cpu.c revision 1.64 1 1.64 cegger /* $NetBSD: cpu.c,v 1.64 2009/11/07 07:27:49 cegger Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.38 ad * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.64 cegger __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.64 2009/11/07 07:27:49 cegger Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.2 ad
71 1.2 ad #include "lapic.h"
72 1.2 ad #include "ioapic.h"
73 1.2 ad
74 1.62 bouyer #ifdef i386
75 1.62 bouyer #include "npx.h"
76 1.62 bouyer #endif
77 1.62 bouyer
78 1.2 ad #include <sys/param.h>
79 1.2 ad #include <sys/proc.h>
80 1.2 ad #include <sys/user.h>
81 1.2 ad #include <sys/systm.h>
82 1.2 ad #include <sys/device.h>
83 1.61 cegger #include <sys/kmem.h>
84 1.9 ad #include <sys/cpu.h>
85 1.9 ad #include <sys/atomic.h>
86 1.35 ad #include <sys/reboot.h>
87 1.2 ad
88 1.2 ad #include <uvm/uvm_extern.h>
89 1.2 ad
90 1.2 ad #include <machine/cpufunc.h>
91 1.2 ad #include <machine/cpuvar.h>
92 1.2 ad #include <machine/pmap.h>
93 1.2 ad #include <machine/vmparam.h>
94 1.2 ad #include <machine/mpbiosvar.h>
95 1.2 ad #include <machine/pcb.h>
96 1.2 ad #include <machine/specialreg.h>
97 1.2 ad #include <machine/segments.h>
98 1.2 ad #include <machine/gdt.h>
99 1.2 ad #include <machine/mtrr.h>
100 1.2 ad #include <machine/pio.h>
101 1.38 ad #include <machine/cpu_counter.h>
102 1.2 ad
103 1.2 ad #ifdef i386
104 1.2 ad #include <machine/tlog.h>
105 1.2 ad #endif
106 1.2 ad
107 1.2 ad #include <machine/apicvar.h>
108 1.2 ad #include <machine/i82489reg.h>
109 1.2 ad #include <machine/i82489var.h>
110 1.2 ad
111 1.2 ad #include <dev/ic/mc146818reg.h>
112 1.2 ad #include <i386/isa/nvram.h>
113 1.2 ad #include <dev/isa/isareg.h>
114 1.2 ad
115 1.38 ad #include "tsc.h"
116 1.38 ad
117 1.54 ad #if MAXCPUS > 32
118 1.54 ad #error cpu_info contains 32bit bitmasks
119 1.54 ad #endif
120 1.54 ad
121 1.23 cube int cpu_match(device_t, cfdata_t, void *);
122 1.23 cube void cpu_attach(device_t, device_t, void *);
123 1.2 ad
124 1.22 dyoung static bool cpu_suspend(device_t PMF_FN_PROTO);
125 1.22 dyoung static bool cpu_resume(device_t PMF_FN_PROTO);
126 1.12 jmcneill
127 1.2 ad struct cpu_softc {
128 1.23 cube device_t sc_dev; /* device tree glue */
129 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
130 1.20 jmcneill bool sc_wasonline;
131 1.2 ad };
132 1.2 ad
133 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
134 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
135 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
136 1.2 ad mp_cpu_start_cleanup };
137 1.2 ad
138 1.2 ad
139 1.23 cube CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
140 1.2 ad cpu_match, cpu_attach, NULL, NULL);
141 1.2 ad
142 1.2 ad /*
143 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
144 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
145 1.2 ad * point at it.
146 1.2 ad */
147 1.2 ad #ifdef TRAPLOG
148 1.2 ad struct tlog tlog_primary;
149 1.2 ad #endif
150 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
151 1.2 ad .ci_dev = 0,
152 1.2 ad .ci_self = &cpu_info_primary,
153 1.2 ad .ci_idepth = -1,
154 1.2 ad .ci_curlwp = &lwp0,
155 1.43 ad .ci_curldt = -1,
156 1.2 ad #ifdef TRAPLOG
157 1.2 ad .ci_tlog_base = &tlog_primary,
158 1.2 ad #endif /* !TRAPLOG */
159 1.2 ad };
160 1.2 ad
161 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
162 1.2 ad
163 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
164 1.2 ad
165 1.2 ad #ifdef i386
166 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
167 1.2 ad #endif
168 1.2 ad
169 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
170 1.12 jmcneill
171 1.2 ad uint32_t cpus_attached = 0;
172 1.9 ad uint32_t cpus_running = 0;
173 1.2 ad
174 1.2 ad extern char x86_64_doubleflt_stack[];
175 1.2 ad
176 1.12 jmcneill bool x86_mp_online;
177 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
178 1.14 joerg static vaddr_t cmos_data_mapping;
179 1.45 ad struct cpu_info *cpu_starting;
180 1.2 ad
181 1.2 ad void cpu_hatch(void *);
182 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
183 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
184 1.2 ad static void cpu_copy_trampoline(void);
185 1.2 ad
186 1.2 ad /*
187 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
188 1.2 ad * the local APIC on the boot processor has been mapped.
189 1.2 ad *
190 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
191 1.2 ad */
192 1.2 ad void
193 1.9 ad cpu_init_first(void)
194 1.2 ad {
195 1.2 ad
196 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
197 1.2 ad cpu_copy_trampoline();
198 1.14 joerg
199 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
200 1.14 joerg if (cmos_data_mapping == 0)
201 1.14 joerg panic("No KVA for page 0");
202 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
203 1.14 joerg pmap_update(pmap_kernel());
204 1.2 ad }
205 1.2 ad
206 1.2 ad int
207 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
208 1.2 ad {
209 1.2 ad
210 1.2 ad return 1;
211 1.2 ad }
212 1.2 ad
213 1.2 ad static void
214 1.2 ad cpu_vm_init(struct cpu_info *ci)
215 1.2 ad {
216 1.2 ad int ncolors = 2, i;
217 1.2 ad
218 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
219 1.2 ad struct x86_cache_info *cai;
220 1.2 ad int tcolors;
221 1.2 ad
222 1.2 ad cai = &ci->ci_cinfo[i];
223 1.2 ad
224 1.2 ad tcolors = atop(cai->cai_totalsize);
225 1.2 ad switch(cai->cai_associativity) {
226 1.2 ad case 0xff:
227 1.2 ad tcolors = 1; /* fully associative */
228 1.2 ad break;
229 1.2 ad case 0:
230 1.2 ad case 1:
231 1.2 ad break;
232 1.2 ad default:
233 1.2 ad tcolors /= cai->cai_associativity;
234 1.2 ad }
235 1.2 ad ncolors = max(ncolors, tcolors);
236 1.32 tls /*
237 1.32 tls * If the desired number of colors is not a power of
238 1.32 tls * two, it won't be good. Find the greatest power of
239 1.32 tls * two which is an even divisor of the number of colors,
240 1.32 tls * to preserve even coloring of pages.
241 1.32 tls */
242 1.32 tls if (ncolors & (ncolors - 1) ) {
243 1.32 tls int try, picked = 1;
244 1.32 tls for (try = 1; try < ncolors; try *= 2) {
245 1.32 tls if (ncolors % try == 0) picked = try;
246 1.32 tls }
247 1.32 tls if (picked == 1) {
248 1.32 tls panic("desired number of cache colors %d is "
249 1.32 tls " > 1, but not even!", ncolors);
250 1.32 tls }
251 1.32 tls ncolors = picked;
252 1.32 tls }
253 1.2 ad }
254 1.2 ad
255 1.2 ad /*
256 1.2 ad * Knowing the size of the largest cache on this CPU, re-color
257 1.2 ad * our pages.
258 1.2 ad */
259 1.2 ad if (ncolors <= uvmexp.ncolors)
260 1.2 ad return;
261 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
262 1.2 ad uvm_page_recolor(ncolors);
263 1.2 ad }
264 1.2 ad
265 1.2 ad
266 1.2 ad void
267 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
268 1.2 ad {
269 1.23 cube struct cpu_softc *sc = device_private(self);
270 1.2 ad struct cpu_attach_args *caa = aux;
271 1.2 ad struct cpu_info *ci;
272 1.21 ad uintptr_t ptr;
273 1.2 ad int cpunum = caa->cpu_number;
274 1.51 ad static bool again;
275 1.2 ad
276 1.23 cube sc->sc_dev = self;
277 1.23 cube
278 1.48 ad if (cpus_attached == ~0) {
279 1.54 ad aprint_error(": increase MAXCPUS\n");
280 1.48 ad return;
281 1.48 ad }
282 1.48 ad
283 1.2 ad /*
284 1.2 ad * If we're an Application Processor, allocate a cpu_info
285 1.2 ad * structure, otherwise use the primary's.
286 1.2 ad */
287 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
288 1.36 ad if ((boothowto & RB_MD1) != 0) {
289 1.35 ad aprint_error(": multiprocessor boot disabled\n");
290 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
291 1.56 jmcneill aprint_error_dev(self,
292 1.56 jmcneill "couldn't establish power handler\n");
293 1.35 ad return;
294 1.35 ad }
295 1.2 ad aprint_naive(": Application Processor\n");
296 1.61 cegger ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
297 1.61 cegger KM_SLEEP);
298 1.21 ad ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) &
299 1.21 ad ~(CACHE_LINE_SIZE - 1));
300 1.2 ad memset(ci, 0, sizeof(*ci));
301 1.43 ad ci->ci_curldt = -1;
302 1.2 ad #ifdef TRAPLOG
303 1.61 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
304 1.2 ad #endif
305 1.2 ad } else {
306 1.2 ad aprint_naive(": %s Processor\n",
307 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
308 1.2 ad ci = &cpu_info_primary;
309 1.2 ad if (cpunum != lapic_cpu_number()) {
310 1.51 ad /* XXX should be done earlier. */
311 1.39 ad uint32_t reg;
312 1.39 ad aprint_verbose("\n");
313 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
314 1.47 ad " instead of at expected %d", lapic_cpu_number(),
315 1.23 cube cpunum);
316 1.39 ad reg = i82489_readreg(LAPIC_ID);
317 1.39 ad i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
318 1.39 ad (cpunum << LAPIC_ID_SHIFT));
319 1.2 ad }
320 1.47 ad if (cpunum != lapic_cpu_number()) {
321 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
322 1.47 ad }
323 1.2 ad }
324 1.2 ad
325 1.2 ad ci->ci_self = ci;
326 1.2 ad sc->sc_info = ci;
327 1.2 ad ci->ci_dev = self;
328 1.42 ad ci->ci_cpuid = caa->cpu_number;
329 1.2 ad ci->ci_func = caa->cpu_func;
330 1.2 ad
331 1.55 ad /* Must be before mi_cpu_attach(). */
332 1.55 ad cpu_vm_init(ci);
333 1.55 ad
334 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
335 1.2 ad int error;
336 1.2 ad
337 1.2 ad error = mi_cpu_attach(ci);
338 1.2 ad if (error != 0) {
339 1.2 ad aprint_normal("\n");
340 1.47 ad aprint_error_dev(self,
341 1.30 cegger "mi_cpu_attach failed with %d\n", error);
342 1.2 ad return;
343 1.2 ad }
344 1.15 yamt cpu_init_tss(ci);
345 1.2 ad } else {
346 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
347 1.2 ad }
348 1.2 ad
349 1.42 ad ci->ci_cpumask = (1 << cpu_index(ci));
350 1.2 ad pmap_reference(pmap_kernel());
351 1.2 ad ci->ci_pmap = pmap_kernel();
352 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
353 1.2 ad
354 1.51 ad /*
355 1.51 ad * Boot processor may not be attached first, but the below
356 1.51 ad * must be done to allow booting other processors.
357 1.51 ad */
358 1.51 ad if (!again) {
359 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
360 1.51 ad /* Basic init. */
361 1.2 ad cpu_intr_init(ci);
362 1.40 ad cpu_get_tsc_freq(ci);
363 1.2 ad cpu_init(ci);
364 1.2 ad cpu_set_tss_gates(ci);
365 1.2 ad pmap_cpu_init_late(ci);
366 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
367 1.51 ad /* Enable lapic. */
368 1.51 ad lapic_enable();
369 1.51 ad lapic_set_lvt();
370 1.51 ad lapic_calibrate_timer(ci);
371 1.51 ad }
372 1.51 ad /* Make sure DELAY() is initialized. */
373 1.51 ad DELAY(1);
374 1.51 ad again = true;
375 1.51 ad }
376 1.51 ad
377 1.51 ad /* further PCB init done later. */
378 1.51 ad
379 1.51 ad switch (caa->cpu_role) {
380 1.51 ad case CPU_ROLE_SP:
381 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
382 1.51 ad cpu_identify(ci);
383 1.53 ad x86_errata();
384 1.37 joerg x86_cpu_idle_init();
385 1.2 ad break;
386 1.2 ad
387 1.2 ad case CPU_ROLE_BP:
388 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
389 1.40 ad cpu_identify(ci);
390 1.53 ad x86_errata();
391 1.37 joerg x86_cpu_idle_init();
392 1.2 ad break;
393 1.2 ad
394 1.2 ad case CPU_ROLE_AP:
395 1.2 ad /*
396 1.2 ad * report on an AP
397 1.2 ad */
398 1.2 ad cpu_intr_init(ci);
399 1.2 ad gdt_alloc_cpu(ci);
400 1.2 ad cpu_set_tss_gates(ci);
401 1.2 ad pmap_cpu_init_early(ci);
402 1.2 ad pmap_cpu_init_late(ci);
403 1.2 ad cpu_start_secondary(ci);
404 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
405 1.59 cegger struct cpu_info *tmp;
406 1.59 cegger
407 1.40 ad cpu_identify(ci);
408 1.59 cegger tmp = cpu_info_list;
409 1.59 cegger while (tmp->ci_next)
410 1.59 cegger tmp = tmp->ci_next;
411 1.59 cegger
412 1.59 cegger tmp->ci_next = ci;
413 1.2 ad }
414 1.2 ad break;
415 1.2 ad
416 1.2 ad default:
417 1.28 cegger aprint_normal("\n");
418 1.2 ad panic("unknown processor type??\n");
419 1.2 ad }
420 1.51 ad
421 1.47 ad atomic_or_32(&cpus_attached, ci->ci_cpumask);
422 1.2 ad
423 1.12 jmcneill if (!pmf_device_register(self, cpu_suspend, cpu_resume))
424 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
425 1.12 jmcneill
426 1.2 ad if (mp_verbose) {
427 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
428 1.2 ad
429 1.47 ad aprint_verbose_dev(self,
430 1.28 cegger "idle lwp at %p, idle sp at %p\n",
431 1.28 cegger l,
432 1.2 ad #ifdef i386
433 1.2 ad (void *)l->l_addr->u_pcb.pcb_esp
434 1.2 ad #else
435 1.2 ad (void *)l->l_addr->u_pcb.pcb_rsp
436 1.2 ad #endif
437 1.2 ad );
438 1.2 ad }
439 1.2 ad }
440 1.2 ad
441 1.2 ad /*
442 1.2 ad * Initialize the processor appropriately.
443 1.2 ad */
444 1.2 ad
445 1.2 ad void
446 1.9 ad cpu_init(struct cpu_info *ci)
447 1.2 ad {
448 1.2 ad
449 1.2 ad lcr0(rcr0() | CR0_WP);
450 1.2 ad
451 1.2 ad /*
452 1.2 ad * On a P6 or above, enable global TLB caching if the
453 1.2 ad * hardware supports it.
454 1.2 ad */
455 1.2 ad if (cpu_feature & CPUID_PGE)
456 1.2 ad lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
457 1.2 ad
458 1.2 ad /*
459 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
460 1.2 ad */
461 1.2 ad if (cpu_feature & CPUID_FXSR) {
462 1.2 ad lcr4(rcr4() | CR4_OSFXSR);
463 1.2 ad
464 1.2 ad /*
465 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
466 1.2 ad */
467 1.2 ad if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
468 1.2 ad lcr4(rcr4() | CR4_OSXMMEXCPT);
469 1.2 ad }
470 1.2 ad
471 1.2 ad #ifdef MTRR
472 1.2 ad /*
473 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
474 1.2 ad */
475 1.2 ad if (cpu_feature & CPUID_MTRR) {
476 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
477 1.2 ad i686_mtrr_init_first();
478 1.2 ad mtrr_init_cpu(ci);
479 1.2 ad }
480 1.2 ad
481 1.2 ad #ifdef i386
482 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
483 1.2 ad /*
484 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
485 1.2 ad */
486 1.2 ad if (CPUID2FAMILY(ci->ci_signature) == 5) {
487 1.2 ad if (CPUID2MODEL(ci->ci_signature) > 8 ||
488 1.2 ad (CPUID2MODEL(ci->ci_signature) == 8 &&
489 1.2 ad CPUID2STEPPING(ci->ci_signature) >= 7)) {
490 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
491 1.2 ad k6_mtrr_init_first();
492 1.2 ad mtrr_init_cpu(ci);
493 1.2 ad }
494 1.2 ad }
495 1.2 ad }
496 1.2 ad #endif /* i386 */
497 1.2 ad #endif /* MTRR */
498 1.2 ad
499 1.9 ad atomic_or_32(&cpus_running, ci->ci_cpumask);
500 1.9 ad
501 1.38 ad if (ci != &cpu_info_primary) {
502 1.38 ad /* Synchronize TSC again, and check for drift. */
503 1.38 ad wbinvd();
504 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
505 1.38 ad tsc_sync_ap(ci);
506 1.38 ad } else {
507 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
508 1.38 ad }
509 1.2 ad }
510 1.2 ad
511 1.2 ad void
512 1.12 jmcneill cpu_boot_secondary_processors(void)
513 1.2 ad {
514 1.2 ad struct cpu_info *ci;
515 1.2 ad u_long i;
516 1.2 ad
517 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
518 1.60 ad x86_patch(false);
519 1.5 ad
520 1.54 ad for (i=0; i < maxcpus; i++) {
521 1.57 ad ci = cpu_lookup(i);
522 1.2 ad if (ci == NULL)
523 1.2 ad continue;
524 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
525 1.2 ad continue;
526 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
527 1.2 ad continue;
528 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
529 1.2 ad continue;
530 1.2 ad cpu_boot_secondary(ci);
531 1.2 ad }
532 1.2 ad
533 1.2 ad x86_mp_online = true;
534 1.38 ad
535 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
536 1.38 ad tsc_tc_init();
537 1.55 ad
538 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
539 1.55 ad vm_page_zero_enable = ((cpu_feature & CPUID_SSE2) != 0);
540 1.2 ad }
541 1.2 ad
542 1.2 ad static void
543 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
544 1.2 ad {
545 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
546 1.2 ad struct pcb *pcb = &l->l_addr->u_pcb;
547 1.2 ad
548 1.2 ad pcb->pcb_cr0 = rcr0();
549 1.2 ad }
550 1.2 ad
551 1.2 ad void
552 1.12 jmcneill cpu_init_idle_lwps(void)
553 1.2 ad {
554 1.2 ad struct cpu_info *ci;
555 1.2 ad u_long i;
556 1.2 ad
557 1.54 ad for (i = 0; i < maxcpus; i++) {
558 1.57 ad ci = cpu_lookup(i);
559 1.2 ad if (ci == NULL)
560 1.2 ad continue;
561 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
562 1.2 ad continue;
563 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
564 1.2 ad continue;
565 1.2 ad cpu_init_idle_lwp(ci);
566 1.2 ad }
567 1.2 ad }
568 1.2 ad
569 1.2 ad void
570 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
571 1.2 ad {
572 1.38 ad extern paddr_t mp_pdirpa;
573 1.38 ad u_long psl;
574 1.2 ad int i;
575 1.2 ad
576 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
577 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
578 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
579 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
580 1.25 ad return;
581 1.45 ad }
582 1.2 ad
583 1.2 ad /*
584 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
585 1.50 ad * initial gate and allows the AP to start soft initialization.
586 1.2 ad */
587 1.50 ad KASSERT(cpu_starting == NULL);
588 1.50 ad cpu_starting = ci;
589 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
590 1.24 ad #ifdef MPDEBUG
591 1.24 ad extern int cpu_trace[3];
592 1.24 ad static int otrace[3];
593 1.24 ad if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
594 1.26 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
595 1.26 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
596 1.24 ad memcpy(otrace, cpu_trace, sizeof(otrace));
597 1.24 ad }
598 1.24 ad #endif
599 1.11 ad i8254_delay(10);
600 1.2 ad }
601 1.38 ad
602 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
603 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
604 1.2 ad #if defined(MPDEBUG) && defined(DDB)
605 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
606 1.2 ad Debugger();
607 1.2 ad #endif
608 1.38 ad } else {
609 1.38 ad /*
610 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
611 1.38 ad * to try and minimize possible cache effects. Disable interrupts
612 1.38 ad * to try and rule out any external interference.
613 1.38 ad */
614 1.38 ad psl = x86_read_psl();
615 1.38 ad x86_disable_intr();
616 1.38 ad wbinvd();
617 1.38 ad tsc_sync_bp(ci);
618 1.38 ad x86_write_psl(psl);
619 1.2 ad }
620 1.2 ad
621 1.2 ad CPU_START_CLEANUP(ci);
622 1.45 ad cpu_starting = NULL;
623 1.2 ad }
624 1.2 ad
625 1.2 ad void
626 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
627 1.2 ad {
628 1.38 ad int64_t drift;
629 1.38 ad u_long psl;
630 1.2 ad int i;
631 1.2 ad
632 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
633 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
634 1.11 ad i8254_delay(10);
635 1.2 ad }
636 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
637 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
638 1.2 ad #if defined(MPDEBUG) && defined(DDB)
639 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
640 1.2 ad Debugger();
641 1.2 ad #endif
642 1.38 ad } else {
643 1.38 ad /* Synchronize TSC again, check for drift. */
644 1.38 ad drift = ci->ci_data.cpu_cc_skew;
645 1.38 ad psl = x86_read_psl();
646 1.38 ad x86_disable_intr();
647 1.38 ad wbinvd();
648 1.38 ad tsc_sync_bp(ci);
649 1.38 ad x86_write_psl(psl);
650 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
651 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
652 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
653 1.38 ad tsc_sync_drift(drift);
654 1.2 ad }
655 1.2 ad }
656 1.2 ad
657 1.2 ad /*
658 1.2 ad * The CPU ends up here when its ready to run
659 1.2 ad * This is called from code in mptramp.s; at this point, we are running
660 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
661 1.2 ad * this processor will enter the idle loop and start looking for work.
662 1.2 ad */
663 1.2 ad void
664 1.2 ad cpu_hatch(void *v)
665 1.2 ad {
666 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
667 1.6 ad int s, i;
668 1.2 ad
669 1.2 ad #ifdef __x86_64__
670 1.12 jmcneill cpu_init_msrs(ci, true);
671 1.2 ad #endif
672 1.40 ad cpu_probe(ci);
673 1.46 ad
674 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
675 1.46 ad /* cpu_get_tsc_freq(ci); */
676 1.38 ad
677 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
678 1.38 ad
679 1.38 ad /*
680 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
681 1.38 ad * to try and minimize possible cache effects. Note that interrupts
682 1.38 ad * are off at this point.
683 1.38 ad */
684 1.38 ad wbinvd();
685 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
686 1.38 ad tsc_sync_ap(ci);
687 1.38 ad
688 1.38 ad /*
689 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
690 1.38 ad * in order to make the TSC drift as much as possible. so that
691 1.38 ad * we can detect it later. If not available, try 'pause'.
692 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
693 1.38 ad */
694 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
695 1.38 ad if ((ci->ci_feature2_flags & CPUID2_MONITOR) != 0) {
696 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
697 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
698 1.38 ad continue;
699 1.38 ad }
700 1.38 ad x86_mwait(0, 0);
701 1.38 ad } else {
702 1.38 ad for (i = 10000; i != 0; i--) {
703 1.38 ad x86_pause();
704 1.38 ad }
705 1.38 ad }
706 1.6 ad }
707 1.5 ad
708 1.26 cegger /* Because the text may have been patched in x86_patch(). */
709 1.5 ad wbinvd();
710 1.5 ad x86_flush();
711 1.5 ad
712 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
713 1.2 ad
714 1.12 jmcneill lcr3(pmap_kernel()->pm_pdirpa);
715 1.12 jmcneill curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa;
716 1.2 ad lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0);
717 1.2 ad cpu_init_idt();
718 1.8 ad gdt_init_cpu(ci);
719 1.8 ad lapic_enable();
720 1.2 ad lapic_set_lvt();
721 1.8 ad lapic_initclocks();
722 1.2 ad
723 1.2 ad #ifdef i386
724 1.62 bouyer #if NNPX > 0
725 1.2 ad npxinit(ci);
726 1.62 bouyer #endif
727 1.2 ad #else
728 1.2 ad fpuinit(ci);
729 1.4 yamt #endif
730 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
731 1.15 yamt ltr(ci->ci_tss_sel);
732 1.2 ad
733 1.2 ad cpu_init(ci);
734 1.7 ad cpu_get_tsc_freq(ci);
735 1.2 ad
736 1.2 ad s = splhigh();
737 1.2 ad #ifdef i386
738 1.2 ad lapic_tpr = 0;
739 1.2 ad #else
740 1.2 ad lcr8(0);
741 1.2 ad #endif
742 1.3 ad x86_enable_intr();
743 1.2 ad splx(s);
744 1.6 ad x86_errata();
745 1.2 ad
746 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
747 1.2 ad }
748 1.2 ad
749 1.2 ad #if defined(DDB)
750 1.2 ad
751 1.2 ad #include <ddb/db_output.h>
752 1.2 ad #include <machine/db_machdep.h>
753 1.2 ad
754 1.2 ad /*
755 1.2 ad * Dump CPU information from ddb.
756 1.2 ad */
757 1.2 ad void
758 1.2 ad cpu_debug_dump(void)
759 1.2 ad {
760 1.2 ad struct cpu_info *ci;
761 1.2 ad CPU_INFO_ITERATOR cii;
762 1.2 ad
763 1.29 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
764 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
765 1.2 ad db_printf("%p %s %ld %x %x %10p %10p\n",
766 1.2 ad ci,
767 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
768 1.2 ad (long)ci->ci_cpuid,
769 1.2 ad ci->ci_flags, ci->ci_ipis,
770 1.2 ad ci->ci_curlwp,
771 1.2 ad ci->ci_fpcurlwp);
772 1.2 ad }
773 1.2 ad }
774 1.2 ad #endif
775 1.2 ad
776 1.2 ad static void
777 1.12 jmcneill cpu_copy_trampoline(void)
778 1.2 ad {
779 1.2 ad /*
780 1.2 ad * Copy boot code.
781 1.2 ad */
782 1.2 ad extern u_char cpu_spinup_trampoline[];
783 1.2 ad extern u_char cpu_spinup_trampoline_end[];
784 1.12 jmcneill
785 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
786 1.12 jmcneill
787 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
788 1.12 jmcneill UVM_KMF_VAONLY);
789 1.12 jmcneill
790 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
791 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
792 1.2 ad pmap_update(pmap_kernel());
793 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
794 1.2 ad cpu_spinup_trampoline,
795 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
796 1.12 jmcneill
797 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
798 1.12 jmcneill pmap_update(pmap_kernel());
799 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
800 1.2 ad }
801 1.2 ad
802 1.2 ad #ifdef i386
803 1.2 ad static void
804 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
805 1.2 ad {
806 1.2 ad memset(tss, 0, sizeof *tss);
807 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
808 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
809 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
810 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
811 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
812 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
813 1.2 ad tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
814 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
815 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
816 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
817 1.2 ad tss->__tss_eip = (int)func;
818 1.2 ad }
819 1.2 ad
820 1.2 ad /* XXX */
821 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
822 1.2 ad typedef void (vector)(void);
823 1.2 ad extern vector IDTVEC(tss_trap08);
824 1.2 ad #ifdef DDB
825 1.2 ad extern vector Xintrddbipi;
826 1.2 ad extern int ddb_vec;
827 1.2 ad #endif
828 1.2 ad
829 1.2 ad static void
830 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
831 1.2 ad {
832 1.2 ad struct segment_descriptor sd;
833 1.2 ad
834 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
835 1.2 ad UVM_KMF_WIRED);
836 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
837 1.2 ad IDTVEC(tss_trap08));
838 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
839 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
840 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
841 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
842 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
843 1.2 ad
844 1.44 ad #if defined(DDB)
845 1.2 ad /*
846 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
847 1.2 ad * stomp on a possibly corrupted stack.
848 1.2 ad *
849 1.2 ad * XXX overwriting the gate set in db_machine_init.
850 1.2 ad * Should rearrange the code so that it's set only once.
851 1.2 ad */
852 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
853 1.2 ad UVM_KMF_WIRED);
854 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
855 1.2 ad
856 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
857 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
858 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
859 1.2 ad
860 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
861 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
862 1.2 ad #endif
863 1.2 ad }
864 1.2 ad #else
865 1.2 ad static void
866 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
867 1.2 ad {
868 1.2 ad
869 1.2 ad }
870 1.2 ad #endif /* i386 */
871 1.2 ad
872 1.2 ad int
873 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
874 1.2 ad {
875 1.44 ad unsigned short dwordptr[2];
876 1.2 ad int error;
877 1.14 joerg
878 1.14 joerg /*
879 1.14 joerg * Bootstrap code must be addressable in real mode
880 1.14 joerg * and it must be page aligned.
881 1.14 joerg */
882 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
883 1.2 ad
884 1.2 ad /*
885 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
886 1.2 ad */
887 1.2 ad
888 1.2 ad outb(IO_RTC, NVRAM_RESET);
889 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
890 1.2 ad
891 1.2 ad /*
892 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
893 1.2 ad * to the AP startup code ..."
894 1.2 ad */
895 1.2 ad
896 1.2 ad dwordptr[0] = 0;
897 1.14 joerg dwordptr[1] = target >> 4;
898 1.2 ad
899 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
900 1.2 ad
901 1.25 ad if ((cpu_feature & CPUID_APIC) == 0) {
902 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
903 1.25 ad return ENODEV;
904 1.25 ad }
905 1.25 ad
906 1.2 ad /*
907 1.51 ad * ... prior to executing the following sequence:". We'll also add in
908 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
909 1.51 ad * disabled. It may not be able to cope with MP coherency.
910 1.2 ad */
911 1.51 ad wbinvd();
912 1.2 ad
913 1.2 ad if (ci->ci_flags & CPUF_AP) {
914 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
915 1.26 cegger if (error != 0) {
916 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
917 1.50 ad __func__);
918 1.2 ad return error;
919 1.25 ad }
920 1.11 ad i8254_delay(10000);
921 1.2 ad
922 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
923 1.26 cegger if (error != 0) {
924 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
925 1.50 ad __func__);
926 1.25 ad return error;
927 1.25 ad }
928 1.25 ad i8254_delay(200);
929 1.2 ad
930 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
931 1.26 cegger if (error != 0) {
932 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
933 1.50 ad __func__);
934 1.25 ad return error;
935 1.2 ad }
936 1.25 ad i8254_delay(200);
937 1.2 ad }
938 1.44 ad
939 1.2 ad return 0;
940 1.2 ad }
941 1.2 ad
942 1.2 ad void
943 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
944 1.2 ad {
945 1.2 ad /*
946 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
947 1.2 ad */
948 1.2 ad
949 1.2 ad outb(IO_RTC, NVRAM_RESET);
950 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
951 1.2 ad }
952 1.2 ad
953 1.2 ad #ifdef __x86_64__
954 1.2 ad typedef void (vector)(void);
955 1.2 ad extern vector Xsyscall, Xsyscall32;
956 1.2 ad
957 1.2 ad void
958 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
959 1.2 ad {
960 1.2 ad wrmsr(MSR_STAR,
961 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
962 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
963 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
964 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
965 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
966 1.2 ad
967 1.12 jmcneill if (full) {
968 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
969 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
970 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
971 1.12 jmcneill }
972 1.2 ad
973 1.2 ad if (cpu_feature & CPUID_NOX)
974 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
975 1.2 ad }
976 1.2 ad #endif /* __x86_64__ */
977 1.7 ad
978 1.18 joerg void
979 1.18 joerg cpu_offline_md(void)
980 1.18 joerg {
981 1.18 joerg int s;
982 1.18 joerg
983 1.18 joerg s = splhigh();
984 1.62 bouyer #ifdef i386
985 1.62 bouyer #if NNPX > 0
986 1.18 joerg npxsave_cpu(true);
987 1.62 bouyer #endif
988 1.18 joerg #else
989 1.18 joerg fpusave_cpu(true);
990 1.18 joerg #endif
991 1.18 joerg splx(s);
992 1.18 joerg }
993 1.18 joerg
994 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
995 1.12 jmcneill static bool
996 1.22 dyoung cpu_suspend(device_t dv PMF_FN_ARGS)
997 1.12 jmcneill {
998 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
999 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1000 1.18 joerg int err;
1001 1.12 jmcneill
1002 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
1003 1.12 jmcneill return true;
1004 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1005 1.12 jmcneill return true;
1006 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
1007 1.12 jmcneill return true;
1008 1.12 jmcneill
1009 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1010 1.17 joerg
1011 1.20 jmcneill if (sc->sc_wasonline) {
1012 1.20 jmcneill mutex_enter(&cpu_lock);
1013 1.58 rmind err = cpu_setstate(ci, false);
1014 1.20 jmcneill mutex_exit(&cpu_lock);
1015 1.20 jmcneill
1016 1.20 jmcneill if (err)
1017 1.20 jmcneill return false;
1018 1.20 jmcneill }
1019 1.17 joerg
1020 1.17 joerg return true;
1021 1.12 jmcneill }
1022 1.12 jmcneill
1023 1.12 jmcneill static bool
1024 1.22 dyoung cpu_resume(device_t dv PMF_FN_ARGS)
1025 1.12 jmcneill {
1026 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1027 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1028 1.20 jmcneill int err = 0;
1029 1.12 jmcneill
1030 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
1031 1.12 jmcneill return true;
1032 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1033 1.12 jmcneill return true;
1034 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
1035 1.12 jmcneill return true;
1036 1.12 jmcneill
1037 1.20 jmcneill if (sc->sc_wasonline) {
1038 1.20 jmcneill mutex_enter(&cpu_lock);
1039 1.58 rmind err = cpu_setstate(ci, true);
1040 1.20 jmcneill mutex_exit(&cpu_lock);
1041 1.20 jmcneill }
1042 1.13 joerg
1043 1.13 joerg return err == 0;
1044 1.12 jmcneill }
1045 1.12 jmcneill
1046 1.7 ad void
1047 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1048 1.7 ad {
1049 1.7 ad uint64_t last_tsc;
1050 1.7 ad
1051 1.7 ad if (ci->ci_feature_flags & CPUID_TSC) {
1052 1.45 ad last_tsc = rdmsr(MSR_TSC);
1053 1.7 ad i8254_delay(100000);
1054 1.45 ad ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
1055 1.7 ad }
1056 1.7 ad }
1057 1.37 joerg
1058 1.37 joerg void
1059 1.37 joerg x86_cpu_idle_mwait(void)
1060 1.37 joerg {
1061 1.37 joerg struct cpu_info *ci = curcpu();
1062 1.37 joerg
1063 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1064 1.37 joerg
1065 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1066 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1067 1.37 joerg return;
1068 1.37 joerg }
1069 1.37 joerg x86_mwait(0, 0);
1070 1.37 joerg }
1071 1.37 joerg
1072 1.37 joerg void
1073 1.37 joerg x86_cpu_idle_halt(void)
1074 1.37 joerg {
1075 1.37 joerg struct cpu_info *ci = curcpu();
1076 1.37 joerg
1077 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1078 1.37 joerg
1079 1.37 joerg x86_disable_intr();
1080 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1081 1.37 joerg x86_stihlt();
1082 1.37 joerg } else {
1083 1.37 joerg x86_enable_intr();
1084 1.37 joerg }
1085 1.37 joerg }
1086