Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.62
      1  1.62    bouyer /*	$NetBSD: cpu.c,v 1.62 2009/01/21 21:26:01 bouyer Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.38        ad  * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.11        ad  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Copyright (c) 1999 Stefan Grefen
     34   1.2        ad  *
     35   1.2        ad  * Redistribution and use in source and binary forms, with or without
     36   1.2        ad  * modification, are permitted provided that the following conditions
     37   1.2        ad  * are met:
     38   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     39   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     40   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     41   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     42   1.2        ad  *    documentation and/or other materials provided with the distribution.
     43   1.2        ad  * 3. All advertising materials mentioning features or use of this software
     44   1.2        ad  *    must display the following acknowledgement:
     45   1.2        ad  *      This product includes software developed by the NetBSD
     46   1.2        ad  *      Foundation, Inc. and its contributors.
     47   1.2        ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48   1.2        ad  *    contributors may be used to endorse or promote products derived
     49   1.2        ad  *    from this software without specific prior written permission.
     50   1.2        ad  *
     51   1.2        ad  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52   1.2        ad  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53   1.2        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54   1.2        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55   1.2        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56   1.2        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57   1.2        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58   1.2        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59   1.2        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60   1.2        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61   1.2        ad  * SUCH DAMAGE.
     62   1.2        ad  */
     63   1.2        ad 
     64   1.2        ad #include <sys/cdefs.h>
     65  1.62    bouyer __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.62 2009/01/21 21:26:01 bouyer Exp $");
     66   1.2        ad 
     67   1.2        ad #include "opt_ddb.h"
     68   1.2        ad #include "opt_mpbios.h"		/* for MPDEBUG */
     69   1.2        ad #include "opt_mtrr.h"
     70   1.2        ad 
     71   1.2        ad #include "lapic.h"
     72   1.2        ad #include "ioapic.h"
     73   1.2        ad 
     74  1.62    bouyer #ifdef i386
     75  1.62    bouyer #include "npx.h"
     76  1.62    bouyer #endif
     77  1.62    bouyer 
     78   1.2        ad #include <sys/param.h>
     79   1.2        ad #include <sys/proc.h>
     80   1.2        ad #include <sys/user.h>
     81   1.2        ad #include <sys/systm.h>
     82   1.2        ad #include <sys/device.h>
     83  1.61    cegger #include <sys/kmem.h>
     84   1.9        ad #include <sys/cpu.h>
     85   1.9        ad #include <sys/atomic.h>
     86  1.35        ad #include <sys/reboot.h>
     87   1.2        ad 
     88   1.2        ad #include <uvm/uvm_extern.h>
     89   1.2        ad 
     90   1.2        ad #include <machine/cpufunc.h>
     91   1.2        ad #include <machine/cpuvar.h>
     92   1.2        ad #include <machine/pmap.h>
     93   1.2        ad #include <machine/vmparam.h>
     94   1.2        ad #include <machine/mpbiosvar.h>
     95   1.2        ad #include <machine/pcb.h>
     96   1.2        ad #include <machine/specialreg.h>
     97   1.2        ad #include <machine/segments.h>
     98   1.2        ad #include <machine/gdt.h>
     99   1.2        ad #include <machine/mtrr.h>
    100   1.2        ad #include <machine/pio.h>
    101  1.38        ad #include <machine/cpu_counter.h>
    102   1.2        ad 
    103   1.2        ad #ifdef i386
    104   1.2        ad #include <machine/tlog.h>
    105   1.2        ad #endif
    106   1.2        ad 
    107   1.2        ad #include <machine/apicvar.h>
    108   1.2        ad #include <machine/i82489reg.h>
    109   1.2        ad #include <machine/i82489var.h>
    110   1.2        ad 
    111   1.2        ad #include <dev/ic/mc146818reg.h>
    112   1.2        ad #include <i386/isa/nvram.h>
    113   1.2        ad #include <dev/isa/isareg.h>
    114   1.2        ad 
    115  1.38        ad #include "tsc.h"
    116  1.38        ad 
    117  1.54        ad #if MAXCPUS > 32
    118  1.54        ad #error cpu_info contains 32bit bitmasks
    119  1.54        ad #endif
    120  1.54        ad 
    121  1.23      cube int     cpu_match(device_t, cfdata_t, void *);
    122  1.23      cube void    cpu_attach(device_t, device_t, void *);
    123   1.2        ad 
    124  1.22    dyoung static bool	cpu_suspend(device_t PMF_FN_PROTO);
    125  1.22    dyoung static bool	cpu_resume(device_t PMF_FN_PROTO);
    126  1.12  jmcneill 
    127   1.2        ad struct cpu_softc {
    128  1.23      cube 	device_t sc_dev;		/* device tree glue */
    129   1.2        ad 	struct cpu_info *sc_info;	/* pointer to CPU info */
    130  1.20  jmcneill 	bool sc_wasonline;
    131   1.2        ad };
    132   1.2        ad 
    133  1.14     joerg int mp_cpu_start(struct cpu_info *, paddr_t);
    134   1.2        ad void mp_cpu_start_cleanup(struct cpu_info *);
    135   1.2        ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    136   1.2        ad 					    mp_cpu_start_cleanup };
    137   1.2        ad 
    138   1.2        ad 
    139  1.23      cube CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
    140   1.2        ad     cpu_match, cpu_attach, NULL, NULL);
    141   1.2        ad 
    142   1.2        ad /*
    143   1.2        ad  * Statically-allocated CPU info for the primary CPU (or the only
    144   1.2        ad  * CPU, on uniprocessors).  The CPU info list is initialized to
    145   1.2        ad  * point at it.
    146   1.2        ad  */
    147   1.2        ad #ifdef TRAPLOG
    148   1.2        ad struct tlog tlog_primary;
    149   1.2        ad #endif
    150  1.21        ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    151   1.2        ad 	.ci_dev = 0,
    152   1.2        ad 	.ci_self = &cpu_info_primary,
    153   1.2        ad 	.ci_idepth = -1,
    154   1.2        ad 	.ci_curlwp = &lwp0,
    155  1.43        ad 	.ci_curldt = -1,
    156   1.2        ad #ifdef TRAPLOG
    157   1.2        ad 	.ci_tlog_base = &tlog_primary,
    158   1.2        ad #endif /* !TRAPLOG */
    159   1.2        ad };
    160   1.2        ad 
    161   1.2        ad struct cpu_info *cpu_info_list = &cpu_info_primary;
    162   1.2        ad 
    163  1.12  jmcneill static void	cpu_set_tss_gates(struct cpu_info *);
    164   1.2        ad 
    165   1.2        ad #ifdef i386
    166  1.15      yamt static void	tss_init(struct i386tss *, void *, void *);
    167   1.2        ad #endif
    168   1.2        ad 
    169  1.12  jmcneill static void	cpu_init_idle_lwp(struct cpu_info *);
    170  1.12  jmcneill 
    171   1.2        ad uint32_t cpus_attached = 0;
    172   1.9        ad uint32_t cpus_running = 0;
    173   1.2        ad 
    174   1.2        ad extern char x86_64_doubleflt_stack[];
    175   1.2        ad 
    176  1.12  jmcneill bool x86_mp_online;
    177  1.12  jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    178  1.14     joerg static vaddr_t cmos_data_mapping;
    179  1.45        ad struct cpu_info *cpu_starting;
    180   1.2        ad 
    181   1.2        ad void    	cpu_hatch(void *);
    182   1.2        ad static void    	cpu_boot_secondary(struct cpu_info *ci);
    183   1.2        ad static void    	cpu_start_secondary(struct cpu_info *ci);
    184   1.2        ad static void	cpu_copy_trampoline(void);
    185   1.2        ad 
    186   1.2        ad /*
    187   1.2        ad  * Runs once per boot once multiprocessor goo has been detected and
    188   1.2        ad  * the local APIC on the boot processor has been mapped.
    189   1.2        ad  *
    190   1.2        ad  * Called from lapic_boot_init() (from mpbios_scan()).
    191   1.2        ad  */
    192   1.2        ad void
    193   1.9        ad cpu_init_first(void)
    194   1.2        ad {
    195   1.2        ad 
    196  1.45        ad 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    197   1.2        ad 	cpu_copy_trampoline();
    198  1.14     joerg 
    199  1.14     joerg 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    200  1.14     joerg 	if (cmos_data_mapping == 0)
    201  1.14     joerg 		panic("No KVA for page 0");
    202  1.14     joerg 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE);
    203  1.14     joerg 	pmap_update(pmap_kernel());
    204   1.2        ad }
    205   1.2        ad 
    206   1.2        ad int
    207  1.23      cube cpu_match(device_t parent, cfdata_t match, void *aux)
    208   1.2        ad {
    209   1.2        ad 
    210   1.2        ad 	return 1;
    211   1.2        ad }
    212   1.2        ad 
    213   1.2        ad static void
    214   1.2        ad cpu_vm_init(struct cpu_info *ci)
    215   1.2        ad {
    216   1.2        ad 	int ncolors = 2, i;
    217   1.2        ad 
    218   1.2        ad 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    219   1.2        ad 		struct x86_cache_info *cai;
    220   1.2        ad 		int tcolors;
    221   1.2        ad 
    222   1.2        ad 		cai = &ci->ci_cinfo[i];
    223   1.2        ad 
    224   1.2        ad 		tcolors = atop(cai->cai_totalsize);
    225   1.2        ad 		switch(cai->cai_associativity) {
    226   1.2        ad 		case 0xff:
    227   1.2        ad 			tcolors = 1; /* fully associative */
    228   1.2        ad 			break;
    229   1.2        ad 		case 0:
    230   1.2        ad 		case 1:
    231   1.2        ad 			break;
    232   1.2        ad 		default:
    233   1.2        ad 			tcolors /= cai->cai_associativity;
    234   1.2        ad 		}
    235   1.2        ad 		ncolors = max(ncolors, tcolors);
    236  1.32       tls 		/*
    237  1.32       tls 		 * If the desired number of colors is not a power of
    238  1.32       tls 		 * two, it won't be good.  Find the greatest power of
    239  1.32       tls 		 * two which is an even divisor of the number of colors,
    240  1.32       tls 		 * to preserve even coloring of pages.
    241  1.32       tls 		 */
    242  1.32       tls 		if (ncolors & (ncolors - 1) ) {
    243  1.32       tls 			int try, picked = 1;
    244  1.32       tls 			for (try = 1; try < ncolors; try *= 2) {
    245  1.32       tls 				if (ncolors % try == 0) picked = try;
    246  1.32       tls 			}
    247  1.32       tls 			if (picked == 1) {
    248  1.32       tls 				panic("desired number of cache colors %d is "
    249  1.32       tls 			      	" > 1, but not even!", ncolors);
    250  1.32       tls 			}
    251  1.32       tls 			ncolors = picked;
    252  1.32       tls 		}
    253   1.2        ad 	}
    254   1.2        ad 
    255   1.2        ad 	/*
    256   1.2        ad 	 * Knowing the size of the largest cache on this CPU, re-color
    257   1.2        ad 	 * our pages.
    258   1.2        ad 	 */
    259   1.2        ad 	if (ncolors <= uvmexp.ncolors)
    260   1.2        ad 		return;
    261  1.52        ad 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    262   1.2        ad 	uvm_page_recolor(ncolors);
    263   1.2        ad }
    264   1.2        ad 
    265   1.2        ad 
    266   1.2        ad void
    267  1.23      cube cpu_attach(device_t parent, device_t self, void *aux)
    268   1.2        ad {
    269  1.23      cube 	struct cpu_softc *sc = device_private(self);
    270   1.2        ad 	struct cpu_attach_args *caa = aux;
    271   1.2        ad 	struct cpu_info *ci;
    272  1.21        ad 	uintptr_t ptr;
    273   1.2        ad 	int cpunum = caa->cpu_number;
    274  1.51        ad 	static bool again;
    275   1.2        ad 
    276  1.23      cube 	sc->sc_dev = self;
    277  1.23      cube 
    278  1.48        ad 	if (cpus_attached == ~0) {
    279  1.54        ad 		aprint_error(": increase MAXCPUS\n");
    280  1.48        ad 		return;
    281  1.48        ad 	}
    282  1.48        ad 
    283   1.2        ad 	/*
    284   1.2        ad 	 * If we're an Application Processor, allocate a cpu_info
    285   1.2        ad 	 * structure, otherwise use the primary's.
    286   1.2        ad 	 */
    287   1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    288  1.36        ad 		if ((boothowto & RB_MD1) != 0) {
    289  1.35        ad 			aprint_error(": multiprocessor boot disabled\n");
    290  1.56  jmcneill 			if (!pmf_device_register(self, NULL, NULL))
    291  1.56  jmcneill 				aprint_error_dev(self,
    292  1.56  jmcneill 				    "couldn't establish power handler\n");
    293  1.35        ad 			return;
    294  1.35        ad 		}
    295   1.2        ad 		aprint_naive(": Application Processor\n");
    296  1.61    cegger 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    297  1.61    cegger 		    KM_SLEEP);
    298  1.21        ad 		ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
    299  1.21        ad 		    ~(CACHE_LINE_SIZE - 1));
    300   1.2        ad 		memset(ci, 0, sizeof(*ci));
    301  1.43        ad 		ci->ci_curldt = -1;
    302   1.2        ad #ifdef TRAPLOG
    303  1.61    cegger 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    304   1.2        ad #endif
    305   1.2        ad 	} else {
    306   1.2        ad 		aprint_naive(": %s Processor\n",
    307   1.2        ad 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    308   1.2        ad 		ci = &cpu_info_primary;
    309   1.2        ad 		if (cpunum != lapic_cpu_number()) {
    310  1.51        ad 			/* XXX should be done earlier. */
    311  1.39        ad 			uint32_t reg;
    312  1.39        ad 			aprint_verbose("\n");
    313  1.47        ad 			aprint_verbose_dev(self, "running CPU at apic %d"
    314  1.47        ad 			    " instead of at expected %d", lapic_cpu_number(),
    315  1.23      cube 			    cpunum);
    316  1.39        ad 			reg = i82489_readreg(LAPIC_ID);
    317  1.39        ad 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    318  1.39        ad 			    (cpunum << LAPIC_ID_SHIFT));
    319   1.2        ad 		}
    320  1.47        ad 		if (cpunum != lapic_cpu_number()) {
    321  1.47        ad 			aprint_error_dev(self, "unable to reset apic id\n");
    322  1.47        ad 		}
    323   1.2        ad 	}
    324   1.2        ad 
    325   1.2        ad 	ci->ci_self = ci;
    326   1.2        ad 	sc->sc_info = ci;
    327   1.2        ad 	ci->ci_dev = self;
    328  1.42        ad 	ci->ci_cpuid = caa->cpu_number;
    329   1.2        ad 	ci->ci_func = caa->cpu_func;
    330   1.2        ad 
    331  1.55        ad 	/* Must be before mi_cpu_attach(). */
    332  1.55        ad 	cpu_vm_init(ci);
    333  1.55        ad 
    334   1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    335   1.2        ad 		int error;
    336   1.2        ad 
    337   1.2        ad 		error = mi_cpu_attach(ci);
    338   1.2        ad 		if (error != 0) {
    339   1.2        ad 			aprint_normal("\n");
    340  1.47        ad 			aprint_error_dev(self,
    341  1.30    cegger 			    "mi_cpu_attach failed with %d\n", error);
    342   1.2        ad 			return;
    343   1.2        ad 		}
    344  1.15      yamt 		cpu_init_tss(ci);
    345   1.2        ad 	} else {
    346   1.2        ad 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    347   1.2        ad 	}
    348   1.2        ad 
    349  1.42        ad 	ci->ci_cpumask = (1 << cpu_index(ci));
    350   1.2        ad 	pmap_reference(pmap_kernel());
    351   1.2        ad 	ci->ci_pmap = pmap_kernel();
    352   1.2        ad 	ci->ci_tlbstate = TLBSTATE_STALE;
    353   1.2        ad 
    354  1.51        ad 	/*
    355  1.51        ad 	 * Boot processor may not be attached first, but the below
    356  1.51        ad 	 * must be done to allow booting other processors.
    357  1.51        ad 	 */
    358  1.51        ad 	if (!again) {
    359  1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    360  1.51        ad 		/* Basic init. */
    361   1.2        ad 		cpu_intr_init(ci);
    362  1.40        ad 		cpu_get_tsc_freq(ci);
    363   1.2        ad 		cpu_init(ci);
    364   1.2        ad 		cpu_set_tss_gates(ci);
    365   1.2        ad 		pmap_cpu_init_late(ci);
    366  1.51        ad 		if (caa->cpu_role != CPU_ROLE_SP) {
    367  1.51        ad 			/* Enable lapic. */
    368  1.51        ad 			lapic_enable();
    369  1.51        ad 			lapic_set_lvt();
    370  1.51        ad 			lapic_calibrate_timer(ci);
    371  1.51        ad 		}
    372  1.51        ad 		/* Make sure DELAY() is initialized. */
    373  1.51        ad 		DELAY(1);
    374  1.51        ad 		again = true;
    375  1.51        ad 	}
    376  1.51        ad 
    377  1.51        ad 	/* further PCB init done later. */
    378  1.51        ad 
    379  1.51        ad 	switch (caa->cpu_role) {
    380  1.51        ad 	case CPU_ROLE_SP:
    381  1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    382  1.51        ad 		cpu_identify(ci);
    383  1.53        ad 		x86_errata();
    384  1.37     joerg 		x86_cpu_idle_init();
    385   1.2        ad 		break;
    386   1.2        ad 
    387   1.2        ad 	case CPU_ROLE_BP:
    388  1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    389  1.40        ad 		cpu_identify(ci);
    390  1.53        ad 		x86_errata();
    391  1.37     joerg 		x86_cpu_idle_init();
    392   1.2        ad 		break;
    393   1.2        ad 
    394   1.2        ad 	case CPU_ROLE_AP:
    395   1.2        ad 		/*
    396   1.2        ad 		 * report on an AP
    397   1.2        ad 		 */
    398   1.2        ad 		cpu_intr_init(ci);
    399   1.2        ad 		gdt_alloc_cpu(ci);
    400   1.2        ad 		cpu_set_tss_gates(ci);
    401   1.2        ad 		pmap_cpu_init_early(ci);
    402   1.2        ad 		pmap_cpu_init_late(ci);
    403   1.2        ad 		cpu_start_secondary(ci);
    404   1.2        ad 		if (ci->ci_flags & CPUF_PRESENT) {
    405  1.59    cegger 			struct cpu_info *tmp;
    406  1.59    cegger 
    407  1.40        ad 			cpu_identify(ci);
    408  1.59    cegger 			tmp = cpu_info_list;
    409  1.59    cegger 			while (tmp->ci_next)
    410  1.59    cegger 				tmp = tmp->ci_next;
    411  1.59    cegger 
    412  1.59    cegger 			tmp->ci_next = ci;
    413   1.2        ad 		}
    414   1.2        ad 		break;
    415   1.2        ad 
    416   1.2        ad 	default:
    417  1.28    cegger 		aprint_normal("\n");
    418   1.2        ad 		panic("unknown processor type??\n");
    419   1.2        ad 	}
    420  1.51        ad 
    421  1.47        ad 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    422   1.2        ad 
    423  1.12  jmcneill 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    424  1.12  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    425  1.12  jmcneill 
    426   1.2        ad 	if (mp_verbose) {
    427   1.2        ad 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    428   1.2        ad 
    429  1.47        ad 		aprint_verbose_dev(self,
    430  1.28    cegger 		    "idle lwp at %p, idle sp at %p\n",
    431  1.28    cegger 		    l,
    432   1.2        ad #ifdef i386
    433   1.2        ad 		    (void *)l->l_addr->u_pcb.pcb_esp
    434   1.2        ad #else
    435   1.2        ad 		    (void *)l->l_addr->u_pcb.pcb_rsp
    436   1.2        ad #endif
    437   1.2        ad 		);
    438   1.2        ad 	}
    439   1.2        ad }
    440   1.2        ad 
    441   1.2        ad /*
    442   1.2        ad  * Initialize the processor appropriately.
    443   1.2        ad  */
    444   1.2        ad 
    445   1.2        ad void
    446   1.9        ad cpu_init(struct cpu_info *ci)
    447   1.2        ad {
    448   1.2        ad 
    449   1.2        ad 	lcr0(rcr0() | CR0_WP);
    450   1.2        ad 
    451   1.2        ad 	/*
    452   1.2        ad 	 * On a P6 or above, enable global TLB caching if the
    453   1.2        ad 	 * hardware supports it.
    454   1.2        ad 	 */
    455   1.2        ad 	if (cpu_feature & CPUID_PGE)
    456   1.2        ad 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    457   1.2        ad 
    458   1.2        ad 	/*
    459   1.2        ad 	 * If we have FXSAVE/FXRESTOR, use them.
    460   1.2        ad 	 */
    461   1.2        ad 	if (cpu_feature & CPUID_FXSR) {
    462   1.2        ad 		lcr4(rcr4() | CR4_OSFXSR);
    463   1.2        ad 
    464   1.2        ad 		/*
    465   1.2        ad 		 * If we have SSE/SSE2, enable XMM exceptions.
    466   1.2        ad 		 */
    467   1.2        ad 		if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
    468   1.2        ad 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    469   1.2        ad 	}
    470   1.2        ad 
    471   1.2        ad #ifdef MTRR
    472   1.2        ad 	/*
    473   1.2        ad 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    474   1.2        ad 	 */
    475   1.2        ad 	if (cpu_feature & CPUID_MTRR) {
    476   1.2        ad 		if ((ci->ci_flags & CPUF_AP) == 0)
    477   1.2        ad 			i686_mtrr_init_first();
    478   1.2        ad 		mtrr_init_cpu(ci);
    479   1.2        ad 	}
    480   1.2        ad 
    481   1.2        ad #ifdef i386
    482   1.2        ad 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    483   1.2        ad 		/*
    484   1.2        ad 		 * Must be a K6-2 Step >= 7 or a K6-III.
    485   1.2        ad 		 */
    486   1.2        ad 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    487   1.2        ad 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    488   1.2        ad 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    489   1.2        ad 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    490   1.2        ad 				mtrr_funcs = &k6_mtrr_funcs;
    491   1.2        ad 				k6_mtrr_init_first();
    492   1.2        ad 				mtrr_init_cpu(ci);
    493   1.2        ad 			}
    494   1.2        ad 		}
    495   1.2        ad 	}
    496   1.2        ad #endif	/* i386 */
    497   1.2        ad #endif /* MTRR */
    498   1.2        ad 
    499   1.9        ad 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    500   1.9        ad 
    501  1.38        ad 	if (ci != &cpu_info_primary) {
    502  1.38        ad 		/* Synchronize TSC again, and check for drift. */
    503  1.38        ad 		wbinvd();
    504  1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    505  1.38        ad 		tsc_sync_ap(ci);
    506  1.38        ad 		tsc_sync_ap(ci);
    507  1.38        ad 	} else {
    508  1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    509  1.38        ad 	}
    510   1.2        ad }
    511   1.2        ad 
    512   1.2        ad void
    513  1.12  jmcneill cpu_boot_secondary_processors(void)
    514   1.2        ad {
    515   1.2        ad 	struct cpu_info *ci;
    516   1.2        ad 	u_long i;
    517   1.2        ad 
    518   1.5        ad 	/* Now that we know the number of CPUs, patch the text segment. */
    519  1.60        ad 	x86_patch(false);
    520   1.5        ad 
    521  1.54        ad 	for (i=0; i < maxcpus; i++) {
    522  1.57        ad 		ci = cpu_lookup(i);
    523   1.2        ad 		if (ci == NULL)
    524   1.2        ad 			continue;
    525   1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    526   1.2        ad 			continue;
    527   1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    528   1.2        ad 			continue;
    529   1.2        ad 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    530   1.2        ad 			continue;
    531   1.2        ad 		cpu_boot_secondary(ci);
    532   1.2        ad 	}
    533   1.2        ad 
    534   1.2        ad 	x86_mp_online = true;
    535  1.38        ad 
    536  1.38        ad 	/* Now that we know about the TSC, attach the timecounter. */
    537  1.38        ad 	tsc_tc_init();
    538  1.55        ad 
    539  1.55        ad 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    540  1.55        ad 	vm_page_zero_enable = ((cpu_feature & CPUID_SSE2) != 0);
    541   1.2        ad }
    542   1.2        ad 
    543   1.2        ad static void
    544   1.2        ad cpu_init_idle_lwp(struct cpu_info *ci)
    545   1.2        ad {
    546   1.2        ad 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    547   1.2        ad 	struct pcb *pcb = &l->l_addr->u_pcb;
    548   1.2        ad 
    549   1.2        ad 	pcb->pcb_cr0 = rcr0();
    550   1.2        ad }
    551   1.2        ad 
    552   1.2        ad void
    553  1.12  jmcneill cpu_init_idle_lwps(void)
    554   1.2        ad {
    555   1.2        ad 	struct cpu_info *ci;
    556   1.2        ad 	u_long i;
    557   1.2        ad 
    558  1.54        ad 	for (i = 0; i < maxcpus; i++) {
    559  1.57        ad 		ci = cpu_lookup(i);
    560   1.2        ad 		if (ci == NULL)
    561   1.2        ad 			continue;
    562   1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    563   1.2        ad 			continue;
    564   1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    565   1.2        ad 			continue;
    566   1.2        ad 		cpu_init_idle_lwp(ci);
    567   1.2        ad 	}
    568   1.2        ad }
    569   1.2        ad 
    570   1.2        ad void
    571  1.12  jmcneill cpu_start_secondary(struct cpu_info *ci)
    572   1.2        ad {
    573  1.38        ad 	extern paddr_t mp_pdirpa;
    574  1.38        ad 	u_long psl;
    575   1.2        ad 	int i;
    576   1.2        ad 
    577  1.12  jmcneill 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    578   1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    579   1.2        ad 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    580  1.45        ad 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    581  1.25        ad 		return;
    582  1.45        ad 	}
    583   1.2        ad 
    584   1.2        ad 	/*
    585  1.50        ad 	 * Wait for it to become ready.   Setting cpu_starting opens the
    586  1.50        ad 	 * initial gate and allows the AP to start soft initialization.
    587   1.2        ad 	 */
    588  1.50        ad 	KASSERT(cpu_starting == NULL);
    589  1.50        ad 	cpu_starting = ci;
    590  1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    591  1.24        ad #ifdef MPDEBUG
    592  1.24        ad 		extern int cpu_trace[3];
    593  1.24        ad 		static int otrace[3];
    594  1.24        ad 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    595  1.26    cegger 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    596  1.26    cegger 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    597  1.24        ad 			memcpy(otrace, cpu_trace, sizeof(otrace));
    598  1.24        ad 		}
    599  1.24        ad #endif
    600  1.11        ad 		i8254_delay(10);
    601   1.2        ad 	}
    602  1.38        ad 
    603   1.9        ad 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    604  1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    605   1.2        ad #if defined(MPDEBUG) && defined(DDB)
    606   1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    607   1.2        ad 		Debugger();
    608   1.2        ad #endif
    609  1.38        ad 	} else {
    610  1.38        ad 		/*
    611  1.38        ad 		 * Synchronize time stamp counters.  Invalidate cache and do twice
    612  1.38        ad 		 * to try and minimize possible cache effects.  Disable interrupts
    613  1.38        ad 		 * to try and rule out any external interference.
    614  1.38        ad 		 */
    615  1.38        ad 		psl = x86_read_psl();
    616  1.38        ad 		x86_disable_intr();
    617  1.38        ad 		wbinvd();
    618  1.38        ad 		tsc_sync_bp(ci);
    619  1.38        ad 		tsc_sync_bp(ci);
    620  1.38        ad 		x86_write_psl(psl);
    621   1.2        ad 	}
    622   1.2        ad 
    623   1.2        ad 	CPU_START_CLEANUP(ci);
    624  1.45        ad 	cpu_starting = NULL;
    625   1.2        ad }
    626   1.2        ad 
    627   1.2        ad void
    628  1.12  jmcneill cpu_boot_secondary(struct cpu_info *ci)
    629   1.2        ad {
    630  1.38        ad 	int64_t drift;
    631  1.38        ad 	u_long psl;
    632   1.2        ad 	int i;
    633   1.2        ad 
    634   1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    635  1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    636  1.11        ad 		i8254_delay(10);
    637   1.2        ad 	}
    638   1.9        ad 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    639  1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    640   1.2        ad #if defined(MPDEBUG) && defined(DDB)
    641   1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    642   1.2        ad 		Debugger();
    643   1.2        ad #endif
    644  1.38        ad 	} else {
    645  1.38        ad 		/* Synchronize TSC again, check for drift. */
    646  1.38        ad 		drift = ci->ci_data.cpu_cc_skew;
    647  1.38        ad 		psl = x86_read_psl();
    648  1.38        ad 		x86_disable_intr();
    649  1.38        ad 		wbinvd();
    650  1.38        ad 		tsc_sync_bp(ci);
    651  1.38        ad 		tsc_sync_bp(ci);
    652  1.38        ad 		x86_write_psl(psl);
    653  1.38        ad 		drift -= ci->ci_data.cpu_cc_skew;
    654  1.38        ad 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    655  1.38        ad 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    656  1.38        ad 		tsc_sync_drift(drift);
    657   1.2        ad 	}
    658   1.2        ad }
    659   1.2        ad 
    660   1.2        ad /*
    661   1.2        ad  * The CPU ends up here when its ready to run
    662   1.2        ad  * This is called from code in mptramp.s; at this point, we are running
    663   1.2        ad  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    664   1.2        ad  * this processor will enter the idle loop and start looking for work.
    665   1.2        ad  */
    666   1.2        ad void
    667   1.2        ad cpu_hatch(void *v)
    668   1.2        ad {
    669   1.2        ad 	struct cpu_info *ci = (struct cpu_info *)v;
    670   1.6        ad 	int s, i;
    671   1.2        ad 
    672   1.2        ad #ifdef __x86_64__
    673  1.12  jmcneill 	cpu_init_msrs(ci, true);
    674   1.2        ad #endif
    675  1.40        ad 	cpu_probe(ci);
    676  1.46        ad 
    677  1.46        ad 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    678  1.46        ad 	/* cpu_get_tsc_freq(ci); */
    679  1.38        ad 
    680   1.8        ad 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    681  1.38        ad 
    682  1.38        ad 	/*
    683  1.38        ad 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    684  1.38        ad 	 * to try and minimize possible cache effects.  Note that interrupts
    685  1.38        ad 	 * are off at this point.
    686  1.38        ad 	 */
    687  1.38        ad 	wbinvd();
    688   1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    689  1.38        ad 	tsc_sync_ap(ci);
    690  1.38        ad 	tsc_sync_ap(ci);
    691  1.38        ad 
    692  1.38        ad 	/*
    693  1.38        ad 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    694  1.38        ad 	 * in order to make the TSC drift as much as possible. so that
    695  1.38        ad 	 * we can detect it later.  If not available, try 'pause'.
    696  1.38        ad 	 * We'd like to use 'hlt', but we have interrupts off.
    697  1.38        ad 	 */
    698   1.6        ad 	while ((ci->ci_flags & CPUF_GO) == 0) {
    699  1.38        ad 		if ((ci->ci_feature2_flags & CPUID2_MONITOR) != 0) {
    700  1.38        ad 			x86_monitor(&ci->ci_flags, 0, 0);
    701  1.38        ad 			if ((ci->ci_flags & CPUF_GO) != 0) {
    702  1.38        ad 				continue;
    703  1.38        ad 			}
    704  1.38        ad 			x86_mwait(0, 0);
    705  1.38        ad 		} else {
    706  1.38        ad 			for (i = 10000; i != 0; i--) {
    707  1.38        ad 				x86_pause();
    708  1.38        ad 			}
    709  1.38        ad 		}
    710   1.6        ad 	}
    711   1.5        ad 
    712  1.26    cegger 	/* Because the text may have been patched in x86_patch(). */
    713   1.5        ad 	wbinvd();
    714   1.5        ad 	x86_flush();
    715   1.5        ad 
    716   1.8        ad 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    717   1.2        ad 
    718  1.12  jmcneill 	lcr3(pmap_kernel()->pm_pdirpa);
    719  1.12  jmcneill 	curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
    720   1.2        ad 	lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
    721   1.2        ad 	cpu_init_idt();
    722   1.8        ad 	gdt_init_cpu(ci);
    723   1.8        ad 	lapic_enable();
    724   1.2        ad 	lapic_set_lvt();
    725   1.8        ad 	lapic_initclocks();
    726   1.2        ad 
    727   1.2        ad #ifdef i386
    728  1.62    bouyer #if NNPX > 0
    729   1.2        ad 	npxinit(ci);
    730  1.62    bouyer #endif
    731   1.2        ad #else
    732   1.2        ad 	fpuinit(ci);
    733   1.4      yamt #endif
    734   1.2        ad 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    735  1.15      yamt 	ltr(ci->ci_tss_sel);
    736   1.2        ad 
    737   1.2        ad 	cpu_init(ci);
    738   1.7        ad 	cpu_get_tsc_freq(ci);
    739   1.2        ad 
    740   1.2        ad 	s = splhigh();
    741   1.2        ad #ifdef i386
    742   1.2        ad 	lapic_tpr = 0;
    743   1.2        ad #else
    744   1.2        ad 	lcr8(0);
    745   1.2        ad #endif
    746   1.3        ad 	x86_enable_intr();
    747   1.2        ad 	splx(s);
    748   1.6        ad 	x86_errata();
    749   1.2        ad 
    750  1.42        ad 	aprint_debug_dev(ci->ci_dev, "running\n");
    751   1.2        ad }
    752   1.2        ad 
    753   1.2        ad #if defined(DDB)
    754   1.2        ad 
    755   1.2        ad #include <ddb/db_output.h>
    756   1.2        ad #include <machine/db_machdep.h>
    757   1.2        ad 
    758   1.2        ad /*
    759   1.2        ad  * Dump CPU information from ddb.
    760   1.2        ad  */
    761   1.2        ad void
    762   1.2        ad cpu_debug_dump(void)
    763   1.2        ad {
    764   1.2        ad 	struct cpu_info *ci;
    765   1.2        ad 	CPU_INFO_ITERATOR cii;
    766   1.2        ad 
    767  1.29      yamt 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    768   1.2        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    769   1.2        ad 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    770   1.2        ad 		    ci,
    771  1.27    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    772   1.2        ad 		    (long)ci->ci_cpuid,
    773   1.2        ad 		    ci->ci_flags, ci->ci_ipis,
    774   1.2        ad 		    ci->ci_curlwp,
    775   1.2        ad 		    ci->ci_fpcurlwp);
    776   1.2        ad 	}
    777   1.2        ad }
    778   1.2        ad #endif
    779   1.2        ad 
    780   1.2        ad static void
    781  1.12  jmcneill cpu_copy_trampoline(void)
    782   1.2        ad {
    783   1.2        ad 	/*
    784   1.2        ad 	 * Copy boot code.
    785   1.2        ad 	 */
    786   1.2        ad 	extern u_char cpu_spinup_trampoline[];
    787   1.2        ad 	extern u_char cpu_spinup_trampoline_end[];
    788  1.12  jmcneill 
    789  1.12  jmcneill 	vaddr_t mp_trampoline_vaddr;
    790  1.12  jmcneill 
    791  1.12  jmcneill 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    792  1.12  jmcneill 	    UVM_KMF_VAONLY);
    793  1.12  jmcneill 
    794  1.12  jmcneill 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    795  1.12  jmcneill 	    VM_PROT_READ | VM_PROT_WRITE);
    796   1.2        ad 	pmap_update(pmap_kernel());
    797  1.12  jmcneill 	memcpy((void *)mp_trampoline_vaddr,
    798   1.2        ad 	    cpu_spinup_trampoline,
    799  1.26    cegger 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    800  1.12  jmcneill 
    801  1.12  jmcneill 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    802  1.12  jmcneill 	pmap_update(pmap_kernel());
    803  1.12  jmcneill 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    804   1.2        ad }
    805   1.2        ad 
    806   1.2        ad #ifdef i386
    807   1.2        ad static void
    808  1.15      yamt tss_init(struct i386tss *tss, void *stack, void *func)
    809   1.2        ad {
    810   1.2        ad 	memset(tss, 0, sizeof *tss);
    811   1.2        ad 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    812   1.2        ad 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    813   1.2        ad 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    814   1.2        ad 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    815   1.2        ad 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    816   1.2        ad 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    817   1.2        ad 	tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
    818   1.2        ad 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    819   1.2        ad 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    820   1.2        ad 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    821   1.2        ad 	tss->__tss_eip = (int)func;
    822   1.2        ad }
    823   1.2        ad 
    824   1.2        ad /* XXX */
    825   1.2        ad #define IDTVEC(name)	__CONCAT(X, name)
    826   1.2        ad typedef void (vector)(void);
    827   1.2        ad extern vector IDTVEC(tss_trap08);
    828   1.2        ad #ifdef DDB
    829   1.2        ad extern vector Xintrddbipi;
    830   1.2        ad extern int ddb_vec;
    831   1.2        ad #endif
    832   1.2        ad 
    833   1.2        ad static void
    834   1.2        ad cpu_set_tss_gates(struct cpu_info *ci)
    835   1.2        ad {
    836   1.2        ad 	struct segment_descriptor sd;
    837   1.2        ad 
    838   1.2        ad 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    839   1.2        ad 	    UVM_KMF_WIRED);
    840  1.15      yamt 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    841   1.2        ad 	    IDTVEC(tss_trap08));
    842   1.2        ad 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    843   1.2        ad 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    844   1.2        ad 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    845   1.2        ad 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    846   1.2        ad 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    847   1.2        ad 
    848  1.44        ad #if defined(DDB)
    849   1.2        ad 	/*
    850   1.2        ad 	 * Set up separate handler for the DDB IPI, so that it doesn't
    851   1.2        ad 	 * stomp on a possibly corrupted stack.
    852   1.2        ad 	 *
    853   1.2        ad 	 * XXX overwriting the gate set in db_machine_init.
    854   1.2        ad 	 * Should rearrange the code so that it's set only once.
    855   1.2        ad 	 */
    856   1.2        ad 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    857   1.2        ad 	    UVM_KMF_WIRED);
    858  1.15      yamt 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    859   1.2        ad 
    860   1.2        ad 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    861   1.2        ad 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    862   1.2        ad 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    863   1.2        ad 
    864   1.2        ad 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    865   1.2        ad 	    GSEL(GIPITSS_SEL, SEL_KPL));
    866   1.2        ad #endif
    867   1.2        ad }
    868   1.2        ad #else
    869   1.2        ad static void
    870   1.2        ad cpu_set_tss_gates(struct cpu_info *ci)
    871   1.2        ad {
    872   1.2        ad 
    873   1.2        ad }
    874   1.2        ad #endif	/* i386 */
    875   1.2        ad 
    876   1.2        ad int
    877  1.14     joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
    878   1.2        ad {
    879  1.44        ad 	unsigned short dwordptr[2];
    880   1.2        ad 	int error;
    881  1.14     joerg 
    882  1.14     joerg 	/*
    883  1.14     joerg 	 * Bootstrap code must be addressable in real mode
    884  1.14     joerg 	 * and it must be page aligned.
    885  1.14     joerg 	 */
    886  1.14     joerg 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    887   1.2        ad 
    888   1.2        ad 	/*
    889   1.2        ad 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    890   1.2        ad 	 */
    891   1.2        ad 
    892   1.2        ad 	outb(IO_RTC, NVRAM_RESET);
    893   1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    894   1.2        ad 
    895   1.2        ad 	/*
    896   1.2        ad 	 * "and the warm reset vector (DWORD based at 40:67) to point
    897   1.2        ad 	 * to the AP startup code ..."
    898   1.2        ad 	 */
    899   1.2        ad 
    900   1.2        ad 	dwordptr[0] = 0;
    901  1.14     joerg 	dwordptr[1] = target >> 4;
    902   1.2        ad 
    903  1.25        ad 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    904   1.2        ad 
    905  1.25        ad 	if ((cpu_feature & CPUID_APIC) == 0) {
    906  1.25        ad 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
    907  1.25        ad 		return ENODEV;
    908  1.25        ad 	}
    909  1.25        ad 
    910   1.2        ad 	/*
    911  1.51        ad 	 * ... prior to executing the following sequence:".  We'll also add in
    912  1.51        ad 	 * local cache flush, in case the BIOS has left the AP with its cache
    913  1.51        ad 	 * disabled.  It may not be able to cope with MP coherency.
    914   1.2        ad 	 */
    915  1.51        ad 	wbinvd();
    916   1.2        ad 
    917   1.2        ad 	if (ci->ci_flags & CPUF_AP) {
    918  1.42        ad 		error = x86_ipi_init(ci->ci_cpuid);
    919  1.26    cegger 		if (error != 0) {
    920  1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    921  1.50        ad 			    __func__);
    922   1.2        ad 			return error;
    923  1.25        ad 		}
    924  1.11        ad 		i8254_delay(10000);
    925   1.2        ad 
    926  1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    927  1.26    cegger 		if (error != 0) {
    928  1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    929  1.50        ad 			    __func__);
    930  1.25        ad 			return error;
    931  1.25        ad 		}
    932  1.25        ad 		i8254_delay(200);
    933   1.2        ad 
    934  1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    935  1.26    cegger 		if (error != 0) {
    936  1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
    937  1.50        ad 			    __func__);
    938  1.25        ad 			return error;
    939   1.2        ad 		}
    940  1.25        ad 		i8254_delay(200);
    941   1.2        ad 	}
    942  1.44        ad 
    943   1.2        ad 	return 0;
    944   1.2        ad }
    945   1.2        ad 
    946   1.2        ad void
    947   1.2        ad mp_cpu_start_cleanup(struct cpu_info *ci)
    948   1.2        ad {
    949   1.2        ad 	/*
    950   1.2        ad 	 * Ensure the NVRAM reset byte contains something vaguely sane.
    951   1.2        ad 	 */
    952   1.2        ad 
    953   1.2        ad 	outb(IO_RTC, NVRAM_RESET);
    954   1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_RST);
    955   1.2        ad }
    956   1.2        ad 
    957   1.2        ad #ifdef __x86_64__
    958   1.2        ad typedef void (vector)(void);
    959   1.2        ad extern vector Xsyscall, Xsyscall32;
    960   1.2        ad 
    961   1.2        ad void
    962  1.12  jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
    963   1.2        ad {
    964   1.2        ad 	wrmsr(MSR_STAR,
    965   1.2        ad 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
    966   1.2        ad 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
    967   1.2        ad 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
    968   1.2        ad 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
    969   1.2        ad 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
    970   1.2        ad 
    971  1.12  jmcneill 	if (full) {
    972  1.12  jmcneill 		wrmsr(MSR_FSBASE, 0);
    973  1.27    cegger 		wrmsr(MSR_GSBASE, (uint64_t)ci);
    974  1.12  jmcneill 		wrmsr(MSR_KERNELGSBASE, 0);
    975  1.12  jmcneill 	}
    976   1.2        ad 
    977   1.2        ad 	if (cpu_feature & CPUID_NOX)
    978   1.2        ad 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
    979   1.2        ad }
    980   1.2        ad #endif	/* __x86_64__ */
    981   1.7        ad 
    982  1.18     joerg void
    983  1.18     joerg cpu_offline_md(void)
    984  1.18     joerg {
    985  1.18     joerg 	int s;
    986  1.18     joerg 
    987  1.18     joerg 	s = splhigh();
    988  1.62    bouyer #ifdef i386
    989  1.62    bouyer #if NNPX > 0
    990  1.18     joerg 	npxsave_cpu(true);
    991  1.62    bouyer #endif
    992  1.18     joerg #else
    993  1.18     joerg 	fpusave_cpu(true);
    994  1.18     joerg #endif
    995  1.18     joerg 	splx(s);
    996  1.18     joerg }
    997  1.18     joerg 
    998  1.12  jmcneill /* XXX joerg restructure and restart CPUs individually */
    999  1.12  jmcneill static bool
   1000  1.22    dyoung cpu_suspend(device_t dv PMF_FN_ARGS)
   1001  1.12  jmcneill {
   1002  1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1003  1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1004  1.18     joerg 	int err;
   1005  1.12  jmcneill 
   1006  1.13     joerg 	if (ci->ci_flags & CPUF_PRIMARY)
   1007  1.12  jmcneill 		return true;
   1008  1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1009  1.12  jmcneill 		return true;
   1010  1.12  jmcneill 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1011  1.12  jmcneill 		return true;
   1012  1.12  jmcneill 
   1013  1.20  jmcneill 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1014  1.17     joerg 
   1015  1.20  jmcneill 	if (sc->sc_wasonline) {
   1016  1.20  jmcneill 		mutex_enter(&cpu_lock);
   1017  1.58     rmind 		err = cpu_setstate(ci, false);
   1018  1.20  jmcneill 		mutex_exit(&cpu_lock);
   1019  1.20  jmcneill 
   1020  1.20  jmcneill 		if (err)
   1021  1.20  jmcneill 			return false;
   1022  1.20  jmcneill 	}
   1023  1.17     joerg 
   1024  1.17     joerg 	return true;
   1025  1.12  jmcneill }
   1026  1.12  jmcneill 
   1027  1.12  jmcneill static bool
   1028  1.22    dyoung cpu_resume(device_t dv PMF_FN_ARGS)
   1029  1.12  jmcneill {
   1030  1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1031  1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1032  1.20  jmcneill 	int err = 0;
   1033  1.12  jmcneill 
   1034  1.13     joerg 	if (ci->ci_flags & CPUF_PRIMARY)
   1035  1.12  jmcneill 		return true;
   1036  1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1037  1.12  jmcneill 		return true;
   1038  1.12  jmcneill 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1039  1.12  jmcneill 		return true;
   1040  1.12  jmcneill 
   1041  1.20  jmcneill 	if (sc->sc_wasonline) {
   1042  1.20  jmcneill 		mutex_enter(&cpu_lock);
   1043  1.58     rmind 		err = cpu_setstate(ci, true);
   1044  1.20  jmcneill 		mutex_exit(&cpu_lock);
   1045  1.20  jmcneill 	}
   1046  1.13     joerg 
   1047  1.13     joerg 	return err == 0;
   1048  1.12  jmcneill }
   1049  1.12  jmcneill 
   1050   1.7        ad void
   1051   1.7        ad cpu_get_tsc_freq(struct cpu_info *ci)
   1052   1.7        ad {
   1053   1.7        ad 	uint64_t last_tsc;
   1054   1.7        ad 
   1055   1.7        ad 	if (ci->ci_feature_flags & CPUID_TSC) {
   1056  1.45        ad 		last_tsc = rdmsr(MSR_TSC);
   1057   1.7        ad 		i8254_delay(100000);
   1058  1.45        ad 		ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
   1059   1.7        ad 	}
   1060   1.7        ad }
   1061  1.37     joerg 
   1062  1.37     joerg void
   1063  1.37     joerg x86_cpu_idle_mwait(void)
   1064  1.37     joerg {
   1065  1.37     joerg 	struct cpu_info *ci = curcpu();
   1066  1.37     joerg 
   1067  1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1068  1.37     joerg 
   1069  1.37     joerg 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1070  1.37     joerg 	if (__predict_false(ci->ci_want_resched)) {
   1071  1.37     joerg 		return;
   1072  1.37     joerg 	}
   1073  1.37     joerg 	x86_mwait(0, 0);
   1074  1.37     joerg }
   1075  1.37     joerg 
   1076  1.37     joerg void
   1077  1.37     joerg x86_cpu_idle_halt(void)
   1078  1.37     joerg {
   1079  1.37     joerg 	struct cpu_info *ci = curcpu();
   1080  1.37     joerg 
   1081  1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1082  1.37     joerg 
   1083  1.37     joerg 	x86_disable_intr();
   1084  1.37     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1085  1.37     joerg 		x86_stihlt();
   1086  1.37     joerg 	} else {
   1087  1.37     joerg 		x86_enable_intr();
   1088  1.37     joerg 	}
   1089  1.37     joerg }
   1090