cpu.c revision 1.70 1 1.70 jym /* $NetBSD: cpu.c,v 1.70 2010/04/18 23:47:51 jym Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.38 ad * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.70 jym __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.70 2010/04/18 23:47:51 jym Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.2 ad
71 1.2 ad #include "lapic.h"
72 1.2 ad #include "ioapic.h"
73 1.2 ad
74 1.62 bouyer #ifdef i386
75 1.62 bouyer #include "npx.h"
76 1.62 bouyer #endif
77 1.62 bouyer
78 1.2 ad #include <sys/param.h>
79 1.2 ad #include <sys/proc.h>
80 1.2 ad #include <sys/systm.h>
81 1.2 ad #include <sys/device.h>
82 1.61 cegger #include <sys/kmem.h>
83 1.9 ad #include <sys/cpu.h>
84 1.9 ad #include <sys/atomic.h>
85 1.35 ad #include <sys/reboot.h>
86 1.2 ad
87 1.2 ad #include <uvm/uvm_extern.h>
88 1.2 ad
89 1.2 ad #include <machine/cpufunc.h>
90 1.2 ad #include <machine/cpuvar.h>
91 1.2 ad #include <machine/pmap.h>
92 1.2 ad #include <machine/vmparam.h>
93 1.2 ad #include <machine/mpbiosvar.h>
94 1.2 ad #include <machine/pcb.h>
95 1.2 ad #include <machine/specialreg.h>
96 1.2 ad #include <machine/segments.h>
97 1.2 ad #include <machine/gdt.h>
98 1.2 ad #include <machine/mtrr.h>
99 1.2 ad #include <machine/pio.h>
100 1.38 ad #include <machine/cpu_counter.h>
101 1.2 ad
102 1.2 ad #ifdef i386
103 1.2 ad #include <machine/tlog.h>
104 1.2 ad #endif
105 1.2 ad
106 1.2 ad #include <machine/apicvar.h>
107 1.2 ad #include <machine/i82489reg.h>
108 1.2 ad #include <machine/i82489var.h>
109 1.2 ad
110 1.2 ad #include <dev/ic/mc146818reg.h>
111 1.2 ad #include <i386/isa/nvram.h>
112 1.2 ad #include <dev/isa/isareg.h>
113 1.2 ad
114 1.38 ad #include "tsc.h"
115 1.38 ad
116 1.54 ad #if MAXCPUS > 32
117 1.54 ad #error cpu_info contains 32bit bitmasks
118 1.54 ad #endif
119 1.54 ad
120 1.23 cube int cpu_match(device_t, cfdata_t, void *);
121 1.23 cube void cpu_attach(device_t, device_t, void *);
122 1.2 ad
123 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
124 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
125 1.12 jmcneill
126 1.2 ad struct cpu_softc {
127 1.23 cube device_t sc_dev; /* device tree glue */
128 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
129 1.20 jmcneill bool sc_wasonline;
130 1.2 ad };
131 1.2 ad
132 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
133 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
134 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
135 1.2 ad mp_cpu_start_cleanup };
136 1.2 ad
137 1.2 ad
138 1.23 cube CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
139 1.2 ad cpu_match, cpu_attach, NULL, NULL);
140 1.2 ad
141 1.2 ad /*
142 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
143 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
144 1.2 ad * point at it.
145 1.2 ad */
146 1.2 ad #ifdef TRAPLOG
147 1.2 ad struct tlog tlog_primary;
148 1.2 ad #endif
149 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
150 1.2 ad .ci_dev = 0,
151 1.2 ad .ci_self = &cpu_info_primary,
152 1.2 ad .ci_idepth = -1,
153 1.2 ad .ci_curlwp = &lwp0,
154 1.43 ad .ci_curldt = -1,
155 1.2 ad #ifdef TRAPLOG
156 1.2 ad .ci_tlog_base = &tlog_primary,
157 1.2 ad #endif /* !TRAPLOG */
158 1.2 ad };
159 1.2 ad
160 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
161 1.2 ad
162 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
163 1.2 ad
164 1.2 ad #ifdef i386
165 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
166 1.2 ad #endif
167 1.2 ad
168 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
169 1.12 jmcneill
170 1.2 ad uint32_t cpus_attached = 0;
171 1.9 ad uint32_t cpus_running = 0;
172 1.2 ad
173 1.70 jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
174 1.70 jym * [0] basic features %edx
175 1.70 jym * [1] basic features %ecx
176 1.70 jym * [2] extended features %edx
177 1.70 jym * [3] extended features %ecx
178 1.70 jym * [4] VIA padlock features
179 1.70 jym */
180 1.70 jym
181 1.2 ad extern char x86_64_doubleflt_stack[];
182 1.2 ad
183 1.12 jmcneill bool x86_mp_online;
184 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
185 1.14 joerg static vaddr_t cmos_data_mapping;
186 1.45 ad struct cpu_info *cpu_starting;
187 1.2 ad
188 1.2 ad void cpu_hatch(void *);
189 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
190 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
191 1.2 ad static void cpu_copy_trampoline(void);
192 1.2 ad
193 1.2 ad /*
194 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
195 1.2 ad * the local APIC on the boot processor has been mapped.
196 1.2 ad *
197 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
198 1.2 ad */
199 1.2 ad void
200 1.9 ad cpu_init_first(void)
201 1.2 ad {
202 1.2 ad
203 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
204 1.2 ad cpu_copy_trampoline();
205 1.14 joerg
206 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
207 1.14 joerg if (cmos_data_mapping == 0)
208 1.14 joerg panic("No KVA for page 0");
209 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
210 1.14 joerg pmap_update(pmap_kernel());
211 1.2 ad }
212 1.2 ad
213 1.2 ad int
214 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
215 1.2 ad {
216 1.2 ad
217 1.2 ad return 1;
218 1.2 ad }
219 1.2 ad
220 1.2 ad static void
221 1.2 ad cpu_vm_init(struct cpu_info *ci)
222 1.2 ad {
223 1.2 ad int ncolors = 2, i;
224 1.2 ad
225 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
226 1.2 ad struct x86_cache_info *cai;
227 1.2 ad int tcolors;
228 1.2 ad
229 1.2 ad cai = &ci->ci_cinfo[i];
230 1.2 ad
231 1.2 ad tcolors = atop(cai->cai_totalsize);
232 1.2 ad switch(cai->cai_associativity) {
233 1.2 ad case 0xff:
234 1.2 ad tcolors = 1; /* fully associative */
235 1.2 ad break;
236 1.2 ad case 0:
237 1.2 ad case 1:
238 1.2 ad break;
239 1.2 ad default:
240 1.2 ad tcolors /= cai->cai_associativity;
241 1.2 ad }
242 1.2 ad ncolors = max(ncolors, tcolors);
243 1.32 tls /*
244 1.32 tls * If the desired number of colors is not a power of
245 1.32 tls * two, it won't be good. Find the greatest power of
246 1.32 tls * two which is an even divisor of the number of colors,
247 1.32 tls * to preserve even coloring of pages.
248 1.32 tls */
249 1.32 tls if (ncolors & (ncolors - 1) ) {
250 1.32 tls int try, picked = 1;
251 1.32 tls for (try = 1; try < ncolors; try *= 2) {
252 1.32 tls if (ncolors % try == 0) picked = try;
253 1.32 tls }
254 1.32 tls if (picked == 1) {
255 1.32 tls panic("desired number of cache colors %d is "
256 1.32 tls " > 1, but not even!", ncolors);
257 1.32 tls }
258 1.32 tls ncolors = picked;
259 1.32 tls }
260 1.2 ad }
261 1.2 ad
262 1.2 ad /*
263 1.2 ad * Knowing the size of the largest cache on this CPU, re-color
264 1.2 ad * our pages.
265 1.2 ad */
266 1.2 ad if (ncolors <= uvmexp.ncolors)
267 1.2 ad return;
268 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
269 1.2 ad uvm_page_recolor(ncolors);
270 1.2 ad }
271 1.2 ad
272 1.2 ad
273 1.2 ad void
274 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
275 1.2 ad {
276 1.23 cube struct cpu_softc *sc = device_private(self);
277 1.2 ad struct cpu_attach_args *caa = aux;
278 1.2 ad struct cpu_info *ci;
279 1.21 ad uintptr_t ptr;
280 1.2 ad int cpunum = caa->cpu_number;
281 1.51 ad static bool again;
282 1.2 ad
283 1.23 cube sc->sc_dev = self;
284 1.23 cube
285 1.48 ad if (cpus_attached == ~0) {
286 1.54 ad aprint_error(": increase MAXCPUS\n");
287 1.48 ad return;
288 1.48 ad }
289 1.48 ad
290 1.2 ad /*
291 1.2 ad * If we're an Application Processor, allocate a cpu_info
292 1.2 ad * structure, otherwise use the primary's.
293 1.2 ad */
294 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
295 1.36 ad if ((boothowto & RB_MD1) != 0) {
296 1.35 ad aprint_error(": multiprocessor boot disabled\n");
297 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
298 1.56 jmcneill aprint_error_dev(self,
299 1.56 jmcneill "couldn't establish power handler\n");
300 1.35 ad return;
301 1.35 ad }
302 1.2 ad aprint_naive(": Application Processor\n");
303 1.61 cegger ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
304 1.61 cegger KM_SLEEP);
305 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
306 1.2 ad memset(ci, 0, sizeof(*ci));
307 1.43 ad ci->ci_curldt = -1;
308 1.2 ad #ifdef TRAPLOG
309 1.61 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
310 1.2 ad #endif
311 1.2 ad } else {
312 1.2 ad aprint_naive(": %s Processor\n",
313 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
314 1.2 ad ci = &cpu_info_primary;
315 1.2 ad if (cpunum != lapic_cpu_number()) {
316 1.51 ad /* XXX should be done earlier. */
317 1.39 ad uint32_t reg;
318 1.39 ad aprint_verbose("\n");
319 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
320 1.47 ad " instead of at expected %d", lapic_cpu_number(),
321 1.23 cube cpunum);
322 1.39 ad reg = i82489_readreg(LAPIC_ID);
323 1.39 ad i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
324 1.39 ad (cpunum << LAPIC_ID_SHIFT));
325 1.2 ad }
326 1.47 ad if (cpunum != lapic_cpu_number()) {
327 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
328 1.47 ad }
329 1.2 ad }
330 1.2 ad
331 1.2 ad ci->ci_self = ci;
332 1.2 ad sc->sc_info = ci;
333 1.2 ad ci->ci_dev = self;
334 1.42 ad ci->ci_cpuid = caa->cpu_number;
335 1.2 ad ci->ci_func = caa->cpu_func;
336 1.2 ad
337 1.55 ad /* Must be before mi_cpu_attach(). */
338 1.55 ad cpu_vm_init(ci);
339 1.55 ad
340 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
341 1.2 ad int error;
342 1.2 ad
343 1.2 ad error = mi_cpu_attach(ci);
344 1.2 ad if (error != 0) {
345 1.2 ad aprint_normal("\n");
346 1.47 ad aprint_error_dev(self,
347 1.30 cegger "mi_cpu_attach failed with %d\n", error);
348 1.2 ad return;
349 1.2 ad }
350 1.15 yamt cpu_init_tss(ci);
351 1.2 ad } else {
352 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
353 1.2 ad }
354 1.2 ad
355 1.42 ad ci->ci_cpumask = (1 << cpu_index(ci));
356 1.2 ad pmap_reference(pmap_kernel());
357 1.2 ad ci->ci_pmap = pmap_kernel();
358 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
359 1.2 ad
360 1.51 ad /*
361 1.51 ad * Boot processor may not be attached first, but the below
362 1.51 ad * must be done to allow booting other processors.
363 1.51 ad */
364 1.51 ad if (!again) {
365 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
366 1.51 ad /* Basic init. */
367 1.2 ad cpu_intr_init(ci);
368 1.40 ad cpu_get_tsc_freq(ci);
369 1.2 ad cpu_init(ci);
370 1.2 ad cpu_set_tss_gates(ci);
371 1.2 ad pmap_cpu_init_late(ci);
372 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
373 1.51 ad /* Enable lapic. */
374 1.51 ad lapic_enable();
375 1.51 ad lapic_set_lvt();
376 1.51 ad lapic_calibrate_timer(ci);
377 1.51 ad }
378 1.51 ad /* Make sure DELAY() is initialized. */
379 1.51 ad DELAY(1);
380 1.51 ad again = true;
381 1.51 ad }
382 1.51 ad
383 1.51 ad /* further PCB init done later. */
384 1.51 ad
385 1.51 ad switch (caa->cpu_role) {
386 1.51 ad case CPU_ROLE_SP:
387 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
388 1.51 ad cpu_identify(ci);
389 1.53 ad x86_errata();
390 1.37 joerg x86_cpu_idle_init();
391 1.2 ad break;
392 1.2 ad
393 1.2 ad case CPU_ROLE_BP:
394 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
395 1.40 ad cpu_identify(ci);
396 1.53 ad x86_errata();
397 1.37 joerg x86_cpu_idle_init();
398 1.2 ad break;
399 1.2 ad
400 1.2 ad case CPU_ROLE_AP:
401 1.2 ad /*
402 1.2 ad * report on an AP
403 1.2 ad */
404 1.2 ad cpu_intr_init(ci);
405 1.2 ad gdt_alloc_cpu(ci);
406 1.2 ad cpu_set_tss_gates(ci);
407 1.2 ad pmap_cpu_init_early(ci);
408 1.2 ad pmap_cpu_init_late(ci);
409 1.2 ad cpu_start_secondary(ci);
410 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
411 1.59 cegger struct cpu_info *tmp;
412 1.59 cegger
413 1.40 ad cpu_identify(ci);
414 1.59 cegger tmp = cpu_info_list;
415 1.59 cegger while (tmp->ci_next)
416 1.59 cegger tmp = tmp->ci_next;
417 1.59 cegger
418 1.59 cegger tmp->ci_next = ci;
419 1.2 ad }
420 1.2 ad break;
421 1.2 ad
422 1.2 ad default:
423 1.28 cegger aprint_normal("\n");
424 1.2 ad panic("unknown processor type??\n");
425 1.2 ad }
426 1.51 ad
427 1.47 ad atomic_or_32(&cpus_attached, ci->ci_cpumask);
428 1.2 ad
429 1.12 jmcneill if (!pmf_device_register(self, cpu_suspend, cpu_resume))
430 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
431 1.12 jmcneill
432 1.2 ad if (mp_verbose) {
433 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
434 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
435 1.2 ad
436 1.47 ad aprint_verbose_dev(self,
437 1.28 cegger "idle lwp at %p, idle sp at %p\n",
438 1.28 cegger l,
439 1.2 ad #ifdef i386
440 1.65 rmind (void *)pcb->pcb_esp
441 1.2 ad #else
442 1.65 rmind (void *)pcb->pcb_rsp
443 1.2 ad #endif
444 1.2 ad );
445 1.2 ad }
446 1.2 ad }
447 1.2 ad
448 1.2 ad /*
449 1.2 ad * Initialize the processor appropriately.
450 1.2 ad */
451 1.2 ad
452 1.2 ad void
453 1.9 ad cpu_init(struct cpu_info *ci)
454 1.2 ad {
455 1.2 ad
456 1.2 ad lcr0(rcr0() | CR0_WP);
457 1.2 ad
458 1.2 ad /*
459 1.2 ad * On a P6 or above, enable global TLB caching if the
460 1.2 ad * hardware supports it.
461 1.2 ad */
462 1.70 jym if (cpu_feature[0] & CPUID_PGE)
463 1.2 ad lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
464 1.2 ad
465 1.2 ad /*
466 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
467 1.2 ad */
468 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
469 1.2 ad lcr4(rcr4() | CR4_OSFXSR);
470 1.2 ad
471 1.2 ad /*
472 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
473 1.2 ad */
474 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
475 1.2 ad lcr4(rcr4() | CR4_OSXMMEXCPT);
476 1.2 ad }
477 1.2 ad
478 1.2 ad #ifdef MTRR
479 1.2 ad /*
480 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
481 1.2 ad */
482 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
483 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
484 1.2 ad i686_mtrr_init_first();
485 1.2 ad mtrr_init_cpu(ci);
486 1.2 ad }
487 1.2 ad
488 1.2 ad #ifdef i386
489 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
490 1.2 ad /*
491 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
492 1.2 ad */
493 1.2 ad if (CPUID2FAMILY(ci->ci_signature) == 5) {
494 1.2 ad if (CPUID2MODEL(ci->ci_signature) > 8 ||
495 1.2 ad (CPUID2MODEL(ci->ci_signature) == 8 &&
496 1.2 ad CPUID2STEPPING(ci->ci_signature) >= 7)) {
497 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
498 1.2 ad k6_mtrr_init_first();
499 1.2 ad mtrr_init_cpu(ci);
500 1.2 ad }
501 1.2 ad }
502 1.2 ad }
503 1.2 ad #endif /* i386 */
504 1.2 ad #endif /* MTRR */
505 1.2 ad
506 1.9 ad atomic_or_32(&cpus_running, ci->ci_cpumask);
507 1.9 ad
508 1.38 ad if (ci != &cpu_info_primary) {
509 1.38 ad /* Synchronize TSC again, and check for drift. */
510 1.38 ad wbinvd();
511 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
512 1.38 ad tsc_sync_ap(ci);
513 1.38 ad } else {
514 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
515 1.38 ad }
516 1.2 ad }
517 1.2 ad
518 1.2 ad void
519 1.12 jmcneill cpu_boot_secondary_processors(void)
520 1.2 ad {
521 1.2 ad struct cpu_info *ci;
522 1.2 ad u_long i;
523 1.2 ad
524 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
525 1.60 ad x86_patch(false);
526 1.5 ad
527 1.54 ad for (i=0; i < maxcpus; i++) {
528 1.57 ad ci = cpu_lookup(i);
529 1.2 ad if (ci == NULL)
530 1.2 ad continue;
531 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
532 1.2 ad continue;
533 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
534 1.2 ad continue;
535 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
536 1.2 ad continue;
537 1.2 ad cpu_boot_secondary(ci);
538 1.2 ad }
539 1.2 ad
540 1.2 ad x86_mp_online = true;
541 1.38 ad
542 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
543 1.38 ad tsc_tc_init();
544 1.55 ad
545 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
546 1.70 jym vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
547 1.2 ad }
548 1.2 ad
549 1.2 ad static void
550 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
551 1.2 ad {
552 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
553 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
554 1.2 ad
555 1.2 ad pcb->pcb_cr0 = rcr0();
556 1.2 ad }
557 1.2 ad
558 1.2 ad void
559 1.12 jmcneill cpu_init_idle_lwps(void)
560 1.2 ad {
561 1.2 ad struct cpu_info *ci;
562 1.2 ad u_long i;
563 1.2 ad
564 1.54 ad for (i = 0; i < maxcpus; i++) {
565 1.57 ad ci = cpu_lookup(i);
566 1.2 ad if (ci == NULL)
567 1.2 ad continue;
568 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
569 1.2 ad continue;
570 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
571 1.2 ad continue;
572 1.2 ad cpu_init_idle_lwp(ci);
573 1.2 ad }
574 1.2 ad }
575 1.2 ad
576 1.2 ad void
577 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
578 1.2 ad {
579 1.38 ad extern paddr_t mp_pdirpa;
580 1.38 ad u_long psl;
581 1.2 ad int i;
582 1.2 ad
583 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
584 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
585 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
586 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
587 1.25 ad return;
588 1.45 ad }
589 1.2 ad
590 1.2 ad /*
591 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
592 1.50 ad * initial gate and allows the AP to start soft initialization.
593 1.2 ad */
594 1.50 ad KASSERT(cpu_starting == NULL);
595 1.50 ad cpu_starting = ci;
596 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
597 1.24 ad #ifdef MPDEBUG
598 1.24 ad extern int cpu_trace[3];
599 1.24 ad static int otrace[3];
600 1.24 ad if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
601 1.26 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
602 1.26 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
603 1.24 ad memcpy(otrace, cpu_trace, sizeof(otrace));
604 1.24 ad }
605 1.24 ad #endif
606 1.11 ad i8254_delay(10);
607 1.2 ad }
608 1.38 ad
609 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
610 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
611 1.2 ad #if defined(MPDEBUG) && defined(DDB)
612 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
613 1.2 ad Debugger();
614 1.2 ad #endif
615 1.38 ad } else {
616 1.38 ad /*
617 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
618 1.68 jym * twice to try and minimize possible cache effects. Disable
619 1.68 jym * interrupts to try and rule out any external interference.
620 1.38 ad */
621 1.38 ad psl = x86_read_psl();
622 1.38 ad x86_disable_intr();
623 1.38 ad wbinvd();
624 1.38 ad tsc_sync_bp(ci);
625 1.38 ad x86_write_psl(psl);
626 1.2 ad }
627 1.2 ad
628 1.2 ad CPU_START_CLEANUP(ci);
629 1.45 ad cpu_starting = NULL;
630 1.2 ad }
631 1.2 ad
632 1.2 ad void
633 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
634 1.2 ad {
635 1.38 ad int64_t drift;
636 1.38 ad u_long psl;
637 1.2 ad int i;
638 1.2 ad
639 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
640 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
641 1.11 ad i8254_delay(10);
642 1.2 ad }
643 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
644 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
645 1.2 ad #if defined(MPDEBUG) && defined(DDB)
646 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
647 1.2 ad Debugger();
648 1.2 ad #endif
649 1.38 ad } else {
650 1.38 ad /* Synchronize TSC again, check for drift. */
651 1.38 ad drift = ci->ci_data.cpu_cc_skew;
652 1.38 ad psl = x86_read_psl();
653 1.38 ad x86_disable_intr();
654 1.38 ad wbinvd();
655 1.38 ad tsc_sync_bp(ci);
656 1.38 ad x86_write_psl(psl);
657 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
658 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
659 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
660 1.38 ad tsc_sync_drift(drift);
661 1.2 ad }
662 1.2 ad }
663 1.2 ad
664 1.2 ad /*
665 1.2 ad * The CPU ends up here when its ready to run
666 1.2 ad * This is called from code in mptramp.s; at this point, we are running
667 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
668 1.2 ad * this processor will enter the idle loop and start looking for work.
669 1.2 ad */
670 1.2 ad void
671 1.2 ad cpu_hatch(void *v)
672 1.2 ad {
673 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
674 1.65 rmind struct pcb *pcb;
675 1.6 ad int s, i;
676 1.2 ad
677 1.12 jmcneill cpu_init_msrs(ci, true);
678 1.40 ad cpu_probe(ci);
679 1.46 ad
680 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
681 1.46 ad /* cpu_get_tsc_freq(ci); */
682 1.38 ad
683 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
684 1.38 ad
685 1.38 ad /*
686 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
687 1.38 ad * to try and minimize possible cache effects. Note that interrupts
688 1.38 ad * are off at this point.
689 1.38 ad */
690 1.38 ad wbinvd();
691 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
692 1.38 ad tsc_sync_ap(ci);
693 1.38 ad
694 1.38 ad /*
695 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
696 1.38 ad * in order to make the TSC drift as much as possible. so that
697 1.38 ad * we can detect it later. If not available, try 'pause'.
698 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
699 1.38 ad */
700 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
701 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
702 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
703 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
704 1.38 ad continue;
705 1.38 ad }
706 1.38 ad x86_mwait(0, 0);
707 1.38 ad } else {
708 1.38 ad for (i = 10000; i != 0; i--) {
709 1.38 ad x86_pause();
710 1.38 ad }
711 1.38 ad }
712 1.6 ad }
713 1.5 ad
714 1.26 cegger /* Because the text may have been patched in x86_patch(). */
715 1.5 ad wbinvd();
716 1.5 ad x86_flush();
717 1.5 ad
718 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
719 1.2 ad
720 1.12 jmcneill lcr3(pmap_kernel()->pm_pdirpa);
721 1.65 rmind pcb = lwp_getpcb(curlwp);
722 1.65 rmind pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
723 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
724 1.65 rmind lcr0(pcb->pcb_cr0);
725 1.65 rmind
726 1.2 ad cpu_init_idt();
727 1.8 ad gdt_init_cpu(ci);
728 1.8 ad lapic_enable();
729 1.2 ad lapic_set_lvt();
730 1.8 ad lapic_initclocks();
731 1.2 ad
732 1.2 ad #ifdef i386
733 1.62 bouyer #if NNPX > 0
734 1.2 ad npxinit(ci);
735 1.62 bouyer #endif
736 1.2 ad #else
737 1.2 ad fpuinit(ci);
738 1.4 yamt #endif
739 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
740 1.15 yamt ltr(ci->ci_tss_sel);
741 1.2 ad
742 1.2 ad cpu_init(ci);
743 1.7 ad cpu_get_tsc_freq(ci);
744 1.2 ad
745 1.2 ad s = splhigh();
746 1.2 ad #ifdef i386
747 1.2 ad lapic_tpr = 0;
748 1.2 ad #else
749 1.2 ad lcr8(0);
750 1.2 ad #endif
751 1.3 ad x86_enable_intr();
752 1.2 ad splx(s);
753 1.6 ad x86_errata();
754 1.2 ad
755 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
756 1.2 ad }
757 1.2 ad
758 1.2 ad #if defined(DDB)
759 1.2 ad
760 1.2 ad #include <ddb/db_output.h>
761 1.2 ad #include <machine/db_machdep.h>
762 1.2 ad
763 1.2 ad /*
764 1.2 ad * Dump CPU information from ddb.
765 1.2 ad */
766 1.2 ad void
767 1.2 ad cpu_debug_dump(void)
768 1.2 ad {
769 1.2 ad struct cpu_info *ci;
770 1.2 ad CPU_INFO_ITERATOR cii;
771 1.2 ad
772 1.29 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
773 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
774 1.2 ad db_printf("%p %s %ld %x %x %10p %10p\n",
775 1.2 ad ci,
776 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
777 1.2 ad (long)ci->ci_cpuid,
778 1.2 ad ci->ci_flags, ci->ci_ipis,
779 1.2 ad ci->ci_curlwp,
780 1.2 ad ci->ci_fpcurlwp);
781 1.2 ad }
782 1.2 ad }
783 1.2 ad #endif
784 1.2 ad
785 1.2 ad static void
786 1.12 jmcneill cpu_copy_trampoline(void)
787 1.2 ad {
788 1.2 ad /*
789 1.2 ad * Copy boot code.
790 1.2 ad */
791 1.2 ad extern u_char cpu_spinup_trampoline[];
792 1.2 ad extern u_char cpu_spinup_trampoline_end[];
793 1.12 jmcneill
794 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
795 1.12 jmcneill
796 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
797 1.12 jmcneill UVM_KMF_VAONLY);
798 1.12 jmcneill
799 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
800 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
801 1.2 ad pmap_update(pmap_kernel());
802 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
803 1.2 ad cpu_spinup_trampoline,
804 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
805 1.12 jmcneill
806 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
807 1.12 jmcneill pmap_update(pmap_kernel());
808 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
809 1.2 ad }
810 1.2 ad
811 1.2 ad #ifdef i386
812 1.2 ad static void
813 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
814 1.2 ad {
815 1.2 ad memset(tss, 0, sizeof *tss);
816 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
817 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
818 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
819 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
820 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
821 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
822 1.2 ad tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
823 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
824 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
825 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
826 1.2 ad tss->__tss_eip = (int)func;
827 1.2 ad }
828 1.2 ad
829 1.2 ad /* XXX */
830 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
831 1.2 ad typedef void (vector)(void);
832 1.2 ad extern vector IDTVEC(tss_trap08);
833 1.2 ad #ifdef DDB
834 1.2 ad extern vector Xintrddbipi;
835 1.2 ad extern int ddb_vec;
836 1.2 ad #endif
837 1.2 ad
838 1.2 ad static void
839 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
840 1.2 ad {
841 1.2 ad struct segment_descriptor sd;
842 1.2 ad
843 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
844 1.2 ad UVM_KMF_WIRED);
845 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
846 1.2 ad IDTVEC(tss_trap08));
847 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
848 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
849 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
850 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
851 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
852 1.2 ad
853 1.44 ad #if defined(DDB)
854 1.2 ad /*
855 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
856 1.2 ad * stomp on a possibly corrupted stack.
857 1.2 ad *
858 1.2 ad * XXX overwriting the gate set in db_machine_init.
859 1.2 ad * Should rearrange the code so that it's set only once.
860 1.2 ad */
861 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
862 1.2 ad UVM_KMF_WIRED);
863 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
864 1.2 ad
865 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
866 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
867 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
868 1.2 ad
869 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
870 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
871 1.2 ad #endif
872 1.2 ad }
873 1.2 ad #else
874 1.2 ad static void
875 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
876 1.2 ad {
877 1.2 ad
878 1.2 ad }
879 1.2 ad #endif /* i386 */
880 1.2 ad
881 1.2 ad int
882 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
883 1.2 ad {
884 1.44 ad unsigned short dwordptr[2];
885 1.2 ad int error;
886 1.14 joerg
887 1.14 joerg /*
888 1.14 joerg * Bootstrap code must be addressable in real mode
889 1.14 joerg * and it must be page aligned.
890 1.14 joerg */
891 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
892 1.2 ad
893 1.2 ad /*
894 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
895 1.2 ad */
896 1.2 ad
897 1.2 ad outb(IO_RTC, NVRAM_RESET);
898 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
899 1.2 ad
900 1.2 ad /*
901 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
902 1.2 ad * to the AP startup code ..."
903 1.2 ad */
904 1.2 ad
905 1.2 ad dwordptr[0] = 0;
906 1.14 joerg dwordptr[1] = target >> 4;
907 1.2 ad
908 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
909 1.2 ad
910 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
911 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
912 1.25 ad return ENODEV;
913 1.25 ad }
914 1.25 ad
915 1.2 ad /*
916 1.51 ad * ... prior to executing the following sequence:". We'll also add in
917 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
918 1.51 ad * disabled. It may not be able to cope with MP coherency.
919 1.2 ad */
920 1.51 ad wbinvd();
921 1.2 ad
922 1.2 ad if (ci->ci_flags & CPUF_AP) {
923 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
924 1.26 cegger if (error != 0) {
925 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
926 1.50 ad __func__);
927 1.2 ad return error;
928 1.25 ad }
929 1.11 ad i8254_delay(10000);
930 1.2 ad
931 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
932 1.26 cegger if (error != 0) {
933 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
934 1.50 ad __func__);
935 1.25 ad return error;
936 1.25 ad }
937 1.25 ad i8254_delay(200);
938 1.2 ad
939 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
940 1.26 cegger if (error != 0) {
941 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
942 1.50 ad __func__);
943 1.25 ad return error;
944 1.2 ad }
945 1.25 ad i8254_delay(200);
946 1.2 ad }
947 1.44 ad
948 1.2 ad return 0;
949 1.2 ad }
950 1.2 ad
951 1.2 ad void
952 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
953 1.2 ad {
954 1.2 ad /*
955 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
956 1.2 ad */
957 1.2 ad
958 1.2 ad outb(IO_RTC, NVRAM_RESET);
959 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
960 1.2 ad }
961 1.2 ad
962 1.2 ad #ifdef __x86_64__
963 1.2 ad typedef void (vector)(void);
964 1.2 ad extern vector Xsyscall, Xsyscall32;
965 1.70 jym #endif
966 1.2 ad
967 1.2 ad void
968 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
969 1.2 ad {
970 1.70 jym #ifdef __x86_64__
971 1.2 ad wrmsr(MSR_STAR,
972 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
973 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
974 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
975 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
976 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
977 1.2 ad
978 1.12 jmcneill if (full) {
979 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
980 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
981 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
982 1.12 jmcneill }
983 1.70 jym #endif /* __x86_64__ */
984 1.2 ad
985 1.70 jym if (cpu_feature[2] & CPUID_NOX)
986 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
987 1.2 ad }
988 1.7 ad
989 1.18 joerg void
990 1.18 joerg cpu_offline_md(void)
991 1.18 joerg {
992 1.18 joerg int s;
993 1.18 joerg
994 1.18 joerg s = splhigh();
995 1.62 bouyer #ifdef i386
996 1.62 bouyer #if NNPX > 0
997 1.18 joerg npxsave_cpu(true);
998 1.62 bouyer #endif
999 1.18 joerg #else
1000 1.18 joerg fpusave_cpu(true);
1001 1.18 joerg #endif
1002 1.18 joerg splx(s);
1003 1.18 joerg }
1004 1.18 joerg
1005 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1006 1.12 jmcneill static bool
1007 1.69 dyoung cpu_suspend(device_t dv, const pmf_qual_t *qual)
1008 1.12 jmcneill {
1009 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1010 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1011 1.18 joerg int err;
1012 1.12 jmcneill
1013 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
1014 1.12 jmcneill return true;
1015 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1016 1.12 jmcneill return true;
1017 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
1018 1.12 jmcneill return true;
1019 1.12 jmcneill
1020 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1021 1.17 joerg
1022 1.20 jmcneill if (sc->sc_wasonline) {
1023 1.20 jmcneill mutex_enter(&cpu_lock);
1024 1.58 rmind err = cpu_setstate(ci, false);
1025 1.20 jmcneill mutex_exit(&cpu_lock);
1026 1.20 jmcneill
1027 1.20 jmcneill if (err)
1028 1.20 jmcneill return false;
1029 1.20 jmcneill }
1030 1.17 joerg
1031 1.17 joerg return true;
1032 1.12 jmcneill }
1033 1.12 jmcneill
1034 1.12 jmcneill static bool
1035 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1036 1.12 jmcneill {
1037 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1038 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1039 1.20 jmcneill int err = 0;
1040 1.12 jmcneill
1041 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
1042 1.12 jmcneill return true;
1043 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1044 1.12 jmcneill return true;
1045 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
1046 1.12 jmcneill return true;
1047 1.12 jmcneill
1048 1.20 jmcneill if (sc->sc_wasonline) {
1049 1.20 jmcneill mutex_enter(&cpu_lock);
1050 1.58 rmind err = cpu_setstate(ci, true);
1051 1.20 jmcneill mutex_exit(&cpu_lock);
1052 1.20 jmcneill }
1053 1.13 joerg
1054 1.13 joerg return err == 0;
1055 1.12 jmcneill }
1056 1.12 jmcneill
1057 1.7 ad void
1058 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1059 1.7 ad {
1060 1.7 ad uint64_t last_tsc;
1061 1.7 ad
1062 1.70 jym if (cpu_hascounter()) {
1063 1.45 ad last_tsc = rdmsr(MSR_TSC);
1064 1.7 ad i8254_delay(100000);
1065 1.45 ad ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
1066 1.7 ad }
1067 1.7 ad }
1068 1.37 joerg
1069 1.37 joerg void
1070 1.37 joerg x86_cpu_idle_mwait(void)
1071 1.37 joerg {
1072 1.37 joerg struct cpu_info *ci = curcpu();
1073 1.37 joerg
1074 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1075 1.37 joerg
1076 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1077 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1078 1.37 joerg return;
1079 1.37 joerg }
1080 1.37 joerg x86_mwait(0, 0);
1081 1.37 joerg }
1082 1.37 joerg
1083 1.37 joerg void
1084 1.37 joerg x86_cpu_idle_halt(void)
1085 1.37 joerg {
1086 1.37 joerg struct cpu_info *ci = curcpu();
1087 1.37 joerg
1088 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1089 1.37 joerg
1090 1.37 joerg x86_disable_intr();
1091 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1092 1.37 joerg x86_stihlt();
1093 1.37 joerg } else {
1094 1.37 joerg x86_enable_intr();
1095 1.37 joerg }
1096 1.37 joerg }
1097