cpu.c revision 1.79 1 1.79 jruoho /* $NetBSD: cpu.c,v 1.79 2011/01/11 18:25:25 jruoho Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.38 ad * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.79 jruoho __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.79 2011/01/11 18:25:25 jruoho Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.2 ad
71 1.2 ad #include "lapic.h"
72 1.2 ad #include "ioapic.h"
73 1.2 ad
74 1.62 bouyer #ifdef i386
75 1.62 bouyer #include "npx.h"
76 1.62 bouyer #endif
77 1.62 bouyer
78 1.2 ad #include <sys/param.h>
79 1.2 ad #include <sys/proc.h>
80 1.2 ad #include <sys/systm.h>
81 1.2 ad #include <sys/device.h>
82 1.61 cegger #include <sys/kmem.h>
83 1.9 ad #include <sys/cpu.h>
84 1.9 ad #include <sys/atomic.h>
85 1.35 ad #include <sys/reboot.h>
86 1.2 ad
87 1.78 uebayasi #include <uvm/uvm.h>
88 1.2 ad
89 1.2 ad #include <machine/cpufunc.h>
90 1.2 ad #include <machine/cpuvar.h>
91 1.2 ad #include <machine/pmap.h>
92 1.2 ad #include <machine/vmparam.h>
93 1.2 ad #include <machine/mpbiosvar.h>
94 1.2 ad #include <machine/pcb.h>
95 1.2 ad #include <machine/specialreg.h>
96 1.2 ad #include <machine/segments.h>
97 1.2 ad #include <machine/gdt.h>
98 1.2 ad #include <machine/mtrr.h>
99 1.2 ad #include <machine/pio.h>
100 1.38 ad #include <machine/cpu_counter.h>
101 1.2 ad
102 1.2 ad #ifdef i386
103 1.2 ad #include <machine/tlog.h>
104 1.2 ad #endif
105 1.2 ad
106 1.2 ad #include <machine/apicvar.h>
107 1.2 ad #include <machine/i82489reg.h>
108 1.2 ad #include <machine/i82489var.h>
109 1.2 ad
110 1.2 ad #include <dev/ic/mc146818reg.h>
111 1.2 ad #include <i386/isa/nvram.h>
112 1.2 ad #include <dev/isa/isareg.h>
113 1.2 ad
114 1.38 ad #include "tsc.h"
115 1.38 ad
116 1.54 ad #if MAXCPUS > 32
117 1.54 ad #error cpu_info contains 32bit bitmasks
118 1.54 ad #endif
119 1.54 ad
120 1.23 cube int cpu_match(device_t, cfdata_t, void *);
121 1.23 cube void cpu_attach(device_t, device_t, void *);
122 1.2 ad
123 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
124 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
125 1.79 jruoho static bool cpu_shutdown(device_t, int);
126 1.12 jmcneill
127 1.2 ad struct cpu_softc {
128 1.23 cube device_t sc_dev; /* device tree glue */
129 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
130 1.20 jmcneill bool sc_wasonline;
131 1.2 ad };
132 1.2 ad
133 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
134 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
135 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
136 1.2 ad mp_cpu_start_cleanup };
137 1.2 ad
138 1.2 ad
139 1.23 cube CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc),
140 1.2 ad cpu_match, cpu_attach, NULL, NULL);
141 1.2 ad
142 1.2 ad /*
143 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
144 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
145 1.2 ad * point at it.
146 1.2 ad */
147 1.2 ad #ifdef TRAPLOG
148 1.2 ad struct tlog tlog_primary;
149 1.2 ad #endif
150 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
151 1.2 ad .ci_dev = 0,
152 1.2 ad .ci_self = &cpu_info_primary,
153 1.2 ad .ci_idepth = -1,
154 1.2 ad .ci_curlwp = &lwp0,
155 1.43 ad .ci_curldt = -1,
156 1.2 ad #ifdef TRAPLOG
157 1.2 ad .ci_tlog_base = &tlog_primary,
158 1.2 ad #endif /* !TRAPLOG */
159 1.2 ad };
160 1.2 ad
161 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
162 1.2 ad
163 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
164 1.2 ad
165 1.2 ad #ifdef i386
166 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
167 1.2 ad #endif
168 1.2 ad
169 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
170 1.12 jmcneill
171 1.2 ad uint32_t cpus_attached = 0;
172 1.9 ad uint32_t cpus_running = 0;
173 1.2 ad
174 1.70 jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
175 1.70 jym * [0] basic features %edx
176 1.70 jym * [1] basic features %ecx
177 1.70 jym * [2] extended features %edx
178 1.70 jym * [3] extended features %ecx
179 1.70 jym * [4] VIA padlock features
180 1.70 jym */
181 1.70 jym
182 1.2 ad extern char x86_64_doubleflt_stack[];
183 1.2 ad
184 1.12 jmcneill bool x86_mp_online;
185 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
186 1.14 joerg static vaddr_t cmos_data_mapping;
187 1.45 ad struct cpu_info *cpu_starting;
188 1.2 ad
189 1.2 ad void cpu_hatch(void *);
190 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
191 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
192 1.2 ad static void cpu_copy_trampoline(void);
193 1.2 ad
194 1.2 ad /*
195 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
196 1.2 ad * the local APIC on the boot processor has been mapped.
197 1.2 ad *
198 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
199 1.2 ad */
200 1.2 ad void
201 1.9 ad cpu_init_first(void)
202 1.2 ad {
203 1.2 ad
204 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
205 1.2 ad cpu_copy_trampoline();
206 1.14 joerg
207 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
208 1.14 joerg if (cmos_data_mapping == 0)
209 1.14 joerg panic("No KVA for page 0");
210 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
211 1.14 joerg pmap_update(pmap_kernel());
212 1.2 ad }
213 1.2 ad
214 1.2 ad int
215 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
216 1.2 ad {
217 1.2 ad
218 1.2 ad return 1;
219 1.2 ad }
220 1.2 ad
221 1.2 ad static void
222 1.2 ad cpu_vm_init(struct cpu_info *ci)
223 1.2 ad {
224 1.2 ad int ncolors = 2, i;
225 1.2 ad
226 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
227 1.2 ad struct x86_cache_info *cai;
228 1.2 ad int tcolors;
229 1.2 ad
230 1.2 ad cai = &ci->ci_cinfo[i];
231 1.2 ad
232 1.2 ad tcolors = atop(cai->cai_totalsize);
233 1.2 ad switch(cai->cai_associativity) {
234 1.2 ad case 0xff:
235 1.2 ad tcolors = 1; /* fully associative */
236 1.2 ad break;
237 1.2 ad case 0:
238 1.2 ad case 1:
239 1.2 ad break;
240 1.2 ad default:
241 1.2 ad tcolors /= cai->cai_associativity;
242 1.2 ad }
243 1.2 ad ncolors = max(ncolors, tcolors);
244 1.32 tls /*
245 1.32 tls * If the desired number of colors is not a power of
246 1.32 tls * two, it won't be good. Find the greatest power of
247 1.32 tls * two which is an even divisor of the number of colors,
248 1.32 tls * to preserve even coloring of pages.
249 1.32 tls */
250 1.32 tls if (ncolors & (ncolors - 1) ) {
251 1.32 tls int try, picked = 1;
252 1.32 tls for (try = 1; try < ncolors; try *= 2) {
253 1.32 tls if (ncolors % try == 0) picked = try;
254 1.32 tls }
255 1.32 tls if (picked == 1) {
256 1.32 tls panic("desired number of cache colors %d is "
257 1.32 tls " > 1, but not even!", ncolors);
258 1.32 tls }
259 1.32 tls ncolors = picked;
260 1.32 tls }
261 1.2 ad }
262 1.2 ad
263 1.2 ad /*
264 1.2 ad * Knowing the size of the largest cache on this CPU, re-color
265 1.2 ad * our pages.
266 1.2 ad */
267 1.2 ad if (ncolors <= uvmexp.ncolors)
268 1.2 ad return;
269 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
270 1.2 ad uvm_page_recolor(ncolors);
271 1.2 ad }
272 1.2 ad
273 1.2 ad
274 1.2 ad void
275 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
276 1.2 ad {
277 1.23 cube struct cpu_softc *sc = device_private(self);
278 1.2 ad struct cpu_attach_args *caa = aux;
279 1.2 ad struct cpu_info *ci;
280 1.21 ad uintptr_t ptr;
281 1.2 ad int cpunum = caa->cpu_number;
282 1.51 ad static bool again;
283 1.2 ad
284 1.23 cube sc->sc_dev = self;
285 1.23 cube
286 1.48 ad if (cpus_attached == ~0) {
287 1.54 ad aprint_error(": increase MAXCPUS\n");
288 1.48 ad return;
289 1.48 ad }
290 1.48 ad
291 1.2 ad /*
292 1.2 ad * If we're an Application Processor, allocate a cpu_info
293 1.2 ad * structure, otherwise use the primary's.
294 1.2 ad */
295 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
296 1.36 ad if ((boothowto & RB_MD1) != 0) {
297 1.35 ad aprint_error(": multiprocessor boot disabled\n");
298 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
299 1.56 jmcneill aprint_error_dev(self,
300 1.56 jmcneill "couldn't establish power handler\n");
301 1.35 ad return;
302 1.35 ad }
303 1.2 ad aprint_naive(": Application Processor\n");
304 1.72 rmind ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
305 1.61 cegger KM_SLEEP);
306 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
307 1.43 ad ci->ci_curldt = -1;
308 1.2 ad #ifdef TRAPLOG
309 1.61 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
310 1.2 ad #endif
311 1.2 ad } else {
312 1.2 ad aprint_naive(": %s Processor\n",
313 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
314 1.2 ad ci = &cpu_info_primary;
315 1.2 ad if (cpunum != lapic_cpu_number()) {
316 1.51 ad /* XXX should be done earlier. */
317 1.39 ad uint32_t reg;
318 1.39 ad aprint_verbose("\n");
319 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
320 1.47 ad " instead of at expected %d", lapic_cpu_number(),
321 1.23 cube cpunum);
322 1.39 ad reg = i82489_readreg(LAPIC_ID);
323 1.39 ad i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
324 1.39 ad (cpunum << LAPIC_ID_SHIFT));
325 1.2 ad }
326 1.47 ad if (cpunum != lapic_cpu_number()) {
327 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
328 1.47 ad }
329 1.2 ad }
330 1.2 ad
331 1.2 ad ci->ci_self = ci;
332 1.2 ad sc->sc_info = ci;
333 1.2 ad ci->ci_dev = self;
334 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
335 1.42 ad ci->ci_cpuid = caa->cpu_number;
336 1.2 ad ci->ci_func = caa->cpu_func;
337 1.2 ad
338 1.55 ad /* Must be before mi_cpu_attach(). */
339 1.55 ad cpu_vm_init(ci);
340 1.55 ad
341 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
342 1.2 ad int error;
343 1.2 ad
344 1.2 ad error = mi_cpu_attach(ci);
345 1.2 ad if (error != 0) {
346 1.2 ad aprint_normal("\n");
347 1.47 ad aprint_error_dev(self,
348 1.30 cegger "mi_cpu_attach failed with %d\n", error);
349 1.2 ad return;
350 1.2 ad }
351 1.15 yamt cpu_init_tss(ci);
352 1.2 ad } else {
353 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
354 1.2 ad }
355 1.2 ad
356 1.42 ad ci->ci_cpumask = (1 << cpu_index(ci));
357 1.2 ad pmap_reference(pmap_kernel());
358 1.2 ad ci->ci_pmap = pmap_kernel();
359 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
360 1.2 ad
361 1.51 ad /*
362 1.51 ad * Boot processor may not be attached first, but the below
363 1.51 ad * must be done to allow booting other processors.
364 1.51 ad */
365 1.51 ad if (!again) {
366 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
367 1.51 ad /* Basic init. */
368 1.2 ad cpu_intr_init(ci);
369 1.40 ad cpu_get_tsc_freq(ci);
370 1.2 ad cpu_init(ci);
371 1.2 ad cpu_set_tss_gates(ci);
372 1.2 ad pmap_cpu_init_late(ci);
373 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
374 1.51 ad /* Enable lapic. */
375 1.51 ad lapic_enable();
376 1.51 ad lapic_set_lvt();
377 1.51 ad lapic_calibrate_timer(ci);
378 1.51 ad }
379 1.51 ad /* Make sure DELAY() is initialized. */
380 1.51 ad DELAY(1);
381 1.51 ad again = true;
382 1.51 ad }
383 1.51 ad
384 1.51 ad /* further PCB init done later. */
385 1.51 ad
386 1.51 ad switch (caa->cpu_role) {
387 1.51 ad case CPU_ROLE_SP:
388 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
389 1.51 ad cpu_identify(ci);
390 1.53 ad x86_errata();
391 1.37 joerg x86_cpu_idle_init();
392 1.2 ad break;
393 1.2 ad
394 1.2 ad case CPU_ROLE_BP:
395 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
396 1.40 ad cpu_identify(ci);
397 1.53 ad x86_errata();
398 1.37 joerg x86_cpu_idle_init();
399 1.2 ad break;
400 1.2 ad
401 1.2 ad case CPU_ROLE_AP:
402 1.2 ad /*
403 1.2 ad * report on an AP
404 1.2 ad */
405 1.2 ad cpu_intr_init(ci);
406 1.2 ad gdt_alloc_cpu(ci);
407 1.2 ad cpu_set_tss_gates(ci);
408 1.2 ad pmap_cpu_init_early(ci);
409 1.2 ad pmap_cpu_init_late(ci);
410 1.2 ad cpu_start_secondary(ci);
411 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
412 1.59 cegger struct cpu_info *tmp;
413 1.59 cegger
414 1.40 ad cpu_identify(ci);
415 1.59 cegger tmp = cpu_info_list;
416 1.59 cegger while (tmp->ci_next)
417 1.59 cegger tmp = tmp->ci_next;
418 1.59 cegger
419 1.59 cegger tmp->ci_next = ci;
420 1.2 ad }
421 1.2 ad break;
422 1.2 ad
423 1.2 ad default:
424 1.28 cegger aprint_normal("\n");
425 1.2 ad panic("unknown processor type??\n");
426 1.2 ad }
427 1.51 ad
428 1.71 cegger pat_init(ci);
429 1.47 ad atomic_or_32(&cpus_attached, ci->ci_cpumask);
430 1.2 ad
431 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
432 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
433 1.12 jmcneill
434 1.2 ad if (mp_verbose) {
435 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
436 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
437 1.2 ad
438 1.47 ad aprint_verbose_dev(self,
439 1.28 cegger "idle lwp at %p, idle sp at %p\n",
440 1.28 cegger l,
441 1.2 ad #ifdef i386
442 1.65 rmind (void *)pcb->pcb_esp
443 1.2 ad #else
444 1.65 rmind (void *)pcb->pcb_rsp
445 1.2 ad #endif
446 1.2 ad );
447 1.2 ad }
448 1.2 ad }
449 1.2 ad
450 1.2 ad /*
451 1.2 ad * Initialize the processor appropriately.
452 1.2 ad */
453 1.2 ad
454 1.2 ad void
455 1.9 ad cpu_init(struct cpu_info *ci)
456 1.2 ad {
457 1.2 ad
458 1.2 ad lcr0(rcr0() | CR0_WP);
459 1.2 ad
460 1.2 ad /*
461 1.2 ad * On a P6 or above, enable global TLB caching if the
462 1.2 ad * hardware supports it.
463 1.2 ad */
464 1.70 jym if (cpu_feature[0] & CPUID_PGE)
465 1.2 ad lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
466 1.2 ad
467 1.2 ad /*
468 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
469 1.2 ad */
470 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
471 1.2 ad lcr4(rcr4() | CR4_OSFXSR);
472 1.2 ad
473 1.2 ad /*
474 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
475 1.2 ad */
476 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
477 1.2 ad lcr4(rcr4() | CR4_OSXMMEXCPT);
478 1.2 ad }
479 1.2 ad
480 1.2 ad #ifdef MTRR
481 1.2 ad /*
482 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
483 1.2 ad */
484 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
485 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
486 1.2 ad i686_mtrr_init_first();
487 1.2 ad mtrr_init_cpu(ci);
488 1.2 ad }
489 1.2 ad
490 1.2 ad #ifdef i386
491 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
492 1.2 ad /*
493 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
494 1.2 ad */
495 1.2 ad if (CPUID2FAMILY(ci->ci_signature) == 5) {
496 1.2 ad if (CPUID2MODEL(ci->ci_signature) > 8 ||
497 1.2 ad (CPUID2MODEL(ci->ci_signature) == 8 &&
498 1.2 ad CPUID2STEPPING(ci->ci_signature) >= 7)) {
499 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
500 1.2 ad k6_mtrr_init_first();
501 1.2 ad mtrr_init_cpu(ci);
502 1.2 ad }
503 1.2 ad }
504 1.2 ad }
505 1.2 ad #endif /* i386 */
506 1.2 ad #endif /* MTRR */
507 1.2 ad
508 1.9 ad atomic_or_32(&cpus_running, ci->ci_cpumask);
509 1.9 ad
510 1.38 ad if (ci != &cpu_info_primary) {
511 1.38 ad /* Synchronize TSC again, and check for drift. */
512 1.38 ad wbinvd();
513 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
514 1.38 ad tsc_sync_ap(ci);
515 1.38 ad } else {
516 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
517 1.38 ad }
518 1.2 ad }
519 1.2 ad
520 1.2 ad void
521 1.12 jmcneill cpu_boot_secondary_processors(void)
522 1.2 ad {
523 1.2 ad struct cpu_info *ci;
524 1.2 ad u_long i;
525 1.2 ad
526 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
527 1.60 ad x86_patch(false);
528 1.5 ad
529 1.54 ad for (i=0; i < maxcpus; i++) {
530 1.57 ad ci = cpu_lookup(i);
531 1.2 ad if (ci == NULL)
532 1.2 ad continue;
533 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
534 1.2 ad continue;
535 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
536 1.2 ad continue;
537 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
538 1.2 ad continue;
539 1.2 ad cpu_boot_secondary(ci);
540 1.2 ad }
541 1.2 ad
542 1.2 ad x86_mp_online = true;
543 1.38 ad
544 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
545 1.38 ad tsc_tc_init();
546 1.55 ad
547 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
548 1.70 jym vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
549 1.2 ad }
550 1.2 ad
551 1.2 ad static void
552 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
553 1.2 ad {
554 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
555 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
556 1.2 ad
557 1.2 ad pcb->pcb_cr0 = rcr0();
558 1.2 ad }
559 1.2 ad
560 1.2 ad void
561 1.12 jmcneill cpu_init_idle_lwps(void)
562 1.2 ad {
563 1.2 ad struct cpu_info *ci;
564 1.2 ad u_long i;
565 1.2 ad
566 1.54 ad for (i = 0; i < maxcpus; i++) {
567 1.57 ad ci = cpu_lookup(i);
568 1.2 ad if (ci == NULL)
569 1.2 ad continue;
570 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
571 1.2 ad continue;
572 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
573 1.2 ad continue;
574 1.2 ad cpu_init_idle_lwp(ci);
575 1.2 ad }
576 1.2 ad }
577 1.2 ad
578 1.2 ad void
579 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
580 1.2 ad {
581 1.38 ad extern paddr_t mp_pdirpa;
582 1.38 ad u_long psl;
583 1.2 ad int i;
584 1.2 ad
585 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
586 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
587 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
588 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
589 1.25 ad return;
590 1.45 ad }
591 1.2 ad
592 1.2 ad /*
593 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
594 1.50 ad * initial gate and allows the AP to start soft initialization.
595 1.2 ad */
596 1.50 ad KASSERT(cpu_starting == NULL);
597 1.50 ad cpu_starting = ci;
598 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
599 1.24 ad #ifdef MPDEBUG
600 1.24 ad extern int cpu_trace[3];
601 1.24 ad static int otrace[3];
602 1.24 ad if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
603 1.26 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
604 1.26 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
605 1.24 ad memcpy(otrace, cpu_trace, sizeof(otrace));
606 1.24 ad }
607 1.24 ad #endif
608 1.11 ad i8254_delay(10);
609 1.2 ad }
610 1.38 ad
611 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
612 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
613 1.2 ad #if defined(MPDEBUG) && defined(DDB)
614 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
615 1.2 ad Debugger();
616 1.2 ad #endif
617 1.38 ad } else {
618 1.38 ad /*
619 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
620 1.68 jym * twice to try and minimize possible cache effects. Disable
621 1.68 jym * interrupts to try and rule out any external interference.
622 1.38 ad */
623 1.38 ad psl = x86_read_psl();
624 1.38 ad x86_disable_intr();
625 1.38 ad wbinvd();
626 1.38 ad tsc_sync_bp(ci);
627 1.38 ad x86_write_psl(psl);
628 1.2 ad }
629 1.2 ad
630 1.2 ad CPU_START_CLEANUP(ci);
631 1.45 ad cpu_starting = NULL;
632 1.2 ad }
633 1.2 ad
634 1.2 ad void
635 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
636 1.2 ad {
637 1.38 ad int64_t drift;
638 1.38 ad u_long psl;
639 1.2 ad int i;
640 1.2 ad
641 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
642 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
643 1.11 ad i8254_delay(10);
644 1.2 ad }
645 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
646 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
647 1.2 ad #if defined(MPDEBUG) && defined(DDB)
648 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
649 1.2 ad Debugger();
650 1.2 ad #endif
651 1.38 ad } else {
652 1.38 ad /* Synchronize TSC again, check for drift. */
653 1.38 ad drift = ci->ci_data.cpu_cc_skew;
654 1.38 ad psl = x86_read_psl();
655 1.38 ad x86_disable_intr();
656 1.38 ad wbinvd();
657 1.38 ad tsc_sync_bp(ci);
658 1.38 ad x86_write_psl(psl);
659 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
660 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
661 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
662 1.38 ad tsc_sync_drift(drift);
663 1.2 ad }
664 1.2 ad }
665 1.2 ad
666 1.2 ad /*
667 1.2 ad * The CPU ends up here when its ready to run
668 1.2 ad * This is called from code in mptramp.s; at this point, we are running
669 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
670 1.2 ad * this processor will enter the idle loop and start looking for work.
671 1.2 ad */
672 1.2 ad void
673 1.2 ad cpu_hatch(void *v)
674 1.2 ad {
675 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
676 1.65 rmind struct pcb *pcb;
677 1.6 ad int s, i;
678 1.2 ad
679 1.12 jmcneill cpu_init_msrs(ci, true);
680 1.40 ad cpu_probe(ci);
681 1.46 ad
682 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
683 1.46 ad /* cpu_get_tsc_freq(ci); */
684 1.38 ad
685 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
686 1.38 ad
687 1.38 ad /*
688 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
689 1.38 ad * to try and minimize possible cache effects. Note that interrupts
690 1.38 ad * are off at this point.
691 1.38 ad */
692 1.38 ad wbinvd();
693 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
694 1.38 ad tsc_sync_ap(ci);
695 1.38 ad
696 1.38 ad /*
697 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
698 1.38 ad * in order to make the TSC drift as much as possible. so that
699 1.38 ad * we can detect it later. If not available, try 'pause'.
700 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
701 1.38 ad */
702 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
703 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
704 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
705 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
706 1.38 ad continue;
707 1.38 ad }
708 1.38 ad x86_mwait(0, 0);
709 1.38 ad } else {
710 1.38 ad for (i = 10000; i != 0; i--) {
711 1.38 ad x86_pause();
712 1.38 ad }
713 1.38 ad }
714 1.6 ad }
715 1.5 ad
716 1.26 cegger /* Because the text may have been patched in x86_patch(). */
717 1.5 ad wbinvd();
718 1.5 ad x86_flush();
719 1.5 ad
720 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
721 1.2 ad
722 1.73 jym #ifdef PAE
723 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
724 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
725 1.73 jym l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
726 1.73 jym }
727 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
728 1.73 jym #else
729 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
730 1.73 jym #endif
731 1.73 jym
732 1.65 rmind pcb = lwp_getpcb(curlwp);
733 1.73 jym pcb->pcb_cr3 = rcr3();
734 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
735 1.65 rmind lcr0(pcb->pcb_cr0);
736 1.65 rmind
737 1.2 ad cpu_init_idt();
738 1.8 ad gdt_init_cpu(ci);
739 1.8 ad lapic_enable();
740 1.2 ad lapic_set_lvt();
741 1.8 ad lapic_initclocks();
742 1.2 ad
743 1.2 ad #ifdef i386
744 1.62 bouyer #if NNPX > 0
745 1.2 ad npxinit(ci);
746 1.62 bouyer #endif
747 1.2 ad #else
748 1.2 ad fpuinit(ci);
749 1.4 yamt #endif
750 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
751 1.15 yamt ltr(ci->ci_tss_sel);
752 1.2 ad
753 1.2 ad cpu_init(ci);
754 1.7 ad cpu_get_tsc_freq(ci);
755 1.2 ad
756 1.2 ad s = splhigh();
757 1.2 ad #ifdef i386
758 1.2 ad lapic_tpr = 0;
759 1.2 ad #else
760 1.2 ad lcr8(0);
761 1.2 ad #endif
762 1.3 ad x86_enable_intr();
763 1.2 ad splx(s);
764 1.6 ad x86_errata();
765 1.2 ad
766 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
767 1.2 ad }
768 1.2 ad
769 1.2 ad #if defined(DDB)
770 1.2 ad
771 1.2 ad #include <ddb/db_output.h>
772 1.2 ad #include <machine/db_machdep.h>
773 1.2 ad
774 1.2 ad /*
775 1.2 ad * Dump CPU information from ddb.
776 1.2 ad */
777 1.2 ad void
778 1.2 ad cpu_debug_dump(void)
779 1.2 ad {
780 1.2 ad struct cpu_info *ci;
781 1.2 ad CPU_INFO_ITERATOR cii;
782 1.2 ad
783 1.29 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
784 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
785 1.2 ad db_printf("%p %s %ld %x %x %10p %10p\n",
786 1.2 ad ci,
787 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
788 1.2 ad (long)ci->ci_cpuid,
789 1.2 ad ci->ci_flags, ci->ci_ipis,
790 1.2 ad ci->ci_curlwp,
791 1.2 ad ci->ci_fpcurlwp);
792 1.2 ad }
793 1.2 ad }
794 1.2 ad #endif
795 1.2 ad
796 1.2 ad static void
797 1.12 jmcneill cpu_copy_trampoline(void)
798 1.2 ad {
799 1.2 ad /*
800 1.2 ad * Copy boot code.
801 1.2 ad */
802 1.2 ad extern u_char cpu_spinup_trampoline[];
803 1.2 ad extern u_char cpu_spinup_trampoline_end[];
804 1.12 jmcneill
805 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
806 1.12 jmcneill
807 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
808 1.12 jmcneill UVM_KMF_VAONLY);
809 1.12 jmcneill
810 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
811 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
812 1.2 ad pmap_update(pmap_kernel());
813 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
814 1.2 ad cpu_spinup_trampoline,
815 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
816 1.12 jmcneill
817 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
818 1.12 jmcneill pmap_update(pmap_kernel());
819 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
820 1.2 ad }
821 1.2 ad
822 1.2 ad #ifdef i386
823 1.2 ad static void
824 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
825 1.2 ad {
826 1.73 jym KASSERT(curcpu()->ci_pmap == pmap_kernel());
827 1.73 jym
828 1.2 ad memset(tss, 0, sizeof *tss);
829 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
830 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
831 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
832 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
833 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
834 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
835 1.73 jym /* %cr3 contains the value associated to pmap_kernel */
836 1.73 jym tss->tss_cr3 = rcr3();
837 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
838 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
839 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
840 1.2 ad tss->__tss_eip = (int)func;
841 1.2 ad }
842 1.2 ad
843 1.2 ad /* XXX */
844 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
845 1.2 ad typedef void (vector)(void);
846 1.2 ad extern vector IDTVEC(tss_trap08);
847 1.2 ad #ifdef DDB
848 1.2 ad extern vector Xintrddbipi;
849 1.2 ad extern int ddb_vec;
850 1.2 ad #endif
851 1.2 ad
852 1.2 ad static void
853 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
854 1.2 ad {
855 1.2 ad struct segment_descriptor sd;
856 1.2 ad
857 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
858 1.2 ad UVM_KMF_WIRED);
859 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
860 1.2 ad IDTVEC(tss_trap08));
861 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
862 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
863 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
864 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
865 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
866 1.2 ad
867 1.44 ad #if defined(DDB)
868 1.2 ad /*
869 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
870 1.2 ad * stomp on a possibly corrupted stack.
871 1.2 ad *
872 1.2 ad * XXX overwriting the gate set in db_machine_init.
873 1.2 ad * Should rearrange the code so that it's set only once.
874 1.2 ad */
875 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
876 1.2 ad UVM_KMF_WIRED);
877 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
878 1.2 ad
879 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
880 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
881 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
882 1.2 ad
883 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
884 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
885 1.2 ad #endif
886 1.2 ad }
887 1.2 ad #else
888 1.2 ad static void
889 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
890 1.2 ad {
891 1.2 ad
892 1.2 ad }
893 1.2 ad #endif /* i386 */
894 1.2 ad
895 1.2 ad int
896 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
897 1.2 ad {
898 1.44 ad unsigned short dwordptr[2];
899 1.2 ad int error;
900 1.14 joerg
901 1.14 joerg /*
902 1.14 joerg * Bootstrap code must be addressable in real mode
903 1.14 joerg * and it must be page aligned.
904 1.14 joerg */
905 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
906 1.2 ad
907 1.2 ad /*
908 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
909 1.2 ad */
910 1.2 ad
911 1.2 ad outb(IO_RTC, NVRAM_RESET);
912 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
913 1.2 ad
914 1.2 ad /*
915 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
916 1.2 ad * to the AP startup code ..."
917 1.2 ad */
918 1.2 ad
919 1.2 ad dwordptr[0] = 0;
920 1.14 joerg dwordptr[1] = target >> 4;
921 1.2 ad
922 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
923 1.2 ad
924 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
925 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
926 1.25 ad return ENODEV;
927 1.25 ad }
928 1.25 ad
929 1.2 ad /*
930 1.51 ad * ... prior to executing the following sequence:". We'll also add in
931 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
932 1.51 ad * disabled. It may not be able to cope with MP coherency.
933 1.2 ad */
934 1.51 ad wbinvd();
935 1.2 ad
936 1.2 ad if (ci->ci_flags & CPUF_AP) {
937 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
938 1.26 cegger if (error != 0) {
939 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
940 1.50 ad __func__);
941 1.2 ad return error;
942 1.25 ad }
943 1.11 ad i8254_delay(10000);
944 1.2 ad
945 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
946 1.26 cegger if (error != 0) {
947 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
948 1.50 ad __func__);
949 1.25 ad return error;
950 1.25 ad }
951 1.25 ad i8254_delay(200);
952 1.2 ad
953 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
954 1.26 cegger if (error != 0) {
955 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
956 1.50 ad __func__);
957 1.25 ad return error;
958 1.2 ad }
959 1.25 ad i8254_delay(200);
960 1.2 ad }
961 1.44 ad
962 1.2 ad return 0;
963 1.2 ad }
964 1.2 ad
965 1.2 ad void
966 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
967 1.2 ad {
968 1.2 ad /*
969 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
970 1.2 ad */
971 1.2 ad
972 1.2 ad outb(IO_RTC, NVRAM_RESET);
973 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
974 1.2 ad }
975 1.2 ad
976 1.2 ad #ifdef __x86_64__
977 1.2 ad typedef void (vector)(void);
978 1.2 ad extern vector Xsyscall, Xsyscall32;
979 1.70 jym #endif
980 1.2 ad
981 1.2 ad void
982 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
983 1.2 ad {
984 1.70 jym #ifdef __x86_64__
985 1.2 ad wrmsr(MSR_STAR,
986 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
987 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
988 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
989 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
990 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
991 1.2 ad
992 1.12 jmcneill if (full) {
993 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
994 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
995 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
996 1.12 jmcneill }
997 1.70 jym #endif /* __x86_64__ */
998 1.2 ad
999 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1000 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1001 1.2 ad }
1002 1.7 ad
1003 1.18 joerg void
1004 1.18 joerg cpu_offline_md(void)
1005 1.18 joerg {
1006 1.18 joerg int s;
1007 1.18 joerg
1008 1.18 joerg s = splhigh();
1009 1.62 bouyer #ifdef i386
1010 1.62 bouyer #if NNPX > 0
1011 1.18 joerg npxsave_cpu(true);
1012 1.62 bouyer #endif
1013 1.18 joerg #else
1014 1.18 joerg fpusave_cpu(true);
1015 1.18 joerg #endif
1016 1.18 joerg splx(s);
1017 1.18 joerg }
1018 1.18 joerg
1019 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1020 1.12 jmcneill static bool
1021 1.69 dyoung cpu_suspend(device_t dv, const pmf_qual_t *qual)
1022 1.12 jmcneill {
1023 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1024 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1025 1.18 joerg int err;
1026 1.12 jmcneill
1027 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
1028 1.12 jmcneill return true;
1029 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1030 1.12 jmcneill return true;
1031 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
1032 1.12 jmcneill return true;
1033 1.12 jmcneill
1034 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1035 1.17 joerg
1036 1.20 jmcneill if (sc->sc_wasonline) {
1037 1.20 jmcneill mutex_enter(&cpu_lock);
1038 1.58 rmind err = cpu_setstate(ci, false);
1039 1.20 jmcneill mutex_exit(&cpu_lock);
1040 1.79 jruoho
1041 1.20 jmcneill if (err)
1042 1.20 jmcneill return false;
1043 1.20 jmcneill }
1044 1.17 joerg
1045 1.17 joerg return true;
1046 1.12 jmcneill }
1047 1.12 jmcneill
1048 1.12 jmcneill static bool
1049 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1050 1.12 jmcneill {
1051 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1052 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1053 1.20 jmcneill int err = 0;
1054 1.12 jmcneill
1055 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
1056 1.12 jmcneill return true;
1057 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1058 1.12 jmcneill return true;
1059 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
1060 1.12 jmcneill return true;
1061 1.12 jmcneill
1062 1.20 jmcneill if (sc->sc_wasonline) {
1063 1.20 jmcneill mutex_enter(&cpu_lock);
1064 1.58 rmind err = cpu_setstate(ci, true);
1065 1.20 jmcneill mutex_exit(&cpu_lock);
1066 1.20 jmcneill }
1067 1.13 joerg
1068 1.13 joerg return err == 0;
1069 1.12 jmcneill }
1070 1.12 jmcneill
1071 1.79 jruoho static bool
1072 1.79 jruoho cpu_shutdown(device_t dv, int how)
1073 1.79 jruoho {
1074 1.79 jruoho return cpu_suspend(dv, NULL);
1075 1.79 jruoho }
1076 1.79 jruoho
1077 1.7 ad void
1078 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1079 1.7 ad {
1080 1.7 ad uint64_t last_tsc;
1081 1.7 ad
1082 1.70 jym if (cpu_hascounter()) {
1083 1.45 ad last_tsc = rdmsr(MSR_TSC);
1084 1.7 ad i8254_delay(100000);
1085 1.45 ad ci->ci_data.cpu_cc_freq = (rdmsr(MSR_TSC) - last_tsc) * 10;
1086 1.7 ad }
1087 1.7 ad }
1088 1.37 joerg
1089 1.37 joerg void
1090 1.37 joerg x86_cpu_idle_mwait(void)
1091 1.37 joerg {
1092 1.37 joerg struct cpu_info *ci = curcpu();
1093 1.37 joerg
1094 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1095 1.37 joerg
1096 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1097 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1098 1.37 joerg return;
1099 1.37 joerg }
1100 1.37 joerg x86_mwait(0, 0);
1101 1.37 joerg }
1102 1.37 joerg
1103 1.37 joerg void
1104 1.37 joerg x86_cpu_idle_halt(void)
1105 1.37 joerg {
1106 1.37 joerg struct cpu_info *ci = curcpu();
1107 1.37 joerg
1108 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1109 1.37 joerg
1110 1.37 joerg x86_disable_intr();
1111 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1112 1.37 joerg x86_stihlt();
1113 1.37 joerg } else {
1114 1.37 joerg x86_enable_intr();
1115 1.37 joerg }
1116 1.37 joerg }
1117 1.73 jym
1118 1.73 jym /*
1119 1.73 jym * Loads pmap for the current CPU.
1120 1.73 jym */
1121 1.73 jym void
1122 1.73 jym cpu_load_pmap(struct pmap *pmap)
1123 1.73 jym {
1124 1.73 jym #ifdef PAE
1125 1.73 jym int i, s;
1126 1.73 jym struct cpu_info *ci;
1127 1.73 jym
1128 1.73 jym s = splvm(); /* just to be safe */
1129 1.73 jym ci = curcpu();
1130 1.73 jym pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1131 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1132 1.73 jym l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1133 1.73 jym }
1134 1.73 jym splx(s);
1135 1.73 jym tlbflush();
1136 1.73 jym #else /* PAE */
1137 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1138 1.73 jym #endif /* PAE */
1139 1.73 jym }
1140