Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.51
      1  1.51        ad /*	$NetBSD: cpu.c,v 1.51 2008/05/14 12:53:49 ad Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.38        ad  * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.11        ad  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Copyright (c) 1999 Stefan Grefen
     34   1.2        ad  *
     35   1.2        ad  * Redistribution and use in source and binary forms, with or without
     36   1.2        ad  * modification, are permitted provided that the following conditions
     37   1.2        ad  * are met:
     38   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     39   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     40   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     41   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     42   1.2        ad  *    documentation and/or other materials provided with the distribution.
     43   1.2        ad  * 3. All advertising materials mentioning features or use of this software
     44   1.2        ad  *    must display the following acknowledgement:
     45   1.2        ad  *      This product includes software developed by the NetBSD
     46   1.2        ad  *      Foundation, Inc. and its contributors.
     47   1.2        ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48   1.2        ad  *    contributors may be used to endorse or promote products derived
     49   1.2        ad  *    from this software without specific prior written permission.
     50   1.2        ad  *
     51   1.2        ad  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52   1.2        ad  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53   1.2        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54   1.2        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55   1.2        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56   1.2        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57   1.2        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58   1.2        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59   1.2        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60   1.2        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61   1.2        ad  * SUCH DAMAGE.
     62   1.2        ad  */
     63   1.2        ad 
     64   1.2        ad #include <sys/cdefs.h>
     65  1.51        ad __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.51 2008/05/14 12:53:49 ad Exp $");
     66   1.2        ad 
     67   1.2        ad #include "opt_ddb.h"
     68   1.2        ad #include "opt_mpbios.h"		/* for MPDEBUG */
     69   1.2        ad #include "opt_mtrr.h"
     70   1.2        ad 
     71   1.2        ad #include "lapic.h"
     72   1.2        ad #include "ioapic.h"
     73   1.2        ad 
     74   1.2        ad #include <sys/param.h>
     75   1.2        ad #include <sys/proc.h>
     76   1.2        ad #include <sys/user.h>
     77   1.2        ad #include <sys/systm.h>
     78   1.2        ad #include <sys/device.h>
     79   1.2        ad #include <sys/malloc.h>
     80   1.9        ad #include <sys/cpu.h>
     81   1.9        ad #include <sys/atomic.h>
     82  1.35        ad #include <sys/reboot.h>
     83   1.2        ad 
     84   1.2        ad #include <uvm/uvm_extern.h>
     85   1.2        ad 
     86   1.2        ad #include <machine/cpufunc.h>
     87   1.2        ad #include <machine/cpuvar.h>
     88   1.2        ad #include <machine/pmap.h>
     89   1.2        ad #include <machine/vmparam.h>
     90   1.2        ad #include <machine/mpbiosvar.h>
     91   1.2        ad #include <machine/pcb.h>
     92   1.2        ad #include <machine/specialreg.h>
     93   1.2        ad #include <machine/segments.h>
     94   1.2        ad #include <machine/gdt.h>
     95   1.2        ad #include <machine/mtrr.h>
     96   1.2        ad #include <machine/pio.h>
     97  1.38        ad #include <machine/cpu_counter.h>
     98   1.2        ad 
     99   1.2        ad #ifdef i386
    100   1.2        ad #include <machine/tlog.h>
    101   1.2        ad #endif
    102   1.2        ad 
    103   1.2        ad #include <machine/apicvar.h>
    104   1.2        ad #include <machine/i82489reg.h>
    105   1.2        ad #include <machine/i82489var.h>
    106   1.2        ad 
    107   1.2        ad #include <dev/ic/mc146818reg.h>
    108   1.2        ad #include <i386/isa/nvram.h>
    109   1.2        ad #include <dev/isa/isareg.h>
    110   1.2        ad 
    111  1.38        ad #include "tsc.h"
    112  1.38        ad 
    113  1.23      cube int     cpu_match(device_t, cfdata_t, void *);
    114  1.23      cube void    cpu_attach(device_t, device_t, void *);
    115   1.2        ad 
    116  1.22    dyoung static bool	cpu_suspend(device_t PMF_FN_PROTO);
    117  1.22    dyoung static bool	cpu_resume(device_t PMF_FN_PROTO);
    118  1.12  jmcneill 
    119   1.2        ad struct cpu_softc {
    120  1.23      cube 	device_t sc_dev;		/* device tree glue */
    121   1.2        ad 	struct cpu_info *sc_info;	/* pointer to CPU info */
    122  1.20  jmcneill 	bool sc_wasonline;
    123   1.2        ad };
    124   1.2        ad 
    125  1.14     joerg int mp_cpu_start(struct cpu_info *, paddr_t);
    126   1.2        ad void mp_cpu_start_cleanup(struct cpu_info *);
    127   1.2        ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    128   1.2        ad 					    mp_cpu_start_cleanup };
    129   1.2        ad 
    130   1.2        ad 
    131  1.23      cube CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    132   1.2        ad     cpu_match, cpu_attach, NULL, NULL);
    133   1.2        ad 
    134   1.2        ad /*
    135   1.2        ad  * Statically-allocated CPU info for the primary CPU (or the only
    136   1.2        ad  * CPU, on uniprocessors).  The CPU info list is initialized to
    137   1.2        ad  * point at it.
    138   1.2        ad  */
    139   1.2        ad #ifdef TRAPLOG
    140   1.2        ad struct tlog tlog_primary;
    141   1.2        ad #endif
    142  1.21        ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    143   1.2        ad 	.ci_dev = 0,
    144   1.2        ad 	.ci_self = &cpu_info_primary,
    145   1.2        ad 	.ci_idepth = -1,
    146   1.2        ad 	.ci_curlwp = &lwp0,
    147  1.43        ad 	.ci_curldt = -1,
    148   1.2        ad #ifdef TRAPLOG
    149   1.2        ad 	.ci_tlog_base = &tlog_primary,
    150   1.2        ad #endif /* !TRAPLOG */
    151   1.2        ad };
    152   1.2        ad 
    153   1.2        ad struct cpu_info *cpu_info_list = &cpu_info_primary;
    154   1.2        ad 
    155  1.12  jmcneill static void	cpu_set_tss_gates(struct cpu_info *);
    156   1.2        ad 
    157   1.2        ad #ifdef i386
    158  1.15      yamt static void	tss_init(struct i386tss *, void *, void *);
    159   1.2        ad #endif
    160   1.2        ad 
    161  1.12  jmcneill static void	cpu_init_idle_lwp(struct cpu_info *);
    162  1.12  jmcneill 
    163   1.2        ad uint32_t cpus_attached = 0;
    164   1.9        ad uint32_t cpus_running = 0;
    165   1.2        ad 
    166   1.2        ad extern char x86_64_doubleflt_stack[];
    167   1.2        ad 
    168  1.12  jmcneill bool x86_mp_online;
    169  1.12  jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    170  1.14     joerg static vaddr_t cmos_data_mapping;
    171  1.45        ad struct cpu_info *cpu_starting;
    172   1.2        ad 
    173   1.2        ad void    	cpu_hatch(void *);
    174   1.2        ad static void    	cpu_boot_secondary(struct cpu_info *ci);
    175   1.2        ad static void    	cpu_start_secondary(struct cpu_info *ci);
    176   1.2        ad static void	cpu_copy_trampoline(void);
    177   1.2        ad 
    178   1.2        ad /*
    179   1.2        ad  * Runs once per boot once multiprocessor goo has been detected and
    180   1.2        ad  * the local APIC on the boot processor has been mapped.
    181   1.2        ad  *
    182   1.2        ad  * Called from lapic_boot_init() (from mpbios_scan()).
    183   1.2        ad  */
    184   1.2        ad void
    185   1.9        ad cpu_init_first(void)
    186   1.2        ad {
    187   1.2        ad 
    188  1.45        ad 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    189   1.2        ad 	cpu_copy_trampoline();
    190  1.14     joerg 
    191  1.14     joerg 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    192  1.14     joerg 	if (cmos_data_mapping == 0)
    193  1.14     joerg 		panic("No KVA for page 0");
    194  1.14     joerg 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
    195  1.14     joerg 	pmap_update(pmap_kernel());
    196   1.2        ad }
    197   1.2        ad 
    198   1.2        ad int
    199  1.23      cube cpu_match(device_t parent, cfdata_t match, void *aux)
    200   1.2        ad {
    201   1.2        ad 
    202   1.2        ad 	return 1;
    203   1.2        ad }
    204   1.2        ad 
    205   1.2        ad static void
    206   1.2        ad cpu_vm_init(struct cpu_info *ci)
    207   1.2        ad {
    208   1.2        ad 	int ncolors = 2, i;
    209   1.2        ad 
    210   1.2        ad 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    211   1.2        ad 		struct x86_cache_info *cai;
    212   1.2        ad 		int tcolors;
    213   1.2        ad 
    214   1.2        ad 		cai = &ci->ci_cinfo[i];
    215   1.2        ad 
    216   1.2        ad 		tcolors = atop(cai->cai_totalsize);
    217   1.2        ad 		switch(cai->cai_associativity) {
    218   1.2        ad 		case 0xff:
    219   1.2        ad 			tcolors = 1; /* fully associative */
    220   1.2        ad 			break;
    221   1.2        ad 		case 0:
    222   1.2        ad 		case 1:
    223   1.2        ad 			break;
    224   1.2        ad 		default:
    225   1.2        ad 			tcolors /= cai->cai_associativity;
    226   1.2        ad 		}
    227   1.2        ad 		ncolors = max(ncolors, tcolors);
    228  1.32       tls 		/*
    229  1.32       tls 		 * If the desired number of colors is not a power of
    230  1.32       tls 		 * two, it won't be good.  Find the greatest power of
    231  1.32       tls 		 * two which is an even divisor of the number of colors,
    232  1.32       tls 		 * to preserve even coloring of pages.
    233  1.32       tls 		 */
    234  1.32       tls 		if (ncolors & (ncolors - 1) ) {
    235  1.32       tls 			int try, picked = 1;
    236  1.32       tls 			for (try = 1; try < ncolors; try *= 2) {
    237  1.32       tls 				if (ncolors % try == 0) picked = try;
    238  1.32       tls 			}
    239  1.32       tls 			if (picked == 1) {
    240  1.32       tls 				panic("desired number of cache colors %d is "
    241  1.32       tls 			      	" > 1, but not even!", ncolors);
    242  1.32       tls 			}
    243  1.32       tls 			ncolors = picked;
    244  1.32       tls 		}
    245   1.2        ad 	}
    246   1.2        ad 
    247   1.2        ad 	/*
    248   1.2        ad 	 * Knowing the size of the largest cache on this CPU, re-color
    249   1.2        ad 	 * our pages.
    250   1.2        ad 	 */
    251   1.2        ad 	if (ncolors <= uvmexp.ncolors)
    252   1.2        ad 		return;
    253  1.27    cegger 	aprint_verbose_dev(ci->ci_dev, "%d page colors\n", ncolors);
    254   1.2        ad 	uvm_page_recolor(ncolors);
    255   1.2        ad }
    256   1.2        ad 
    257   1.2        ad 
    258   1.2        ad void
    259  1.23      cube cpu_attach(device_t parent, device_t self, void *aux)
    260   1.2        ad {
    261  1.23      cube 	struct cpu_softc *sc = device_private(self);
    262   1.2        ad 	struct cpu_attach_args *caa = aux;
    263   1.2        ad 	struct cpu_info *ci;
    264  1.21        ad 	uintptr_t ptr;
    265   1.2        ad 	int cpunum = caa->cpu_number;
    266  1.51        ad 	static bool again;
    267   1.2        ad 
    268  1.23      cube 	sc->sc_dev = self;
    269  1.23      cube 
    270  1.48        ad 	if (cpus_attached == ~0) {
    271  1.48        ad 		aprint_error(": increase MAXCPUS, X86_MAXPROCS\n");
    272  1.48        ad 		return;
    273  1.48        ad 	}
    274  1.48        ad 
    275   1.2        ad 	/*
    276   1.2        ad 	 * If we're an Application Processor, allocate a cpu_info
    277   1.2        ad 	 * structure, otherwise use the primary's.
    278   1.2        ad 	 */
    279   1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    280  1.36        ad 		if ((boothowto & RB_MD1) != 0) {
    281  1.35        ad 			aprint_error(": multiprocessor boot disabled\n");
    282  1.35        ad 			return;
    283  1.35        ad 		}
    284   1.2        ad 		aprint_naive(": Application Processor\n");
    285  1.21        ad 		ptr = (uintptr_t)malloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    286  1.21        ad 		    M_DEVBUF, M_WAITOK);
    287  1.21        ad 		ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
    288  1.21        ad 		    ~(CACHE_LINE_SIZE - 1));
    289   1.2        ad 		memset(ci, 0, sizeof(*ci));
    290  1.43        ad 		ci->ci_curldt = -1;
    291   1.2        ad #ifdef TRAPLOG
    292   1.2        ad 		ci->ci_tlog_base = malloc(sizeof(struct tlog),
    293   1.2        ad 		    M_DEVBUF, M_WAITOK);
    294   1.2        ad #endif
    295   1.2        ad 	} else {
    296   1.2        ad 		aprint_naive(": %s Processor\n",
    297   1.2        ad 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    298   1.2        ad 		ci = &cpu_info_primary;
    299   1.2        ad 		if (cpunum != lapic_cpu_number()) {
    300  1.51        ad 			/* XXX should be done earlier. */
    301  1.39        ad 			uint32_t reg;
    302  1.39        ad 			aprint_verbose("\n");
    303  1.47        ad 			aprint_verbose_dev(self, "running CPU at apic %d"
    304  1.47        ad 			    " instead of at expected %d", lapic_cpu_number(),
    305  1.23      cube 			    cpunum);
    306  1.39        ad 			reg = i82489_readreg(LAPIC_ID);
    307  1.39        ad 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    308  1.39        ad 			    (cpunum << LAPIC_ID_SHIFT));
    309   1.2        ad 		}
    310  1.47        ad 		if (cpunum != lapic_cpu_number()) {
    311  1.47        ad 			aprint_error_dev(self, "unable to reset apic id\n");
    312  1.47        ad 		}
    313   1.2        ad 	}
    314   1.2        ad 
    315   1.2        ad 	ci->ci_self = ci;
    316   1.2        ad 	sc->sc_info = ci;
    317   1.2        ad 	ci->ci_dev = self;
    318  1.42        ad 	ci->ci_cpuid = caa->cpu_number;
    319   1.2        ad 	ci->ci_func = caa->cpu_func;
    320   1.2        ad 
    321   1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    322   1.2        ad 		int error;
    323   1.2        ad 
    324   1.2        ad 		error = mi_cpu_attach(ci);
    325   1.2        ad 		if (error != 0) {
    326   1.2        ad 			aprint_normal("\n");
    327  1.47        ad 			aprint_error_dev(self,
    328  1.30    cegger 			    "mi_cpu_attach failed with %d\n", error);
    329   1.2        ad 			return;
    330   1.2        ad 		}
    331  1.15      yamt 		cpu_init_tss(ci);
    332   1.2        ad 	} else {
    333   1.2        ad 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    334   1.2        ad 	}
    335   1.2        ad 
    336  1.42        ad 	ci->ci_cpumask = (1 << cpu_index(ci));
    337   1.2        ad 	pmap_reference(pmap_kernel());
    338   1.2        ad 	ci->ci_pmap = pmap_kernel();
    339   1.2        ad 	ci->ci_tlbstate = TLBSTATE_STALE;
    340   1.2        ad 
    341  1.51        ad 	/*
    342  1.51        ad 	 * Boot processor may not be attached first, but the below
    343  1.51        ad 	 * must be done to allow booting other processors.
    344  1.51        ad 	 */
    345  1.51        ad 	if (!again) {
    346  1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    347  1.51        ad 		/* Basic init. */
    348   1.2        ad 		cpu_intr_init(ci);
    349  1.40        ad 		cpu_get_tsc_freq(ci);
    350   1.2        ad 		cpu_init(ci);
    351   1.2        ad 		cpu_set_tss_gates(ci);
    352   1.2        ad 		pmap_cpu_init_late(ci);
    353   1.6        ad 		x86_errata();
    354  1.51        ad 		if (caa->cpu_role != CPU_ROLE_SP) {
    355  1.51        ad 			/* Enable lapic. */
    356  1.51        ad 			lapic_enable();
    357  1.51        ad 			lapic_set_lvt();
    358  1.51        ad 			lapic_calibrate_timer(ci);
    359  1.51        ad 		}
    360  1.51        ad 		/* Make sure DELAY() is initialized. */
    361  1.51        ad 		DELAY(1);
    362  1.51        ad 		again = true;
    363  1.51        ad 	}
    364  1.51        ad 
    365  1.51        ad 	/* further PCB init done later. */
    366  1.51        ad 
    367  1.51        ad 	switch (caa->cpu_role) {
    368  1.51        ad 	case CPU_ROLE_SP:
    369  1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    370  1.51        ad 		cpu_identify(ci);
    371  1.37     joerg 		x86_cpu_idle_init();
    372   1.2        ad 		break;
    373   1.2        ad 
    374   1.2        ad 	case CPU_ROLE_BP:
    375  1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    376  1.40        ad 		cpu_identify(ci);
    377  1.37     joerg 		x86_cpu_idle_init();
    378   1.2        ad 		break;
    379   1.2        ad 
    380   1.2        ad 	case CPU_ROLE_AP:
    381   1.2        ad 		/*
    382   1.2        ad 		 * report on an AP
    383   1.2        ad 		 */
    384   1.2        ad 		cpu_intr_init(ci);
    385   1.2        ad 		gdt_alloc_cpu(ci);
    386   1.2        ad 		cpu_set_tss_gates(ci);
    387   1.2        ad 		pmap_cpu_init_early(ci);
    388   1.2        ad 		pmap_cpu_init_late(ci);
    389   1.2        ad 		cpu_start_secondary(ci);
    390   1.2        ad 		if (ci->ci_flags & CPUF_PRESENT) {
    391  1.40        ad 			cpu_identify(ci);
    392   1.2        ad 			ci->ci_next = cpu_info_list->ci_next;
    393   1.2        ad 			cpu_info_list->ci_next = ci;
    394   1.2        ad 		}
    395   1.2        ad 		break;
    396   1.2        ad 
    397   1.2        ad 	default:
    398  1.28    cegger 		aprint_normal("\n");
    399   1.2        ad 		panic("unknown processor type??\n");
    400   1.2        ad 	}
    401  1.51        ad 
    402   1.2        ad 	cpu_vm_init(ci);
    403  1.47        ad 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    404   1.2        ad 
    405  1.12  jmcneill 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    406  1.12  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    407  1.12  jmcneill 
    408   1.2        ad 	if (mp_verbose) {
    409   1.2        ad 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    410   1.2        ad 
    411  1.47        ad 		aprint_verbose_dev(self,
    412  1.28    cegger 		    "idle lwp at %p, idle sp at %p\n",
    413  1.28    cegger 		    l,
    414   1.2        ad #ifdef i386
    415   1.2        ad 		    (void *)l->l_addr->u_pcb.pcb_esp
    416   1.2        ad #else
    417   1.2        ad 		    (void *)l->l_addr->u_pcb.pcb_rsp
    418   1.2        ad #endif
    419   1.2        ad 		);
    420   1.2        ad 	}
    421   1.2        ad }
    422   1.2        ad 
    423   1.2        ad /*
    424   1.2        ad  * Initialize the processor appropriately.
    425   1.2        ad  */
    426   1.2        ad 
    427   1.2        ad void
    428   1.9        ad cpu_init(struct cpu_info *ci)
    429   1.2        ad {
    430   1.2        ad 
    431   1.2        ad 	lcr0(rcr0() | CR0_WP);
    432   1.2        ad 
    433   1.2        ad 	/*
    434   1.2        ad 	 * On a P6 or above, enable global TLB caching if the
    435   1.2        ad 	 * hardware supports it.
    436   1.2        ad 	 */
    437   1.2        ad 	if (cpu_feature & CPUID_PGE)
    438   1.2        ad 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    439   1.2        ad 
    440   1.2        ad 	/*
    441   1.2        ad 	 * If we have FXSAVE/FXRESTOR, use them.
    442   1.2        ad 	 */
    443   1.2        ad 	if (cpu_feature & CPUID_FXSR) {
    444   1.2        ad 		lcr4(rcr4() | CR4_OSFXSR);
    445   1.2        ad 
    446   1.2        ad 		/*
    447   1.2        ad 		 * If we have SSE/SSE2, enable XMM exceptions.
    448   1.2        ad 		 */
    449   1.2        ad 		if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
    450   1.2        ad 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    451   1.2        ad 	}
    452   1.2        ad 
    453   1.2        ad #ifdef MTRR
    454   1.2        ad 	/*
    455   1.2        ad 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    456   1.2        ad 	 */
    457   1.2        ad 	if (cpu_feature & CPUID_MTRR) {
    458   1.2        ad 		if ((ci->ci_flags & CPUF_AP) == 0)
    459   1.2        ad 			i686_mtrr_init_first();
    460   1.2        ad 		mtrr_init_cpu(ci);
    461   1.2        ad 	}
    462   1.2        ad 
    463   1.2        ad #ifdef i386
    464   1.2        ad 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    465   1.2        ad 		/*
    466   1.2        ad 		 * Must be a K6-2 Step >= 7 or a K6-III.
    467   1.2        ad 		 */
    468   1.2        ad 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    469   1.2        ad 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    470   1.2        ad 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    471   1.2        ad 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    472   1.2        ad 				mtrr_funcs = &k6_mtrr_funcs;
    473   1.2        ad 				k6_mtrr_init_first();
    474   1.2        ad 				mtrr_init_cpu(ci);
    475   1.2        ad 			}
    476   1.2        ad 		}
    477   1.2        ad 	}
    478   1.2        ad #endif	/* i386 */
    479   1.2        ad #endif /* MTRR */
    480   1.2        ad 
    481   1.9        ad 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    482   1.9        ad 
    483  1.38        ad 	if (ci != &cpu_info_primary) {
    484  1.38        ad 		/* Synchronize TSC again, and check for drift. */
    485  1.38        ad 		wbinvd();
    486  1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    487  1.38        ad 		tsc_sync_ap(ci);
    488  1.38        ad 		tsc_sync_ap(ci);
    489  1.38        ad 	} else {
    490  1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    491  1.38        ad 	}
    492   1.2        ad }
    493   1.2        ad 
    494   1.2        ad void
    495  1.12  jmcneill cpu_boot_secondary_processors(void)
    496   1.2        ad {
    497   1.2        ad 	struct cpu_info *ci;
    498   1.2        ad 	u_long i;
    499   1.2        ad 
    500   1.5        ad 	/* Now that we know the number of CPUs, patch the text segment. */
    501   1.5        ad 	x86_patch();
    502   1.5        ad 
    503   1.2        ad 	for (i=0; i < X86_MAXPROCS; i++) {
    504  1.49        ad 		ci = cpu_lookup_byindex(i);
    505   1.2        ad 		if (ci == NULL)
    506   1.2        ad 			continue;
    507   1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    508   1.2        ad 			continue;
    509   1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    510   1.2        ad 			continue;
    511   1.2        ad 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    512   1.2        ad 			continue;
    513   1.2        ad 		cpu_boot_secondary(ci);
    514   1.2        ad 	}
    515   1.2        ad 
    516   1.2        ad 	x86_mp_online = true;
    517  1.38        ad 
    518  1.38        ad 	/* Now that we know about the TSC, attach the timecounter. */
    519  1.38        ad 	tsc_tc_init();
    520   1.2        ad }
    521   1.2        ad 
    522   1.2        ad static void
    523   1.2        ad cpu_init_idle_lwp(struct cpu_info *ci)
    524   1.2        ad {
    525   1.2        ad 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    526   1.2        ad 	struct pcb *pcb = &l->l_addr->u_pcb;
    527   1.2        ad 
    528   1.2        ad 	pcb->pcb_cr0 = rcr0();
    529   1.2        ad }
    530   1.2        ad 
    531   1.2        ad void
    532  1.12  jmcneill cpu_init_idle_lwps(void)
    533   1.2        ad {
    534   1.2        ad 	struct cpu_info *ci;
    535   1.2        ad 	u_long i;
    536   1.2        ad 
    537   1.2        ad 	for (i = 0; i < X86_MAXPROCS; i++) {
    538  1.49        ad 		ci = cpu_lookup_byindex(i);
    539   1.2        ad 		if (ci == NULL)
    540   1.2        ad 			continue;
    541   1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    542   1.2        ad 			continue;
    543   1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    544   1.2        ad 			continue;
    545   1.2        ad 		cpu_init_idle_lwp(ci);
    546   1.2        ad 	}
    547   1.2        ad }
    548   1.2        ad 
    549   1.2        ad void
    550  1.12  jmcneill cpu_start_secondary(struct cpu_info *ci)
    551   1.2        ad {
    552  1.38        ad 	extern paddr_t mp_pdirpa;
    553  1.38        ad 	u_long psl;
    554   1.2        ad 	int i;
    555   1.2        ad 
    556  1.12  jmcneill 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    557   1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    558   1.2        ad 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    559  1.45        ad 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    560  1.25        ad 		return;
    561  1.45        ad 	}
    562   1.2        ad 
    563   1.2        ad 	/*
    564  1.50        ad 	 * Wait for it to become ready.   Setting cpu_starting opens the
    565  1.50        ad 	 * initial gate and allows the AP to start soft initialization.
    566   1.2        ad 	 */
    567  1.50        ad 	KASSERT(cpu_starting == NULL);
    568  1.50        ad 	cpu_starting = ci;
    569  1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    570  1.24        ad #ifdef MPDEBUG
    571  1.24        ad 		extern int cpu_trace[3];
    572  1.24        ad 		static int otrace[3];
    573  1.24        ad 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    574  1.26    cegger 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    575  1.26    cegger 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    576  1.24        ad 			memcpy(otrace, cpu_trace, sizeof(otrace));
    577  1.24        ad 		}
    578  1.24        ad #endif
    579  1.11        ad 		i8254_delay(10);
    580   1.2        ad 	}
    581  1.38        ad 
    582   1.9        ad 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    583  1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    584   1.2        ad #if defined(MPDEBUG) && defined(DDB)
    585   1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    586   1.2        ad 		Debugger();
    587   1.2        ad #endif
    588  1.38        ad 	} else {
    589  1.38        ad 		/*
    590  1.38        ad 		 * Synchronize time stamp counters.  Invalidate cache and do twice
    591  1.38        ad 		 * to try and minimize possible cache effects.  Disable interrupts
    592  1.38        ad 		 * to try and rule out any external interference.
    593  1.38        ad 		 */
    594  1.38        ad 		psl = x86_read_psl();
    595  1.38        ad 		x86_disable_intr();
    596  1.38        ad 		wbinvd();
    597  1.38        ad 		tsc_sync_bp(ci);
    598  1.38        ad 		tsc_sync_bp(ci);
    599  1.38        ad 		x86_write_psl(psl);
    600   1.2        ad 	}
    601   1.2        ad 
    602   1.2        ad 	CPU_START_CLEANUP(ci);
    603  1.45        ad 	cpu_starting = NULL;
    604   1.2        ad }
    605   1.2        ad 
    606   1.2        ad void
    607  1.12  jmcneill cpu_boot_secondary(struct cpu_info *ci)
    608   1.2        ad {
    609  1.38        ad 	int64_t drift;
    610  1.38        ad 	u_long psl;
    611   1.2        ad 	int i;
    612   1.2        ad 
    613   1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    614  1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    615  1.11        ad 		i8254_delay(10);
    616   1.2        ad 	}
    617   1.9        ad 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    618  1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    619   1.2        ad #if defined(MPDEBUG) && defined(DDB)
    620   1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    621   1.2        ad 		Debugger();
    622   1.2        ad #endif
    623  1.38        ad 	} else {
    624  1.38        ad 		/* Synchronize TSC again, check for drift. */
    625  1.38        ad 		drift = ci->ci_data.cpu_cc_skew;
    626  1.38        ad 		psl = x86_read_psl();
    627  1.38        ad 		x86_disable_intr();
    628  1.38        ad 		wbinvd();
    629  1.38        ad 		tsc_sync_bp(ci);
    630  1.38        ad 		tsc_sync_bp(ci);
    631  1.38        ad 		x86_write_psl(psl);
    632  1.38        ad 		drift -= ci->ci_data.cpu_cc_skew;
    633  1.38        ad 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    634  1.38        ad 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    635  1.38        ad 		tsc_sync_drift(drift);
    636   1.2        ad 	}
    637   1.2        ad }
    638   1.2        ad 
    639   1.2        ad /*
    640   1.2        ad  * The CPU ends up here when its ready to run
    641   1.2        ad  * This is called from code in mptramp.s; at this point, we are running
    642   1.2        ad  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    643   1.2        ad  * this processor will enter the idle loop and start looking for work.
    644   1.2        ad  */
    645   1.2        ad void
    646   1.2        ad cpu_hatch(void *v)
    647   1.2        ad {
    648   1.2        ad 	struct cpu_info *ci = (struct cpu_info *)v;
    649   1.6        ad 	int s, i;
    650   1.2        ad 
    651   1.2        ad #ifdef __x86_64__
    652  1.12  jmcneill 	cpu_init_msrs(ci, true);
    653   1.2        ad #endif
    654  1.40        ad 	cpu_probe(ci);
    655  1.46        ad 
    656  1.46        ad 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    657  1.46        ad 	/* cpu_get_tsc_freq(ci); */
    658  1.38        ad 
    659   1.8        ad 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    660  1.38        ad 
    661  1.38        ad 	/*
    662  1.38        ad 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    663  1.38        ad 	 * to try and minimize possible cache effects.  Note that interrupts
    664  1.38        ad 	 * are off at this point.
    665  1.38        ad 	 */
    666  1.38        ad 	wbinvd();
    667   1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    668  1.38        ad 	tsc_sync_ap(ci);
    669  1.38        ad 	tsc_sync_ap(ci);
    670  1.38        ad 
    671  1.38        ad 	/*
    672  1.38        ad 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    673  1.38        ad 	 * in order to make the TSC drift as much as possible. so that
    674  1.38        ad 	 * we can detect it later.  If not available, try 'pause'.
    675  1.38        ad 	 * We'd like to use 'hlt', but we have interrupts off.
    676  1.38        ad 	 */
    677   1.6        ad 	while ((ci->ci_flags & CPUF_GO) == 0) {
    678  1.38        ad 		if ((ci->ci_feature2_flags & CPUID2_MONITOR) != 0) {
    679  1.38        ad 			x86_monitor(&ci->ci_flags, 0, 0);
    680  1.38        ad 			if ((ci->ci_flags & CPUF_GO) != 0) {
    681  1.38        ad 				continue;
    682  1.38        ad 			}
    683  1.38        ad 			x86_mwait(0, 0);
    684  1.38        ad 		} else {
    685  1.38        ad 			for (i = 10000; i != 0; i--) {
    686  1.38        ad 				x86_pause();
    687  1.38        ad 			}
    688  1.38        ad 		}
    689   1.6        ad 	}
    690   1.5        ad 
    691  1.26    cegger 	/* Because the text may have been patched in x86_patch(). */
    692   1.5        ad 	wbinvd();
    693   1.5        ad 	x86_flush();
    694   1.5        ad 
    695   1.8        ad 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    696   1.2        ad 
    697  1.12  jmcneill 	lcr3(pmap_kernel()->pm_pdirpa);
    698  1.12  jmcneill 	curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
    699   1.2        ad 	lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
    700   1.2        ad 	cpu_init_idt();
    701   1.8        ad 	gdt_init_cpu(ci);
    702   1.8        ad 	lapic_enable();
    703   1.2        ad 	lapic_set_lvt();
    704   1.8        ad 	lapic_initclocks();
    705   1.2        ad 
    706   1.2        ad #ifdef i386
    707   1.2        ad 	npxinit(ci);
    708   1.2        ad #else
    709   1.2        ad 	fpuinit(ci);
    710   1.4      yamt #endif
    711   1.2        ad 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    712  1.15      yamt 	ltr(ci->ci_tss_sel);
    713   1.2        ad 
    714   1.2        ad 	cpu_init(ci);
    715   1.7        ad 	cpu_get_tsc_freq(ci);
    716   1.2        ad 
    717   1.2        ad 	s = splhigh();
    718   1.2        ad #ifdef i386
    719   1.2        ad 	lapic_tpr = 0;
    720   1.2        ad #else
    721   1.2        ad 	lcr8(0);
    722   1.2        ad #endif
    723   1.3        ad 	x86_enable_intr();
    724   1.2        ad 	splx(s);
    725   1.6        ad 	x86_errata();
    726   1.2        ad 
    727  1.42        ad 	aprint_debug_dev(ci->ci_dev, "running\n");
    728   1.2        ad }
    729   1.2        ad 
    730   1.2        ad #if defined(DDB)
    731   1.2        ad 
    732   1.2        ad #include <ddb/db_output.h>
    733   1.2        ad #include <machine/db_machdep.h>
    734   1.2        ad 
    735   1.2        ad /*
    736   1.2        ad  * Dump CPU information from ddb.
    737   1.2        ad  */
    738   1.2        ad void
    739   1.2        ad cpu_debug_dump(void)
    740   1.2        ad {
    741   1.2        ad 	struct cpu_info *ci;
    742   1.2        ad 	CPU_INFO_ITERATOR cii;
    743   1.2        ad 
    744  1.29      yamt 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    745   1.2        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    746   1.2        ad 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    747   1.2        ad 		    ci,
    748  1.27    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    749   1.2        ad 		    (long)ci->ci_cpuid,
    750   1.2        ad 		    ci->ci_flags, ci->ci_ipis,
    751   1.2        ad 		    ci->ci_curlwp,
    752   1.2        ad 		    ci->ci_fpcurlwp);
    753   1.2        ad 	}
    754   1.2        ad }
    755   1.2        ad #endif
    756   1.2        ad 
    757   1.2        ad static void
    758  1.12  jmcneill cpu_copy_trampoline(void)
    759   1.2        ad {
    760   1.2        ad 	/*
    761   1.2        ad 	 * Copy boot code.
    762   1.2        ad 	 */
    763   1.2        ad 	extern u_char cpu_spinup_trampoline[];
    764   1.2        ad 	extern u_char cpu_spinup_trampoline_end[];
    765  1.12  jmcneill 
    766  1.12  jmcneill 	vaddr_t mp_trampoline_vaddr;
    767  1.12  jmcneill 
    768  1.12  jmcneill 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    769  1.12  jmcneill 	    UVM_KMF_VAONLY);
    770  1.12  jmcneill 
    771  1.12  jmcneill 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    772  1.12  jmcneill 	    VM_PROT_READ | VM_PROT_WRITE);
    773   1.2        ad 	pmap_update(pmap_kernel());
    774  1.12  jmcneill 	memcpy((void *)mp_trampoline_vaddr,
    775   1.2        ad 	    cpu_spinup_trampoline,
    776  1.26    cegger 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    777  1.12  jmcneill 
    778  1.12  jmcneill 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    779  1.12  jmcneill 	pmap_update(pmap_kernel());
    780  1.12  jmcneill 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    781   1.2        ad }
    782   1.2        ad 
    783   1.2        ad #ifdef i386
    784   1.2        ad static void
    785  1.15      yamt tss_init(struct i386tss *tss, void *stack, void *func)
    786   1.2        ad {
    787   1.2        ad 	memset(tss, 0, sizeof *tss);
    788   1.2        ad 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    789   1.2        ad 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    790   1.2        ad 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    791   1.2        ad 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    792   1.2        ad 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    793   1.2        ad 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    794   1.2        ad 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    795   1.2        ad 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    796   1.2        ad 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    797   1.2        ad 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    798   1.2        ad 	tss->__tss_eip = (int)func;
    799   1.2        ad }
    800   1.2        ad 
    801   1.2        ad /* XXX */
    802   1.2        ad #define IDTVEC(name)	__CONCAT(X, name)
    803   1.2        ad typedef void (vector)(void);
    804   1.2        ad extern vector IDTVEC(tss_trap08);
    805   1.2        ad #ifdef DDB
    806   1.2        ad extern vector Xintrddbipi;
    807   1.2        ad extern int ddb_vec;
    808   1.2        ad #endif
    809   1.2        ad 
    810   1.2        ad static void
    811   1.2        ad cpu_set_tss_gates(struct cpu_info *ci)
    812   1.2        ad {
    813   1.2        ad 	struct segment_descriptor sd;
    814   1.2        ad 
    815   1.2        ad 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    816   1.2        ad 	    UVM_KMF_WIRED);
    817  1.15      yamt 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    818   1.2        ad 	    IDTVEC(tss_trap08));
    819   1.2        ad 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    820   1.2        ad 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    821   1.2        ad 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    822   1.2        ad 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    823   1.2        ad 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    824   1.2        ad 
    825  1.44        ad #if defined(DDB)
    826   1.2        ad 	/*
    827   1.2        ad 	 * Set up separate handler for the DDB IPI, so that it doesn't
    828   1.2        ad 	 * stomp on a possibly corrupted stack.
    829   1.2        ad 	 *
    830   1.2        ad 	 * XXX overwriting the gate set in db_machine_init.
    831   1.2        ad 	 * Should rearrange the code so that it's set only once.
    832   1.2        ad 	 */
    833   1.2        ad 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    834   1.2        ad 	    UVM_KMF_WIRED);
    835  1.15      yamt 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    836   1.2        ad 
    837   1.2        ad 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    838   1.2        ad 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    839   1.2        ad 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    840   1.2        ad 
    841   1.2        ad 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    842   1.2        ad 	    GSEL(GIPITSS_SEL, SEL_KPL));
    843   1.2        ad #endif
    844   1.2        ad }
    845   1.2        ad #else
    846   1.2        ad static void
    847   1.2        ad cpu_set_tss_gates(struct cpu_info *ci)
    848   1.2        ad {
    849   1.2        ad 
    850   1.2        ad }
    851   1.2        ad #endif	/* i386 */
    852   1.2        ad 
    853   1.2        ad int
    854  1.14     joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
    855   1.2        ad {
    856  1.44        ad 	unsigned short dwordptr[2];
    857   1.2        ad 	int error;
    858  1.14     joerg 
    859  1.14     joerg 	/*
    860  1.14     joerg 	 * Bootstrap code must be addressable in real mode
    861  1.14     joerg 	 * and it must be page aligned.
    862  1.14     joerg 	 */
    863  1.14     joerg 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    864   1.2        ad 
    865   1.2        ad 	/*
    866   1.2        ad 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    867   1.2        ad 	 */
    868   1.2        ad 
    869   1.2        ad 	outb(IO_RTC, NVRAM_RESET);
    870   1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    871   1.2        ad 
    872   1.2        ad 	/*
    873   1.2        ad 	 * "and the warm reset vector (DWORD based at 40:67) to point
    874   1.2        ad 	 * to the AP startup code ..."
    875   1.2        ad 	 */
    876   1.2        ad 
    877   1.2        ad 	dwordptr[0] = 0;
    878  1.14     joerg 	dwordptr[1] = target >> 4;
    879   1.2        ad 
    880  1.25        ad 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    881   1.2        ad 
    882  1.25        ad 	if ((cpu_feature & CPUID_APIC) == 0) {
    883  1.25        ad 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
    884  1.25        ad 		return ENODEV;
    885  1.25        ad 	}
    886  1.25        ad 
    887   1.2        ad 	/*
    888  1.51        ad 	 * ... prior to executing the following sequence:".  We'll also add in
    889  1.51        ad 	 * local cache flush, in case the BIOS has left the AP with its cache
    890  1.51        ad 	 * disabled.  It may not be able to cope with MP coherency.
    891   1.2        ad 	 */
    892  1.51        ad 	wbinvd();
    893   1.2        ad 
    894   1.2        ad 	if (ci->ci_flags & CPUF_AP) {
    895  1.42        ad 		error = x86_ipi_init(ci->ci_cpuid);
    896  1.26    cegger 		if (error != 0) {
    897  1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    898  1.50        ad 			    __func__);
    899   1.2        ad 			return error;
    900  1.25        ad 		}
    901  1.11        ad 		i8254_delay(10000);
    902   1.2        ad 
    903  1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    904  1.26    cegger 		if (error != 0) {
    905  1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    906  1.50        ad 			    __func__);
    907  1.25        ad 			return error;
    908  1.25        ad 		}
    909  1.25        ad 		i8254_delay(200);
    910   1.2        ad 
    911  1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    912  1.26    cegger 		if (error != 0) {
    913  1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
    914  1.50        ad 			    __func__);
    915  1.25        ad 			return error;
    916   1.2        ad 		}
    917  1.25        ad 		i8254_delay(200);
    918   1.2        ad 	}
    919  1.44        ad 
    920   1.2        ad 	return 0;
    921   1.2        ad }
    922   1.2        ad 
    923   1.2        ad void
    924   1.2        ad mp_cpu_start_cleanup(struct cpu_info *ci)
    925   1.2        ad {
    926   1.2        ad 	/*
    927   1.2        ad 	 * Ensure the NVRAM reset byte contains something vaguely sane.
    928   1.2        ad 	 */
    929   1.2        ad 
    930   1.2        ad 	outb(IO_RTC, NVRAM_RESET);
    931   1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_RST);
    932   1.2        ad }
    933   1.2        ad 
    934   1.2        ad #ifdef __x86_64__
    935   1.2        ad typedef void (vector)(void);
    936   1.2        ad extern vector Xsyscall, Xsyscall32;
    937   1.2        ad 
    938   1.2        ad void
    939  1.12  jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
    940   1.2        ad {
    941   1.2        ad 	wrmsr(MSR_STAR,
    942   1.2        ad 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
    943   1.2        ad 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
    944   1.2        ad 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
    945   1.2        ad 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
    946   1.2        ad 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
    947   1.2        ad 
    948  1.12  jmcneill 	if (full) {
    949  1.12  jmcneill 		wrmsr(MSR_FSBASE, 0);
    950  1.27    cegger 		wrmsr(MSR_GSBASE, (uint64_t)ci);
    951  1.12  jmcneill 		wrmsr(MSR_KERNELGSBASE, 0);
    952  1.12  jmcneill 	}
    953   1.2        ad 
    954   1.2        ad 	if (cpu_feature & CPUID_NOX)
    955   1.2        ad 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
    956   1.2        ad }
    957   1.2        ad #endif	/* __x86_64__ */
    958   1.7        ad 
    959  1.18     joerg void
    960  1.18     joerg cpu_offline_md(void)
    961  1.18     joerg {
    962  1.18     joerg 	int s;
    963  1.18     joerg 
    964  1.18     joerg 	s = splhigh();
    965  1.18     joerg #ifdef __i386__
    966  1.18     joerg 	npxsave_cpu(true);
    967  1.18     joerg #else
    968  1.18     joerg 	fpusave_cpu(true);
    969  1.18     joerg #endif
    970  1.18     joerg 	splx(s);
    971  1.18     joerg }
    972  1.18     joerg 
    973  1.12  jmcneill /* XXX joerg restructure and restart CPUs individually */
    974  1.12  jmcneill static bool
    975  1.22    dyoung cpu_suspend(device_t dv PMF_FN_ARGS)
    976  1.12  jmcneill {
    977  1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
    978  1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
    979  1.18     joerg 	int err;
    980  1.12  jmcneill 
    981  1.13     joerg 	if (ci->ci_flags & CPUF_PRIMARY)
    982  1.12  jmcneill 		return true;
    983  1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
    984  1.12  jmcneill 		return true;
    985  1.12  jmcneill 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
    986  1.12  jmcneill 		return true;
    987  1.12  jmcneill 
    988  1.20  jmcneill 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
    989  1.17     joerg 
    990  1.20  jmcneill 	if (sc->sc_wasonline) {
    991  1.20  jmcneill 		mutex_enter(&cpu_lock);
    992  1.20  jmcneill 		err = cpu_setonline(ci, false);
    993  1.20  jmcneill 		mutex_exit(&cpu_lock);
    994  1.20  jmcneill 
    995  1.20  jmcneill 		if (err)
    996  1.20  jmcneill 			return false;
    997  1.20  jmcneill 	}
    998  1.17     joerg 
    999  1.17     joerg 	return true;
   1000  1.12  jmcneill }
   1001  1.12  jmcneill 
   1002  1.12  jmcneill static bool
   1003  1.22    dyoung cpu_resume(device_t dv PMF_FN_ARGS)
   1004  1.12  jmcneill {
   1005  1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1006  1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1007  1.20  jmcneill 	int err = 0;
   1008  1.12  jmcneill 
   1009  1.13     joerg 	if (ci->ci_flags & CPUF_PRIMARY)
   1010  1.12  jmcneill 		return true;
   1011  1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1012  1.12  jmcneill 		return true;
   1013  1.12  jmcneill 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1014  1.12  jmcneill 		return true;
   1015  1.12  jmcneill 
   1016  1.20  jmcneill 	if (sc->sc_wasonline) {
   1017  1.20  jmcneill 		mutex_enter(&cpu_lock);
   1018  1.20  jmcneill 		err = cpu_setonline(ci, true);
   1019  1.20  jmcneill 		mutex_exit(&cpu_lock);
   1020  1.20  jmcneill 	}
   1021  1.13     joerg 
   1022  1.13     joerg 	return err == 0;
   1023  1.12  jmcneill }
   1024  1.12  jmcneill 
   1025   1.7        ad void
   1026   1.7        ad cpu_get_tsc_freq(struct cpu_info *ci)
   1027   1.7        ad {
   1028   1.7        ad 	uint64_t last_tsc;
   1029   1.7        ad 
   1030   1.7        ad 	if (ci->ci_feature_flags & CPUID_TSC) {
   1031  1.45        ad 		last_tsc = rdmsr(MSR_TSC);
   1032   1.7        ad 		i8254_delay(100000);
   1033  1.45        ad 		ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
   1034   1.7        ad 	}
   1035   1.7        ad }
   1036  1.37     joerg 
   1037  1.37     joerg void
   1038  1.37     joerg x86_cpu_idle_mwait(void)
   1039  1.37     joerg {
   1040  1.37     joerg 	struct cpu_info *ci = curcpu();
   1041  1.37     joerg 
   1042  1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1043  1.37     joerg 
   1044  1.37     joerg 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1045  1.37     joerg 	if (__predict_false(ci->ci_want_resched)) {
   1046  1.37     joerg 		return;
   1047  1.37     joerg 	}
   1048  1.37     joerg 	x86_mwait(0, 0);
   1049  1.37     joerg }
   1050  1.37     joerg 
   1051  1.37     joerg void
   1052  1.37     joerg x86_cpu_idle_halt(void)
   1053  1.37     joerg {
   1054  1.37     joerg 	struct cpu_info *ci = curcpu();
   1055  1.37     joerg 
   1056  1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1057  1.37     joerg 
   1058  1.37     joerg 	x86_disable_intr();
   1059  1.37     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1060  1.37     joerg 		x86_stihlt();
   1061  1.37     joerg 	} else {
   1062  1.37     joerg 		x86_enable_intr();
   1063  1.37     joerg 	}
   1064  1.37     joerg }
   1065