1.2 ad
350 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
351 1.2 ad #ifdef MULTIPROCESSOR
352 1.2 ad int error;
353 1.2 ad
354 1.2 ad error = mi_cpu_attach(ci);
355 1.2 ad if (error != 0) {
356 1.2 ad aprint_normal("\n");
357 1.30 cegger aprint_error_dev(sc->sc_dev,
358 1.30 cegger "mi_cpu_attach failed with %d\n", error);
359 1.2 ad return;
360 1.2 ad }
361 1.2 ad #endif
362 1.15 yamt cpu_init_tss(ci);
363 1.2 ad } else {
364 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
365 1.2 ad }
366 1.2 ad
367 1.2 ad pmap_reference(pmap_kernel());
368 1.2 ad ci->ci_pmap = pmap_kernel();
369 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
370 1.2 ad
371 1.2 ad /* further PCB init done later. */
372 1.2 ad
373 1.2 ad switch (caa->cpu_role) {
374 1.2 ad case CPU_ROLE_SP:
375 1.9 ad atomic_or_32(&ci->ci_flags,
376 1.9 ad CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY);
377 1.2 ad cpu_intr_init(ci);
378 1.40 ad cpu_get_tsc_freq(ci);
379 1.40 ad cpu_identify(ci);
380 1.2 ad cpu_init(ci);
381 1.2 ad cpu_set_tss_gates(ci);
382 1.2 ad pmap_cpu_init_late(ci);
383 1.6 ad x86_errata();
384 1.37 joerg x86_cpu_idle_init();
385 1.2 ad break;
386 1.2 ad
387 1.2 ad case CPU_ROLE_BP:
388 1.9 ad atomic_or_32(&ci->ci_flags,
389 1.9 ad CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY);
390 1.2 ad cpu_intr_init(ci);
391 1.40 ad cpu_get_tsc_freq(ci);
392 1.40 ad cpu_identify(ci);
393 1.2 ad cpu_init(ci);
394 1.2 ad cpu_set_tss_gates(ci);
395 1.2 ad pmap_cpu_init_late(ci);
396 1.2 ad #if NLAPIC > 0
397 1.2 ad /*
398 1.2 ad * Enable local apic
399 1.2 ad */
400 1.2 ad lapic_enable();
401 1.19 joerg lapic_set_lvt();
402 1.2 ad lapic_calibrate_timer(ci);
403 1.2 ad #endif
404 1.6 ad x86_errata();
405 1.37 joerg x86_cpu_idle_init();
406 1.2 ad break;
407 1.2 ad
408 1.2 ad case CPU_ROLE_AP:
409 1.2 ad /*
410 1.2 ad * report on an AP
411 1.2 ad */
412 1.2 ad #if defined(MULTIPROCESSOR)
413 1.2 ad cpu_intr_init(ci);
414 1.2 ad gdt_alloc_cpu(ci);
415 1.2 ad cpu_set_tss_gates(ci);
416 1.2 ad pmap_cpu_init_early(ci);
417 1.2 ad pmap_cpu_init_late(ci);
418 1.2 ad cpu_start_secondary(ci);
419 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
420 1.40 ad cpu_identify(ci);
421 1.2 ad ci->ci_next = cpu_info_list->ci_next;
422 1.2 ad cpu_info_list->ci_next = ci;
423 1.2 ad }
424 1.2 ad #else
425 1.40 ad aprint_normal(": not started\n");
426 1.2 ad #endif
427 1.2 ad break;
428 1.2 ad
429 1.2 ad default:
430 1.28 cegger aprint_normal("\n");
431 1.2 ad panic("unknown processor type??\n");
432 1.2 ad }
433 1.2 ad cpu_vm_init(ci);
434 1.2 ad
435 1.2 ad cpus_attached |= ci->ci_cpumask;
436 1.2 ad
437 1.12 jmcneill if (!pmf_device_register(self, cpu_suspend, cpu_resume))
438 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
439 1.12 jmcneill
440 1.2 ad #if defined(MULTIPROCESSOR)
441 1.2 ad if (mp_verbose) {
442 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
443 1.2 ad
444 1.28 cegger aprint_verbose_dev(sc->sc_dev,
445 1.28 cegger "idle lwp at %p, idle sp at %p\n",
446 1.28 cegger l,
447 1.2 ad #ifdef i386
448 1.2 ad (void *)l->l_addr->u_pcb.pcb_esp
449 1.2 ad #else
450 1.2 ad (void *)l->l_addr->u_pcb.pcb_rsp
451 1.2 ad #endif
452 1.2 ad );
453 1.2 ad }
454 1.2 ad #endif
455 1.2 ad }
456 1.2 ad
457 1.2 ad /*
458 1.2 ad * Initialize the processor appropriately.
459 1.2 ad */
460 1.2 ad
461 1.2 ad void
462 1.9 ad cpu_init(struct cpu_info *ci)
463 1.2 ad {
464 1.2 ad /* configure the CPU if needed */
465 1.2 ad if (ci->cpu_setup != NULL)
466 1.2 ad (*ci->cpu_setup)(ci);
467 1.2 ad
468 1.2 ad lcr0(rcr0() | CR0_WP);
469 1.2 ad
470 1.2 ad /*
471 1.2 ad * On a P6 or above, enable global TLB caching if the
472 1.2 ad * hardware supports it.
473 1.2 ad */
474 1.2 ad if (cpu_feature & CPUID_PGE)
475 1.2 ad lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
476 1.2 ad
477 1.2 ad /*
478 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
479 1.2 ad */
480 1.2 ad if (cpu_feature & CPUID_FXSR) {
481 1.2 ad lcr4(rcr4() | CR4_OSFXSR);
482 1.2 ad
483 1.2 ad /*
484 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
485 1.2 ad */
486 1.2 ad if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
487 1.2 ad lcr4(rcr4() | CR4_OSXMMEXCPT);
488 1.2 ad }
489 1.2 ad
490 1.2 ad #ifdef MTRR
491 1.2 ad /*
492 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
493 1.2 ad */
494 1.2 ad if (cpu_feature & CPUID_MTRR) {
495 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
496 1.2 ad i686_mtrr_init_first();
497 1.2 ad mtrr_init_cpu(ci);
498 1.2 ad }
499 1.2 ad
500 1.2 ad #ifdef i386
501 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
502 1.2 ad /*
503 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
504 1.2 ad */
505 1.2 ad if (CPUID2FAMILY(ci->ci_signature) == 5) {
506 1.2 ad if (CPUID2MODEL(ci->ci_signature) > 8 ||
507 1.2 ad (CPUID2MODEL(ci->ci_signature) == 8 &&
508 1.2 ad CPUID2STEPPING(ci->ci_signature) >= 7)) {
509 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
510 1.2 ad k6_mtrr_init_first();
511 1.2 ad mtrr_init_cpu(ci);
512 1.2 ad }
513 1.2 ad }
514 1.2 ad }
515 1.2 ad #endif /* i386 */
516 1.2 ad #endif /* MTRR */
517 1.2 ad
518 1.9 ad atomic_or_32(&cpus_running, ci->ci_cpumask);
519 1.9 ad
520 1.38 ad if (ci != &cpu_info_primary) {
521 1.38 ad /* Synchronize TSC again, and check for drift. */
522 1.38 ad wbinvd();
523 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
524 1.38 ad tsc_sync_ap(ci);
525 1.38 ad tsc_sync_ap(ci);
526 1.38 ad } else {
527 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
528 1.38 ad }
529 1.38 ad
530 1.9 ad #ifndef MULTIPROCESSOR
531 1.5 ad /* XXX */
532 1.5 ad x86_patch();
533 1.2 ad #endif
534 1.2 ad }
535 1.2 ad
536 1.2 ad #ifdef MULTIPROCESSOR
537 1.2 ad void
538 1.12 jmcneill cpu_boot_secondary_processors(void)
539 1.2 ad {
540 1.2 ad struct cpu_info *ci;
541 1.2 ad u_long i;
542 1.2 ad
543 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
544 1.5 ad x86_patch();
545 1.5 ad
546 1.2 ad for (i=0; i < X86_MAXPROCS; i++) {
547 1.2 ad ci = cpu_info[i];
548 1.2 ad if (ci == NULL)
549 1.2 ad continue;
550 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
551 1.2 ad continue;
552 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
553 1.2 ad continue;
554 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
555 1.2 ad continue;
556 1.2 ad cpu_boot_secondary(ci);
557 1.2 ad }
558 1.2 ad
559 1.2 ad x86_mp_online = true;
560 1.38 ad
561 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
562 1.38 ad tsc_tc_init();
563 1.2 ad }
564 1.2 ad
565 1.2 ad static void
566 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
567 1.2 ad {
568 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
569 1.2 ad struct pcb *pcb = &l->l_addr->u_pcb;
570 1.2 ad
571 1.2 ad pcb->pcb_cr0 = rcr0();
572 1.2 ad }
573 1.2 ad
574 1.2 ad void
575 1.12 jmcneill cpu_init_idle_lwps(void)
576 1.2 ad {
577 1.2 ad struct cpu_info *ci;
578 1.2 ad u_long i;
579 1.2 ad
580 1.2 ad for (i = 0; i < X86_MAXPROCS; i++) {
581 1.2 ad ci = cpu_info[i];
582 1.2 ad if (ci == NULL)
583 1.2 ad continue;
584 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
585 1.2 ad continue;
586 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
587 1.2 ad continue;
588 1.2 ad cpu_init_idle_lwp(ci);
589 1.2 ad }
590 1.2 ad }
591 1.2 ad
592 1.2 ad void
593 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
594 1.2 ad {
595 1.38 ad extern paddr_t mp_pdirpa;
596 1.38 ad u_long psl;
597 1.2 ad int i;
598 1.2 ad
599 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
600 1.2 ad
601 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
602 1.2 ad
603 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
604 1.25 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0)
605 1.25 ad return;
606 1.2 ad
607 1.2 ad /*
608 1.2 ad * wait for it to become ready
609 1.2 ad */
610 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
611 1.24 ad #ifdef MPDEBUG
612 1.24 ad extern int cpu_trace[3];
613 1.24 ad static int otrace[3];
614 1.24 ad if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
615 1.26 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
616 1.26 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
617 1.24 ad memcpy(otrace, cpu_trace, sizeof(otrace));
618 1.24 ad }
619 1.24 ad #endif
620 1.11 ad i8254_delay(10);
621 1.2 ad }
622 1.38 ad
623 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
624 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
625 1.2 ad #if defined(MPDEBUG) && defined(DDB)
626 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
627 1.2 ad Debugger();
628 1.2 ad #endif
629 1.38 ad } else {
630 1.38 ad /*
631 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
632 1.38 ad * to try and minimize possible cache effects. Disable interrupts
633 1.38 ad * to try and rule out any external interference.
634 1.38 ad */
635 1.38 ad psl = x86_read_psl();
636 1.38 ad x86_disable_intr();
637 1.38 ad wbinvd();
638 1.38 ad tsc_sync_bp(ci);
639 1.38 ad tsc_sync_bp(ci);
640 1.38 ad x86_write_psl(psl);
641 1.2 ad }
642 1.2 ad
643 1.2 ad CPU_START_CLEANUP(ci);
644 1.2 ad }
645 1.2 ad
646 1.2 ad void
647 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
648 1.2 ad {
649 1.38 ad int64_t drift;
650 1.38 ad u_long psl;
651 1.2 ad int i;
652 1.2 ad
653 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
654 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
655 1.11 ad i8254_delay(10);
656 1.2 ad }
657 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
658 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
659 1.2 ad #if defined(MPDEBUG) && defined(DDB)
660 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
661 1.2 ad Debugger();
662 1.2 ad #endif
663 1.38 ad } else {
664 1.38 ad /* Synchronize TSC again, check for drift. */
665 1.38 ad drift = ci->ci_data.cpu_cc_skew;
666 1.38 ad psl = x86_read_psl();
667 1.38 ad x86_disable_intr();
668 1.38 ad wbinvd();
669 1.38 ad tsc_sync_bp(ci);
670 1.38 ad tsc_sync_bp(ci);
671 1.38 ad x86_write_psl(psl);
672 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
673 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
674 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
675 1.38 ad tsc_sync_drift(drift);
676 1.2 ad }
677 1.2 ad }
678 1.2 ad
679 1.2 ad /*
680 1.2 ad * The CPU ends up here when its ready to run
681 1.2 ad * This is called from code in mptramp.s; at this point, we are running
682 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
683 1.2 ad * this processor will enter the idle loop and start looking for work.
684 1.2 ad */
685 1.2 ad void
686 1.2 ad cpu_hatch(void *v)
687 1.2 ad {
688 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
689 1.6 ad int s, i;
690 1.2 ad
691 1.2 ad #ifdef __x86_64__
692 1.12 jmcneill cpu_init_msrs(ci, true);
693 1.2 ad #endif
694 1.40 ad cpu_probe(ci);
695 1.2 ad
696 1.38 ad /* XXX Until we have a proper calibration loop, just lie. */
697 1.38 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
698 1.38 ad
699 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
700 1.38 ad
701 1.38 ad /*
702 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
703 1.38 ad * to try and minimize possible cache effects. Note that interrupts
704 1.38 ad * are off at this point.
705 1.38 ad */
706 1.38 ad wbinvd();
707 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
708 1.38 ad tsc_sync_ap(ci);
709 1.38 ad tsc_sync_ap(ci);
710 1.38 ad
711 1.38 ad /*
712 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
713 1.38 ad * in order to make the TSC drift as much as possible. so that
714 1.38 ad * we can detect it later. If not available, try 'pause'.
715 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
716 1.38 ad */
717 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
718 1.38 ad if ((ci->ci_feature2_flags & CPUID2_MONITOR) != 0) {
719 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
720 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
721 1.38 ad continue;
722 1.38 ad }
723 1.38 ad x86_mwait(0, 0);
724 1.38 ad } else {
725 1.38 ad for (i = 10000; i != 0; i--) {
726 1.38 ad x86_pause();
727 1.38 ad }
728 1.38 ad }
729 1.6 ad }
730 1.5 ad
731 1.26 cegger /* Because the text may have been patched in x86_patch(). */
732 1.5 ad wbinvd();
733 1.5 ad x86_flush();
734 1.5 ad
735 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
736 1.2 ad
737 1.12 jmcneill lcr3(pmap_kernel()->pm_pdirpa);
738 1.12 jmcneill curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
739 1.2 ad lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
740 1.2 ad cpu_init_idt();
741 1.8 ad gdt_init_cpu(ci);
742 1.8 ad lapic_enable();
743 1.2 ad lapic_set_lvt();
744 1.8 ad lapic_initclocks();
745 1.2 ad
746 1.2 ad #ifdef i386
747 1.2 ad npxinit(ci);
748 1.2 ad #else
749 1.2 ad fpuinit(ci);
750 1.4 yamt #endif
751 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
752 1.15 yamt ltr(ci->ci_tss_sel);
753 1.2 ad
754 1.2 ad cpu_init(ci);
755 1.7 ad cpu_get_tsc_freq(ci);
756 1.2 ad
757 1.2 ad s = splhigh();
758 1.2 ad #ifdef i386
759 1.2 ad lapic_tpr = 0;
760 1.2 ad #else
761 1.2 ad lcr8(0);
762 1.2 ad #endif
763 1.3 ad x86_enable_intr();
764 1.2 ad splx(s);
765 1.6 ad x86_errata();
766 1.2 ad
767 1.26 cegger aprint_debug_dev(ci->ci_dev, "CPU %ld running\n",
768 1.2 ad (long)ci->ci_cpuid);
769 1.2 ad }
770 1.2 ad
771 1.2 ad #if defined(DDB)
772 1.2 ad
773 1.2 ad #include <ddb/db_output.h>
774 1.2 ad #include <machine/db_machdep.h>
775 1.2 ad
776 1.2 ad /*
777 1.2 ad * Dump CPU information from ddb.
778 1.2 ad */
779 1.2 ad void
780 1.2 ad cpu_debug_dump(void)
781 1.2 ad {
782 1.2 ad struct cpu_info *ci;
783 1.2 ad CPU_INFO_ITERATOR cii;
784 1.2 ad
785 1.29 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
786 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
787 1.2 ad db_printf("%p %s %ld %x %x %10p %10p\n",
788 1.2 ad ci,
789 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
790 1.2 ad (long)ci->ci_cpuid,
791 1.2 ad ci->ci_flags, ci->ci_ipis,
792 1.2 ad ci->ci_curlwp,
793 1.2 ad ci->ci_fpcurlwp);
794 1.2 ad }
795 1.2 ad }
796 1.2 ad #endif
797 1.2 ad
798 1.2 ad static void
799 1.12 jmcneill cpu_copy_trampoline(void)
800 1.2 ad {
801 1.2 ad /*
802 1.2 ad * Copy boot code.
803 1.2 ad */
804 1.2 ad extern u_char cpu_spinup_trampoline[];
805 1.2 ad extern u_char cpu_spinup_trampoline_end[];
806 1.12 jmcneill
807 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
808 1.12 jmcneill
809 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
810 1.12 jmcneill UVM_KMF_VAONLY);
811 1.12 jmcneill
812 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
813 1.12 jmcneill VM_PROT_READ | VM_PROT_WRITE);
814 1.2 ad pmap_update(pmap_kernel());
815 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
816 1.2 ad cpu_spinup_trampoline,
817 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
818 1.12 jmcneill
819 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
820 1.12 jmcneill pmap_update(pmap_kernel());
821 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
822 1.2 ad }
823 1.2 ad
824 1.2 ad #endif
825 1.2 ad
826 1.2 ad #ifdef i386
827 1.2 ad static void
828 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
829 1.2 ad {
830 1.2 ad memset(tss, 0, sizeof *tss);
831 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
832 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
833 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
834 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
835 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
836 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
837 1.2 ad tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
838 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
839 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
840 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
841 1.2 ad tss->__tss_eip = (int)func;
842 1.2 ad }
843 1.2 ad
844 1.2 ad /* XXX */
845 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
846 1.2 ad typedef void (vector)(void);
847 1.2 ad extern vector IDTVEC(tss_trap08);
848 1.2 ad #ifdef DDB
849 1.2 ad extern vector Xintrddbipi;
850 1.2 ad extern int ddb_vec;
851 1.2 ad #endif
852 1.2 ad
853 1.2 ad static void
854 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
855 1.2 ad {
856 1.2 ad struct segment_descriptor sd;
857 1.2 ad
858 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
859 1.2 ad UVM_KMF_WIRED);
860 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
861 1.2 ad IDTVEC(tss_trap08));
862 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
863 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
864 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
865 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
866 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
867 1.2 ad
868 1.2 ad #if defined(DDB) && defined(MULTIPROCESSOR)
869 1.2 ad /*
870 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
871 1.2 ad * stomp on a possibly corrupted stack.
872 1.2 ad *
873 1.2 ad * XXX overwriting the gate set in db_machine_init.
874 1.2 ad * Should rearrange the code so that it's set only once.
875 1.2 ad */
876 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
877 1.2 ad UVM_KMF_WIRED);
878 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
879 1.2 ad
880 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
881 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
882 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
883 1.2 ad
884 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
885 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
886 1.2 ad #endif
887 1.2 ad }
888 1.2 ad #else
889 1.2 ad static void
890 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
891 1.2 ad {
892 1.2 ad
893 1.2 ad }
894 1.2 ad #endif /* i386 */
895 1.2 ad
896 1.2 ad int
897 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
898 1.2 ad {
899 1.2 ad #if NLAPIC > 0
900 1.2 ad int error;
901 1.2 ad #endif
902 1.2 ad unsigned short dwordptr[2];
903 1.14 joerg
904 1.14 joerg /*
905 1.14 joerg * Bootstrap code must be addressable in real mode
906 1.14 joerg * and it must be page aligned.
907 1.14 joerg */
908 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
909 1.2 ad
910 1.2 ad /*
911 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
912 1.2 ad */
913 1.2 ad
914 1.2 ad outb(IO_RTC, NVRAM_RESET);
915 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
916 1.2 ad
917 1.2 ad /*
918 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
919 1.2 ad * to the AP startup code ..."
920 1.2 ad */
921 1.2 ad
922 1.2 ad dwordptr[0] = 0;
923 1.14 joerg dwordptr[1] = target >> 4;
924 1.2 ad
925 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
926 1.2 ad
927 1.2 ad #if NLAPIC > 0
928 1.25 ad if ((cpu_feature & CPUID_APIC) == 0) {
929 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
930 1.25 ad return ENODEV;
931 1.25 ad }
932 1.25 ad
933 1.2 ad /*
934 1.2 ad * ... prior to executing the following sequence:"
935 1.2 ad */
936 1.2 ad
937 1.2 ad if (ci->ci_flags & CPUF_AP) {
938 1.26 cegger error = x86_ipi_init(ci->ci_apicid);
939 1.26 cegger if (error != 0) {
940 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
941 1.26 cegger __func__);
942 1.2 ad return error;
943 1.25 ad }
944 1.2 ad
945 1.11 ad i8254_delay(10000);
946 1.2 ad
947 1.26 cegger error = x86_ipi(target / PAGE_SIZE, ci->ci_apicid,
948 1.26 cegger LAPIC_DLMODE_STARTUP);
949 1.26 cegger if (error != 0) {
950 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
951 1.26 cegger __func__);
952 1.25 ad return error;
953 1.25 ad }
954 1.25 ad i8254_delay(200);
955 1.2 ad
956 1.26 cegger error = x86_ipi(target / PAGE_SIZE, ci->ci_apicid,
957 1.26 cegger LAPIC_DLMODE_STARTUP);
958 1.26 cegger if (error != 0) {
959 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
960 1.26 cegger __func__);
961 1.25 ad return error;
962 1.2 ad }
963 1.25 ad i8254_delay(200);
964 1.2 ad }
965 1.2 ad #endif
966 1.2 ad return 0;
967 1.2 ad }
968 1.2 ad
969 1.2 ad void
970 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
971 1.2 ad {
972 1.2 ad /*
973 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
974 1.2 ad */
975 1.2 ad
976 1.2 ad outb(IO_RTC, NVRAM_RESET);
977 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
978 1.2 ad }
979 1.2 ad
980 1.2 ad #ifdef __x86_64__
981 1.2 ad typedef void (vector)(void);
982 1.2 ad extern vector Xsyscall, Xsyscall32;
983 1.2 ad
984 1.2 ad void
985 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
986 1.2 ad {
987 1.2 ad wrmsr(MSR_STAR,
988 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
989 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
990 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
991 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
992 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
993 1.2 ad
994 1.12 jmcneill if (full) {
995 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
996 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
997 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
998 1.12 jmcneill }
999 1.2 ad
1000 1.2 ad if (cpu_feature & CPUID_NOX)
1001 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1002 1.2 ad }
1003 1.2 ad #endif /* __x86_64__ */
1004 1.7 ad
1005 1.18 joerg void
1006 1.18 joerg cpu_offline_md(void)
1007 1.18 joerg {
1008 1.18 joerg int s;
1009 1.18 joerg
1010 1.18 joerg s = splhigh();
1011 1.18 joerg #ifdef __i386__
1012 1.18 joerg npxsave_cpu(true);
1013 1.18 joerg #else
1014 1.18 joerg fpusave_cpu(true);
1015 1.18 joerg #endif
1016 1.18 joerg splx(s);
1017 1.18 joerg }
1018 1.18 joerg
1019 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1020 1.12 jmcneill static bool
1021 1.22 dyoung cpu_suspend(device_t dv PMF_FN_ARGS)
1022 1.12 jmcneill {
1023 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1024 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1025 1.18 joerg int err;
1026 1.12 jmcneill
1027 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
1028 1.12 jmcneill return true;
1029 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1030 1.12 jmcneill return true;
1031 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
1032 1.12 jmcneill return true;
1033 1.12 jmcneill
1034 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1035 1.17 joerg
1036 1.20 jmcneill if (sc->sc_wasonline) {
1037 1.20 jmcneill mutex_enter(&cpu_lock);
1038 1.20 jmcneill err = cpu_setonline(ci, false);
1039 1.20 jmcneill mutex_exit(&cpu_lock);
1040 1.20 jmcneill
1041 1.20 jmcneill if (err)
1042 1.20 jmcneill return false;
1043 1.20 jmcneill }
1044 1.17 joerg
1045 1.17 joerg return true;
1046 1.12 jmcneill }
1047 1.12 jmcneill
1048 1.12 jmcneill static bool
1049 1.22 dyoung cpu_resume(device_t dv PMF_FN_ARGS)
1050 1.12 jmcneill {
1051 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1052 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1053 1.20 jmcneill int err = 0;
1054 1.12 jmcneill
1055 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
1056 1.12 jmcneill return true;
1057 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1058 1.12 jmcneill return true;
1059 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
1060 1.12 jmcneill return true;
1061 1.12 jmcneill
1062 1.20 jmcneill if (sc->sc_wasonline) {
1063 1.20 jmcneill mutex_enter(&cpu_lock);
1064 1.20 jmcneill err = cpu_setonline(ci, true);
1065 1.20 jmcneill mutex_exit(&cpu_lock);
1066 1.20 jmcneill }
1067 1.13 joerg
1068 1.13 joerg return err == 0;
1069 1.12 jmcneill }
1070 1.12 jmcneill
1071 1.7 ad void
1072 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1073 1.7 ad {
1074 1.7 ad uint64_t last_tsc;
1075 1.7 ad u_int junk[4];
1076 1.7 ad
1077 1.7 ad if (ci->ci_feature_flags & CPUID_TSC) {
1078 1.7 ad /* Serialize. */
1079 1.7 ad x86_cpuid(0, junk);
1080 1.38 ad last_tsc = cpu_counter();
1081 1.7 ad i8254_delay(100000);
1082 1.38 ad ci->ci_data.cpu_cc_freq = (cpu_counter() - last_tsc) * 10;
1083 1.7 ad }
1084 1.7 ad }
1085 1.37 joerg
1086 1.37 joerg void
1087 1.37 joerg x86_cpu_idle_mwait(void)
1088 1.37 joerg {
1089 1.37 joerg struct cpu_info *ci = curcpu();
1090 1.37 joerg
1091 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1092 1.37 joerg
1093 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1094 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1095 1.37 joerg return;
1096 1.37 joerg }
1097 1.37 joerg x86_mwait(0, 0);
1098 1.37 joerg }
1099 1.37 joerg
1100 1.37 joerg void
1101 1.37 joerg x86_cpu_idle_halt(void)
1102 1.37 joerg {
1103 1.37 joerg struct cpu_info *ci = curcpu();
1104 1.37 joerg
1105 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1106 1.37 joerg
1107 1.37 joerg x86_disable_intr();
1108 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1109 1.37 joerg x86_stihlt();
1110 1.37 joerg } else {
1111 1.37 joerg x86_enable_intr();
1112 1.37 joerg }
1113 1.37 joerg }
1114