cpu.c revision 1.56 1 1.56 jmcneill /* $NetBSD: cpu.c,v 1.56 2008/06/03 23:05:01 jmcneill Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.38 ad * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.56 jmcneill __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.56 2008/06/03 23:05:01 jmcneill Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.2 ad
71 1.2 ad #include "lapic.h"
72 1.2 ad #include "ioapic.h"
73 1.2 ad
74 1.2 ad #include <sys/param.h>
75 1.2 ad #include <sys/proc.h>
76 1.2 ad #include <sys/user.h>
77 1.2 ad #include <sys/systm.h>
78 1.2 ad #include <sys/device.h>
79 1.2 ad #include <sys/malloc.h>
80 1.9 ad #include <sys/cpu.h>
81 1.9 ad #include <sys/atomic.h>
82 1.35 ad #include <sys/reboot.h>
83 1.2 ad
84 1.2 ad #include <uvm/uvm_extern.h>
85 1.2 ad
86 1.2 ad #include <machine/cpufunc.h>
87 1.2 ad #include <machine/cpuvar.h>
88 1.2 ad #include <machine/pmap.h>
89 1.2 ad #include <machine/vmparam.h>
90 1.2 ad #include <machine/mpbiosvar.h>
91 1.2 ad #include <machine/pcb.h>
92 1.2 ad #include <machine/specialreg.h>
93 1.2 ad #include <machine/segments.h>
94 1.2 ad #include <machine/gdt.h>
95 1.2 ad #include <machine/mtrr.h>
96 1.2 ad #include <machine/pio.h>
97 1.38 ad #include <machine/cpu_counter.h>
98 1.2 ad
99 1.2 ad #ifdef i386
100 1.2 ad #include <machine/tlog.h>
101 1.2 ad #endif
102 1.2 ad
103 1.2 ad #include <machine/apicvar.h>
104 1.2 ad #include <machine/i82489reg.h>
105 1.2 ad #include <machine/i82489var.h>
106 1.2 ad
107 1.2 ad #include <dev/ic/mc146818reg.h>
108 1.2 ad #include <i386/isa/nvram.h>
109 1.2 ad #include <dev/isa/isareg.h>
110 1.2 ad
111 1.38 ad #include "tsc.h"
112 1.38 ad
113 1.54 ad #if MAXCPUS > 32
114 1.54 ad #error cpu_info contains 32bit bitmasks
115 1.54 ad #endif
116 1.54 ad
117 1.23 cube int cpu_match(device_t, cfdata_t, void *);
118 1.23 cube void cpu_attach(device_t, device_t, void *);
119 1.2 ad
120 1.22 dyoung static bool cpu_suspend(device_t PMF_FN_PROTO);
121 1.22 dyoung static bool cpu_resume(device_t PMF_FN_PROTO);
122 1.12 jmcneill
123 1.2 ad struct cpu_softc {
124 1.23 cube device_t sc_dev; /* device tree glue */
125 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
126 1.20 jmcneill bool sc_wasonline;
127 1.2 ad };
128 1.2 ad
129 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
130 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
131 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
132 1.2 ad mp_cpu_start_cleanup };
133 1.2 ad
134 1.2 ad
135 1.23 cube CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
136 1.2 ad cpu_match, cpu_attach, NULL, NULL);
137 1.2 ad
138 1.2 ad /*
139 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
140 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
141 1.2 ad * point at it.
142 1.2 ad */
143 1.2 ad #ifdef TRAPLOG
144 1.2 ad struct tlog tlog_primary;
145 1.2 ad #endif
146 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
147 1.2 ad .ci_dev = 0,
148 1.2 ad .ci_self = &cpu_info_primary,
149 1.2 ad .ci_idepth = -1,
150 1.2 ad .ci_curlwp = &lwp0,
151 1.43 ad .ci_curldt = -1,
152 1.2 ad #ifdef TRAPLOG
153 1.2 ad .ci_tlog_base = &tlog_primary,
154 1.2 ad #endif /* !TRAPLOG */
155 1.2 ad };
156 1.2 ad
157 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
158 1.2 ad
159 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
160 1.2 ad
161 1.2 ad #ifdef i386
162 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
163 1.2 ad #endif
164 1.2 ad
165 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
166 1.12 jmcneill
167 1.2 ad uint32_t cpus_attached = 0;
168 1.9 ad uint32_t cpus_running = 0;
169 1.2 ad
170 1.2 ad extern char x86_64_doubleflt_stack[];
171 1.2 ad
172 1.12 jmcneill bool x86_mp_online;
173 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
174 1.14 joerg static vaddr_t cmos_data_mapping;
175 1.45 ad struct cpu_info *cpu_starting;
176 1.2 ad
177 1.2 ad void cpu_hatch(void *);
178 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
179 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
180 1.2 ad static void cpu_copy_trampoline(void);
181 1.2 ad
182 1.2 ad /*
183 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
184 1.2 ad * the local APIC on the boot processor has been mapped.
185 1.2 ad *
186 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
187 1.2 ad */
188 1.2 ad void
189 1.9 ad cpu_init_first(void)
190 1.2 ad {
191 1.2 ad
192 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
193 1.2 ad cpu_copy_trampoline();
194 1.14 joerg
195 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
196 1.14 joerg if (cmos_data_mapping == 0)
197 1.14 joerg panic("No KVA for page 0");
198 1.14 joerg pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
199 1.14 joerg pmap_update(pmap_kernel());
200 1.2 ad }
201 1.2 ad
202 1.2 ad int
203 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
204 1.2 ad {
205 1.2 ad
206 1.2 ad return 1;
207 1.2 ad }
208 1.2 ad
209 1.2 ad static void
210 1.2 ad cpu_vm_init(struct cpu_info *ci)
211 1.2 ad {
212 1.2 ad int ncolors = 2, i;
213 1.2 ad
214 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
215 1.2 ad struct x86_cache_info *cai;
216 1.2 ad int tcolors;
217 1.2 ad
218 1.2 ad cai = &ci->ci_cinfo[i];
219 1.2 ad
220 1.2 ad tcolors = atop(cai->cai_totalsize);
221 1.2 ad switch(cai->cai_associativity) {
222 1.2 ad case 0xff:
223 1.2 ad tcolors = 1; /* fully associative */
224 1.2 ad break;
225 1.2 ad case 0:
226 1.2 ad case 1:
227 1.2 ad break;
228 1.2 ad default:
229 1.2 ad tcolors /= cai->cai_associativity;
230 1.2 ad }
231 1.2 ad ncolors = max(ncolors, tcolors);
232 1.32 tls /*
233 1.32 tls * If the desired number of colors is not a power of
234 1.32 tls * two, it won't be good. Find the greatest power of
235 1.32 tls * two which is an even divisor of the number of colors,
236 1.32 tls * to preserve even coloring of pages.
237 1.32 tls */
238 1.32 tls if (ncolors & (ncolors - 1) ) {
239 1.32 tls int try, picked = 1;
240 1.32 tls for (try = 1; try < ncolors; try *= 2) {
241 1.32 tls if (ncolors % try == 0) picked = try;
242 1.32 tls }
243 1.32 tls if (picked == 1) {
244 1.32 tls panic("desired number of cache colors %d is "
245 1.32 tls " > 1, but not even!", ncolors);
246 1.32 tls }
247 1.32 tls ncolors = picked;
248 1.32 tls }
249 1.2 ad }
250 1.2 ad
251 1.2 ad /*
252 1.2 ad * Knowing the size of the largest cache on this CPU, re-color
253 1.2 ad * our pages.
254 1.2 ad */
255 1.2 ad if (ncolors <= uvmexp.ncolors)
256 1.2 ad return;
257 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
258 1.2 ad uvm_page_recolor(ncolors);
259 1.2 ad }
260 1.2 ad
261 1.2 ad
262 1.2 ad void
263 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
264 1.2 ad {
265 1.23 cube struct cpu_softc *sc = device_private(self);
266 1.2 ad struct cpu_attach_args *caa = aux;
267 1.2 ad struct cpu_info *ci;
268 1.21 ad uintptr_t ptr;
269 1.2 ad int cpunum = caa->cpu_number;
270 1.51 ad static bool again;
271 1.2 ad
272 1.23 cube sc->sc_dev = self;
273 1.23 cube
274 1.48 ad if (cpus_attached == ~0) {
275 1.54 ad aprint_error(": increase MAXCPUS\n");
276 1.48 ad return;
277 1.48 ad }
278 1.48 ad
279 1.2 ad /*
280 1.2 ad * If we're an Application Processor, allocate a cpu_info
281 1.2 ad * structure, otherwise use the primary's.
282 1.2 ad */
283 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
284 1.36 ad if ((boothowto & RB_MD1) != 0) {
285 1.35 ad aprint_error(": multiprocessor boot disabled\n");
286 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
287 1.56 jmcneill aprint_error_dev(self,
288 1.56 jmcneill "couldn't establish power handler\n");
289 1.35 ad return;
290 1.35 ad }
291 1.2 ad aprint_naive(": Application Processor\n");
292 1.21 ad ptr = (uintptr_t)malloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
293 1.21 ad M_DEVBUF, M_WAITOK);
294 1.21 ad ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
295 1.21 ad ~(CACHE_LINE_SIZE - 1));
296 1.2 ad memset(ci, 0, sizeof(*ci));
297 1.43 ad ci->ci_curldt = -1;
298 1.2 ad #ifdef TRAPLOG
299 1.2 ad ci->ci_tlog_base = malloc(sizeof(struct tlog),
300 1.2 ad M_DEVBUF, M_WAITOK);
301 1.2 ad #endif
302 1.2 ad } else {
303 1.2 ad aprint_naive(": %s Processor\n",
304 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
305 1.2 ad ci = &cpu_info_primary;
306 1.2 ad if (cpunum != lapic_cpu_number()) {
307 1.51 ad /* XXX should be done earlier. */
308 1.39 ad uint32_t reg;
309 1.39 ad aprint_verbose("\n");
310 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
311 1.47 ad " instead of at expected %d", lapic_cpu_number(),
312 1.23 cube cpunum);
313 1.39 ad reg = i82489_readreg(LAPIC_ID);
314 1.39 ad i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
315 1.39 ad (cpunum << LAPIC_ID_SHIFT));
316 1.2 ad }
317 1.47 ad if (cpunum != lapic_cpu_number()) {
318 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
319 1.47 ad }
320 1.2 ad }
321 1.2 ad
322 1.2 ad ci->ci_self = ci;
323 1.2 ad sc->sc_info = ci;
324 1.2 ad ci->ci_dev = self;
325 1.42 ad ci->ci_cpuid = caa->cpu_number;
326 1.2 ad ci->ci_func = caa->cpu_func;
327 1.2 ad
328 1.55 ad /* Must be before mi_cpu_attach(). */
329 1.55 ad cpu_vm_init(ci);
330 1.55 ad
331 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
332 1.2 ad int error;
333 1.2 ad
334 1.2 ad error = mi_cpu_attach(ci);
335 1.2 ad if (error != 0) {
336 1.2 ad aprint_normal("\n");
337 1.47 ad aprint_error_dev(self,
338 1.30 cegger "mi_cpu_attach failed with %d\n", error);
339 1.2 ad return;
340 1.2 ad }
341 1.15 yamt cpu_init_tss(ci);
342 1.2 ad } else {
343 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
344 1.2 ad }
345 1.2 ad
346 1.42 ad ci->ci_cpumask = (1 << cpu_index(ci));
347 1.2 ad pmap_reference(pmap_kernel());
348 1.2 ad ci->ci_pmap = pmap_kernel();
349 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
350 1.2 ad
351 1.51 ad /*
352 1.51 ad * Boot processor may not be attached first, but the below
353 1.51 ad * must be done to allow booting other processors.
354 1.51 ad */
355 1.51 ad if (!again) {
356 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
357 1.51 ad /* Basic init. */
358 1.2 ad cpu_intr_init(ci);
359 1.40 ad cpu_get_tsc_freq(ci);
360 1.2 ad cpu_init(ci);
361 1.2 ad cpu_set_tss_gates(ci);
362 1.2 ad pmap_cpu_init_late(ci);
363 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
364 1.51 ad /* Enable lapic. */
365 1.51 ad lapic_enable();
366 1.51 ad lapic_set_lvt();
367 1.51 ad lapic_calibrate_timer(ci);
368 1.51 ad }
369 1.51 ad /* Make sure DELAY() is initialized. */
370 1.51 ad DELAY(1);
371 1.51 ad again = true;
372 1.51 ad }
373 1.51 ad
374 1.51 ad /* further PCB init done later. */
375 1.51 ad
376 1.51 ad switch (caa->cpu_role) {
377 1.51 ad case CPU_ROLE_SP:
378 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
379 1.51 ad cpu_identify(ci);
380 1.53 ad x86_errata();
381 1.37 joerg x86_cpu_idle_init();
382 1.2 ad break;
383 1.2 ad
384 1.2 ad case CPU_ROLE_BP:
385 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
386 1.40 ad cpu_identify(ci);
387 1.53 ad x86_errata();
388 1.37 joerg x86_cpu_idle_init();
389 1.2 ad break;
390 1.2 ad
391 1.2 ad case CPU_ROLE_AP:
392 1.2 ad /*
393 1.2 ad * report on an AP
394 1.2 ad */
395 1.2 ad cpu_intr_init(ci);
396 1.2 ad gdt_alloc_cpu(ci);
397 1.2 ad cpu_set_tss_gates(ci);
398 1.2 ad pmap_cpu_init_early(ci);
399 1.2 ad pmap_cpu_init_late(ci);
400 1.2 ad cpu_start_secondary(ci);
401 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
402 1.40 ad cpu_identify(ci);
403 1.2 ad ci->ci_next = cpu_info_list->ci_next;
404 1.2 ad cpu_info_list->ci_next = ci;
405 1.2 ad }
406 1.2 ad break;
407 1.2 ad
408 1.2 ad default:
409 1.28 cegger aprint_normal("\n");
410 1.2 ad panic("unknown processor type??\n");
411 1.2 ad }
412 1.51 ad
413 1.47 ad atomic_or_32(&cpus_attached, ci->ci_cpumask);
414 1.2 ad
415 1.12 jmcneill if (!pmf_device_register(self, cpu_suspend, cpu_resume))
416 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
417 1.12 jmcneill
418 1.2 ad if (mp_verbose) {
419 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
420 1.2 ad
421 1.47 ad aprint_verbose_dev(self,
422 1.28 cegger "idle lwp at %p, idle sp at %p\n",
423 1.28 cegger l,
424 1.2 ad #ifdef i386
425 1.2 ad (void *)l->l_addr->u_pcb.pcb_esp
426 1.2 ad #else
427 1.2 ad (void *)l->l_addr->u_pcb.pcb_rsp
428 1.2 ad #endif
429 1.2 ad );
430 1.2 ad }
431 1.2 ad }
432 1.2 ad
433 1.2 ad /*
434 1.2 ad * Initialize the processor appropriately.
435 1.2 ad */
436 1.2 ad
437 1.2 ad void
438 1.9 ad cpu_init(struct cpu_info *ci)
439 1.2 ad {
440 1.2 ad
441 1.2 ad lcr0(rcr0() | CR0_WP);
442 1.2 ad
443 1.2 ad /*
444 1.2 ad * On a P6 or above, enable global TLB caching if the
445 1.2 ad * hardware supports it.
446 1.2 ad */
447 1.2 ad if (cpu_feature & CPUID_PGE)
448 1.2 ad lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
449 1.2 ad
450 1.2 ad /*
451 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
452 1.2 ad */
453 1.2 ad if (cpu_feature & CPUID_FXSR) {
454 1.2 ad lcr4(rcr4() | CR4_OSFXSR);
455 1.2 ad
456 1.2 ad /*
457 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
458 1.2 ad */
459 1.2 ad if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
460 1.2 ad lcr4(rcr4() | CR4_OSXMMEXCPT);
461 1.2 ad }
462 1.2 ad
463 1.2 ad #ifdef MTRR
464 1.2 ad /*
465 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
466 1.2 ad */
467 1.2 ad if (cpu_feature & CPUID_MTRR) {
468 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
469 1.2 ad i686_mtrr_init_first();
470 1.2 ad mtrr_init_cpu(ci);
471 1.2 ad }
472 1.2 ad
473 1.2 ad #ifdef i386
474 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
475 1.2 ad /*
476 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
477 1.2 ad */
478 1.2 ad if (CPUID2FAMILY(ci->ci_signature) == 5) {
479 1.2 ad if (CPUID2MODEL(ci->ci_signature) > 8 ||
480 1.2 ad (CPUID2MODEL(ci->ci_signature) == 8 &&
481 1.2 ad CPUID2STEPPING(ci->ci_signature) >= 7)) {
482 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
483 1.2 ad k6_mtrr_init_first();
484 1.2 ad mtrr_init_cpu(ci);
485 1.2 ad }
486 1.2 ad }
487 1.2 ad }
488 1.2 ad #endif /* i386 */
489 1.2 ad #endif /* MTRR */
490 1.2 ad
491 1.9 ad atomic_or_32(&cpus_running, ci->ci_cpumask);
492 1.9 ad
493 1.38 ad if (ci != &cpu_info_primary) {
494 1.38 ad /* Synchronize TSC again, and check for drift. */
495 1.38 ad wbinvd();
496 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
497 1.38 ad tsc_sync_ap(ci);
498 1.38 ad tsc_sync_ap(ci);
499 1.38 ad } else {
500 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
501 1.38 ad }
502 1.2 ad }
503 1.2 ad
504 1.2 ad void
505 1.12 jmcneill cpu_boot_secondary_processors(void)
506 1.2 ad {
507 1.2 ad struct cpu_info *ci;
508 1.2 ad u_long i;
509 1.2 ad
510 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
511 1.5 ad x86_patch();
512 1.5 ad
513 1.54 ad for (i=0; i < maxcpus; i++) {
514 1.49 ad ci = cpu_lookup_byindex(i);
515 1.2 ad if (ci == NULL)
516 1.2 ad continue;
517 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
518 1.2 ad continue;
519 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
520 1.2 ad continue;
521 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
522 1.2 ad continue;
523 1.2 ad cpu_boot_secondary(ci);
524 1.2 ad }
525 1.2 ad
526 1.2 ad x86_mp_online = true;
527 1.38 ad
528 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
529 1.38 ad tsc_tc_init();
530 1.55 ad
531 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
532 1.55 ad vm_page_zero_enable = ((cpu_feature & CPUID_SSE2) != 0);
533 1.2 ad }
534 1.2 ad
535 1.2 ad static void
536 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
537 1.2 ad {
538 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
539 1.2 ad struct pcb *pcb = &l->l_addr->u_pcb;
540 1.2 ad
541 1.2 ad pcb->pcb_cr0 = rcr0();
542 1.2 ad }
543 1.2 ad
544 1.2 ad void
545 1.12 jmcneill cpu_init_idle_lwps(void)
546 1.2 ad {
547 1.2 ad struct cpu_info *ci;
548 1.2 ad u_long i;
549 1.2 ad
550 1.54 ad for (i = 0; i < maxcpus; i++) {
551 1.49 ad ci = cpu_lookup_byindex(i);
552 1.2 ad if (ci == NULL)
553 1.2 ad continue;
554 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
555 1.2 ad continue;
556 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
557 1.2 ad continue;
558 1.2 ad cpu_init_idle_lwp(ci);
559 1.2 ad }
560 1.2 ad }
561 1.2 ad
562 1.2 ad void
563 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
564 1.2 ad {
565 1.38 ad extern paddr_t mp_pdirpa;
566 1.38 ad u_long psl;
567 1.2 ad int i;
568 1.2 ad
569 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
570 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
571 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
572 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
573 1.25 ad return;
574 1.45 ad }
575 1.2 ad
576 1.2 ad /*
577 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
578 1.50 ad * initial gate and allows the AP to start soft initialization.
579 1.2 ad */
580 1.50 ad KASSERT(cpu_starting == NULL);
581 1.50 ad cpu_starting = ci;
582 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
583 1.24 ad #ifdef MPDEBUG
584 1.24 ad extern int cpu_trace[3];
585 1.24 ad static int otrace[3];
586 1.24 ad if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
587 1.26 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
588 1.26 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
589 1.24 ad memcpy(otrace, cpu_trace, sizeof(otrace));
590 1.24 ad }
591 1.24 ad #endif
592 1.11 ad i8254_delay(10);
593 1.2 ad }
594 1.38 ad
595 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
596 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
597 1.2 ad #if defined(MPDEBUG) && defined(DDB)
598 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
599 1.2 ad Debugger();
600 1.2 ad #endif
601 1.38 ad } else {
602 1.38 ad /*
603 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
604 1.38 ad * to try and minimize possible cache effects. Disable interrupts
605 1.38 ad * to try and rule out any external interference.
606 1.38 ad */
607 1.38 ad psl = x86_read_psl();
608 1.38 ad x86_disable_intr();
609 1.38 ad wbinvd();
610 1.38 ad tsc_sync_bp(ci);
611 1.38 ad tsc_sync_bp(ci);
612 1.38 ad x86_write_psl(psl);
613 1.2 ad }
614 1.2 ad
615 1.2 ad CPU_START_CLEANUP(ci);
616 1.45 ad cpu_starting = NULL;
617 1.2 ad }
618 1.2 ad
619 1.2 ad void
620 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
621 1.2 ad {
622 1.38 ad int64_t drift;
623 1.38 ad u_long psl;
624 1.2 ad int i;
625 1.2 ad
626 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
627 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
628 1.11 ad i8254_delay(10);
629 1.2 ad }
630 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
631 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
632 1.2 ad #if defined(MPDEBUG) && defined(DDB)
633 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
634 1.2 ad Debugger();
635 1.2 ad #endif
636 1.38 ad } else {
637 1.38 ad /* Synchronize TSC again, check for drift. */
638 1.38 ad drift = ci->ci_data.cpu_cc_skew;
639 1.38 ad psl = x86_read_psl();
640 1.38 ad x86_disable_intr();
641 1.38 ad wbinvd();
642 1.38 ad tsc_sync_bp(ci);
643 1.38 ad tsc_sync_bp(ci);
644 1.38 ad x86_write_psl(psl);
645 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
646 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
647 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
648 1.38 ad tsc_sync_drift(drift);
649 1.2 ad }
650 1.2 ad }
651 1.2 ad
652 1.2 ad /*
653 1.2 ad * The CPU ends up here when its ready to run
654 1.2 ad * This is called from code in mptramp.s; at this point, we are running
655 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
656 1.2 ad * this processor will enter the idle loop and start looking for work.
657 1.2 ad */
658 1.2 ad void
659 1.2 ad cpu_hatch(void *v)
660 1.2 ad {
661 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
662 1.6 ad int s, i;
663 1.2 ad
664 1.2 ad #ifdef __x86_64__
665 1.12 jmcneill cpu_init_msrs(ci, true);
666 1.2 ad #endif
667 1.40 ad cpu_probe(ci);
668 1.46 ad
669 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
670 1.46 ad /* cpu_get_tsc_freq(ci); */
671 1.38 ad
672 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
673 1.38 ad
674 1.38 ad /*
675 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
676 1.38 ad * to try and minimize possible cache effects. Note that interrupts
677 1.38 ad * are off at this point.
678 1.38 ad */
679 1.38 ad wbinvd();
680 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
681 1.38 ad tsc_sync_ap(ci);
682 1.38 ad tsc_sync_ap(ci);
683 1.38 ad
684 1.38 ad /*
685 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
686 1.38 ad * in order to make the TSC drift as much as possible. so that
687 1.38 ad * we can detect it later. If not available, try 'pause'.
688 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
689 1.38 ad */
690 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
691 1.38 ad if ((ci->ci_feature2_flags & CPUID2_MONITOR) != 0) {
692 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
693 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
694 1.38 ad continue;
695 1.38 ad }
696 1.38 ad x86_mwait(0, 0);
697 1.38 ad } else {
698 1.38 ad for (i = 10000; i != 0; i--) {
699 1.38 ad x86_pause();
700 1.38 ad }
701 1.38 ad }
702 1.6 ad }
703 1.5 ad
704 1.26 cegger /* Because the text may have been patched in x86_patch(). */
705 1.5 ad wbinvd();
706 1.5 ad x86_flush();
707 1.5 ad
708 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
709 1.2 ad
710 1.12 jmcneill lcr3(pmap_kernel()->pm_pdirpa);
711 1.12 jmcneill curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
712 1.2 ad lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
713 1.2 ad cpu_init_idt();
714 1.8 ad gdt_init_cpu(ci);
715 1.8 ad lapic_enable();
716 1.2 ad lapic_set_lvt();
717 1.8 ad lapic_initclocks();
718 1.2 ad
719 1.2 ad #ifdef i386
720 1.2 ad npxinit(ci);
721 1.2 ad #else
722 1.2 ad fpuinit(ci);
723 1.4 yamt #endif
724 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
725 1.15 yamt ltr(ci->ci_tss_sel);
726 1.2 ad
727 1.2 ad cpu_init(ci);
728 1.7 ad cpu_get_tsc_freq(ci);
729 1.2 ad
730 1.2 ad s = splhigh();
731 1.2 ad #ifdef i386
732 1.2 ad lapic_tpr = 0;
733 1.2 ad #else
734 1.2 ad lcr8(0);
735 1.2 ad #endif
736 1.3 ad x86_enable_intr();
737 1.2 ad splx(s);
738 1.6 ad x86_errata();
739 1.2 ad
740 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
741 1.2 ad }
742 1.2 ad
743 1.2 ad #if defined(DDB)
744 1.2 ad
745 1.2 ad #include <ddb/db_output.h>
746 1.2 ad #include <machine/db_machdep.h>
747 1.2 ad
748 1.2 ad /*
749 1.2 ad * Dump CPU information from ddb.
750 1.2 ad */
751 1.2 ad void
752 1.2 ad cpu_debug_dump(void)
753 1.2 ad {
754 1.2 ad struct cpu_info *ci;
755 1.2 ad CPU_INFO_ITERATOR cii;
756 1.2 ad
757 1.29 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
758 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
759 1.2 ad db_printf("%p %s %ld %x %x %10p %10p\n",
760 1.2 ad ci,
761 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
762 1.2 ad (long)ci->ci_cpuid,
763 1.2 ad ci->ci_flags, ci->ci_ipis,
764 1.2 ad ci->ci_curlwp,
765 1.2 ad ci->ci_fpcurlwp);
766 1.2 ad }
767 1.2 ad }
768 1.2 ad #endif
769 1.2 ad
770 1.2 ad static void
771 1.12 jmcneill cpu_copy_trampoline(void)
772 1.2 ad {
773 1.2 ad /*
774 1.2 ad * Copy boot code.
775 1.2 ad */
776 1.2 ad extern u_char cpu_spinup_trampoline[];
777 1.2 ad extern u_char cpu_spinup_trampoline_end[];
778 1.12 jmcneill
779 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
780 1.12 jmcneill
781 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
782 1.12 jmcneill UVM_KMF_VAONLY);
783 1.12 jmcneill
784 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
785 1.12 jmcneill VM_PROT_READ | VM_PROT_WRITE);
786 1.2 ad pmap_update(pmap_kernel());
787 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
788 1.2 ad cpu_spinup_trampoline,
789 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
790 1.12 jmcneill
791 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
792 1.12 jmcneill pmap_update(pmap_kernel());
793 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
794 1.2 ad }
795 1.2 ad
796 1.2 ad #ifdef i386
797 1.2 ad static void
798 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
799 1.2 ad {
800 1.2 ad memset(tss, 0, sizeof *tss);
801 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
802 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
803 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
804 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
805 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
806 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
807 1.2 ad tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
808 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
809 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
810 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
811 1.2 ad tss->__tss_eip = (int)func;
812 1.2 ad }
813 1.2 ad
814 1.2 ad /* XXX */
815 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
816 1.2 ad typedef void (vector)(void);
817 1.2 ad extern vector IDTVEC(tss_trap08);
818 1.2 ad #ifdef DDB
819 1.2 ad extern vector Xintrddbipi;
820 1.2 ad extern int ddb_vec;
821 1.2 ad #endif
822 1.2 ad
823 1.2 ad static void
824 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
825 1.2 ad {
826 1.2 ad struct segment_descriptor sd;
827 1.2 ad
828 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
829 1.2 ad UVM_KMF_WIRED);
830 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
831 1.2 ad IDTVEC(tss_trap08));
832 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
833 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
834 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
835 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
836 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
837 1.2 ad
838 1.44 ad #if defined(DDB)
839 1.2 ad /*
840 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
841 1.2 ad * stomp on a possibly corrupted stack.
842 1.2 ad *
843 1.2 ad * XXX overwriting the gate set in db_machine_init.
844 1.2 ad * Should rearrange the code so that it's set only once.
845 1.2 ad */
846 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
847 1.2 ad UVM_KMF_WIRED);
848 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
849 1.2 ad
850 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
851 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
852 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
853 1.2 ad
854 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
855 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
856 1.2 ad #endif
857 1.2 ad }
858 1.2 ad #else
859 1.2 ad static void
860 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
861 1.2 ad {
862 1.2 ad
863 1.2 ad }
864 1.2 ad #endif /* i386 */
865 1.2 ad
866 1.2 ad int
867 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
868 1.2 ad {
869 1.44 ad unsigned short dwordptr[2];
870 1.2 ad int error;
871 1.14 joerg
872 1.14 joerg /*
873 1.14 joerg * Bootstrap code must be addressable in real mode
874 1.14 joerg * and it must be page aligned.
875 1.14 joerg */
876 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
877 1.2 ad
878 1.2 ad /*
879 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
880 1.2 ad */
881 1.2 ad
882 1.2 ad outb(IO_RTC, NVRAM_RESET);
883 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
884 1.2 ad
885 1.2 ad /*
886 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
887 1.2 ad * to the AP startup code ..."
888 1.2 ad */
889 1.2 ad
890 1.2 ad dwordptr[0] = 0;
891 1.14 joerg dwordptr[1] = target >> 4;
892 1.2 ad
893 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
894 1.2 ad
895 1.25 ad if ((cpu_feature & CPUID_APIC) == 0) {
896 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
897 1.25 ad return ENODEV;
898 1.25 ad }
899 1.25 ad
900 1.2 ad /*
901 1.51 ad * ... prior to executing the following sequence:". We'll also add in
902 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
903 1.51 ad * disabled. It may not be able to cope with MP coherency.
904 1.2 ad */
905 1.51 ad wbinvd();
906 1.2 ad
907 1.2 ad if (ci->ci_flags & CPUF_AP) {
908 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
909 1.26 cegger if (error != 0) {
910 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
911 1.50 ad __func__);
912 1.2 ad return error;
913 1.25 ad }
914 1.11 ad i8254_delay(10000);
915 1.2 ad
916 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
917 1.26 cegger if (error != 0) {
918 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
919 1.50 ad __func__);
920 1.25 ad return error;
921 1.25 ad }
922 1.25 ad i8254_delay(200);
923 1.2 ad
924 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
925 1.26 cegger if (error != 0) {
926 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
927 1.50 ad __func__);
928 1.25 ad return error;
929 1.2 ad }
930 1.25 ad i8254_delay(200);
931 1.2 ad }
932 1.44 ad
933 1.2 ad return 0;
934 1.2 ad }
935 1.2 ad
936 1.2 ad void
937 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
938 1.2 ad {
939 1.2 ad /*
940 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
941 1.2 ad */
942 1.2 ad
943 1.2 ad outb(IO_RTC, NVRAM_RESET);
944 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
945 1.2 ad }
946 1.2 ad
947 1.2 ad #ifdef __x86_64__
948 1.2 ad typedef void (vector)(void);
949 1.2 ad extern vector Xsyscall, Xsyscall32;
950 1.2 ad
951 1.2 ad void
952 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
953 1.2 ad {
954 1.2 ad wrmsr(MSR_STAR,
955 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
956 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
957 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
958 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
959 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
960 1.2 ad
961 1.12 jmcneill if (full) {
962 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
963 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
964 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
965 1.12 jmcneill }
966 1.2 ad
967 1.2 ad if (cpu_feature & CPUID_NOX)
968 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
969 1.2 ad }
970 1.2 ad #endif /* __x86_64__ */
971 1.7 ad
972 1.18 joerg void
973 1.18 joerg cpu_offline_md(void)
974 1.18 joerg {
975 1.18 joerg int s;
976 1.18 joerg
977 1.18 joerg s = splhigh();
978 1.18 joerg #ifdef __i386__
979 1.18 joerg npxsave_cpu(true);
980 1.18 joerg #else
981 1.18 joerg fpusave_cpu(true);
982 1.18 joerg #endif
983 1.18 joerg splx(s);
984 1.18 joerg }
985 1.18 joerg
986 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
987 1.12 jmcneill static bool
988 1.22 dyoung cpu_suspend(device_t dv PMF_FN_ARGS)
989 1.12 jmcneill {
990 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
991 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
992 1.18 joerg int err;
993 1.12 jmcneill
994 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
995 1.12 jmcneill return true;
996 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
997 1.12 jmcneill return true;
998 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
999 1.12 jmcneill return true;
1000 1.12 jmcneill
1001 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1002 1.17 joerg
1003 1.20 jmcneill if (sc->sc_wasonline) {
1004 1.20 jmcneill mutex_enter(&cpu_lock);
1005 1.20 jmcneill err = cpu_setonline(ci, false);
1006 1.20 jmcneill mutex_exit(&cpu_lock);
1007 1.20 jmcneill
1008 1.20 jmcneill if (err)
1009 1.20 jmcneill return false;
1010 1.20 jmcneill }
1011 1.17 joerg
1012 1.17 joerg return true;
1013 1.12 jmcneill }
1014 1.12 jmcneill
1015 1.12 jmcneill static bool
1016 1.22 dyoung cpu_resume(device_t dv PMF_FN_ARGS)
1017 1.12 jmcneill {
1018 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1019 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1020 1.20 jmcneill int err = 0;
1021 1.12 jmcneill
1022 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
1023 1.12 jmcneill return true;
1024 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1025 1.12 jmcneill return true;
1026 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
1027 1.12 jmcneill return true;
1028 1.12 jmcneill
1029 1.20 jmcneill if (sc->sc_wasonline) {
1030 1.20 jmcneill mutex_enter(&cpu_lock);
1031 1.20 jmcneill err = cpu_setonline(ci, true);
1032 1.20 jmcneill mutex_exit(&cpu_lock);
1033 1.20 jmcneill }
1034 1.13 joerg
1035 1.13 joerg return err == 0;
1036 1.12 jmcneill }
1037 1.12 jmcneill
1038 1.7 ad void
1039 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1040 1.7 ad {
1041 1.7 ad uint64_t last_tsc;
1042 1.7 ad
1043 1.7 ad if (ci->ci_feature_flags & CPUID_TSC) {
1044 1.45 ad last_tsc = rdmsr(MSR_TSC);
1045 1.7 ad i8254_delay(100000);
1046 1.45 ad ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
1047 1.7 ad }
1048 1.7 ad }
1049 1.37 joerg
1050 1.37 joerg void
1051 1.37 joerg x86_cpu_idle_mwait(void)
1052 1.37 joerg {
1053 1.37 joerg struct cpu_info *ci = curcpu();
1054 1.37 joerg
1055 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1056 1.37 joerg
1057 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1058 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1059 1.37 joerg return;
1060 1.37 joerg }
1061 1.37 joerg x86_mwait(0, 0);
1062 1.37 joerg }
1063 1.37 joerg
1064 1.37 joerg void
1065 1.37 joerg x86_cpu_idle_halt(void)
1066 1.37 joerg {
1067 1.37 joerg struct cpu_info *ci = curcpu();
1068 1.37 joerg
1069 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1070 1.37 joerg
1071 1.37 joerg x86_disable_intr();
1072 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1073 1.37 joerg x86_stihlt();
1074 1.37 joerg } else {
1075 1.37 joerg x86_enable_intr();
1076 1.37 joerg }
1077 1.37 joerg }
1078