Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.82
      1  1.82    jruoho /*	$NetBSD: cpu.c,v 1.82 2011/02/20 13:42:46 jruoho Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.38        ad  * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.11        ad  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Copyright (c) 1999 Stefan Grefen
     34   1.2        ad  *
     35   1.2        ad  * Redistribution and use in source and binary forms, with or without
     36   1.2        ad  * modification, are permitted provided that the following conditions
     37   1.2        ad  * are met:
     38   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     39   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     40   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     41   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     42   1.2        ad  *    documentation and/or other materials provided with the distribution.
     43   1.2        ad  * 3. All advertising materials mentioning features or use of this software
     44   1.2        ad  *    must display the following acknowledgement:
     45   1.2        ad  *      This product includes software developed by the NetBSD
     46   1.2        ad  *      Foundation, Inc. and its contributors.
     47   1.2        ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48   1.2        ad  *    contributors may be used to endorse or promote products derived
     49   1.2        ad  *    from this software without specific prior written permission.
     50   1.2        ad  *
     51   1.2        ad  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52   1.2        ad  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53   1.2        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54   1.2        ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55   1.2        ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56   1.2        ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57   1.2        ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58   1.2        ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59   1.2        ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60   1.2        ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61   1.2        ad  * SUCH DAMAGE.
     62   1.2        ad  */
     63   1.2        ad 
     64   1.2        ad #include <sys/cdefs.h>
     65  1.82    jruoho __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.82 2011/02/20 13:42:46 jruoho Exp $");
     66   1.2        ad 
     67   1.2        ad #include "opt_ddb.h"
     68   1.2        ad #include "opt_mpbios.h"		/* for MPDEBUG */
     69   1.2        ad #include "opt_mtrr.h"
     70   1.2        ad 
     71   1.2        ad #include "lapic.h"
     72   1.2        ad #include "ioapic.h"
     73   1.2        ad 
     74  1.62    bouyer #ifdef i386
     75  1.62    bouyer #include "npx.h"
     76  1.62    bouyer #endif
     77  1.62    bouyer 
     78   1.2        ad #include <sys/param.h>
     79   1.2        ad #include <sys/proc.h>
     80   1.2        ad #include <sys/systm.h>
     81   1.2        ad #include <sys/device.h>
     82  1.61    cegger #include <sys/kmem.h>
     83   1.9        ad #include <sys/cpu.h>
     84   1.9        ad #include <sys/atomic.h>
     85  1.35        ad #include <sys/reboot.h>
     86   1.2        ad 
     87  1.78  uebayasi #include <uvm/uvm.h>
     88   1.2        ad 
     89   1.2        ad #include <machine/cpufunc.h>
     90   1.2        ad #include <machine/cpuvar.h>
     91   1.2        ad #include <machine/pmap.h>
     92   1.2        ad #include <machine/vmparam.h>
     93   1.2        ad #include <machine/mpbiosvar.h>
     94   1.2        ad #include <machine/pcb.h>
     95   1.2        ad #include <machine/specialreg.h>
     96   1.2        ad #include <machine/segments.h>
     97   1.2        ad #include <machine/gdt.h>
     98   1.2        ad #include <machine/mtrr.h>
     99   1.2        ad #include <machine/pio.h>
    100  1.38        ad #include <machine/cpu_counter.h>
    101   1.2        ad 
    102   1.2        ad #ifdef i386
    103   1.2        ad #include <machine/tlog.h>
    104   1.2        ad #endif
    105   1.2        ad 
    106   1.2        ad #include <machine/apicvar.h>
    107   1.2        ad #include <machine/i82489reg.h>
    108   1.2        ad #include <machine/i82489var.h>
    109   1.2        ad 
    110   1.2        ad #include <dev/ic/mc146818reg.h>
    111   1.2        ad #include <i386/isa/nvram.h>
    112   1.2        ad #include <dev/isa/isareg.h>
    113   1.2        ad 
    114  1.38        ad #include "tsc.h"
    115  1.38        ad 
    116  1.54        ad #if MAXCPUS > 32
    117  1.54        ad #error cpu_info contains 32bit bitmasks
    118  1.54        ad #endif
    119  1.54        ad 
    120  1.23      cube int     cpu_match(device_t, cfdata_t, void *);
    121  1.23      cube void    cpu_attach(device_t, device_t, void *);
    122  1.81  jmcneill int	cpu_rescan(device_t, const char *, const int *);
    123  1.81  jmcneill void	cpu_childdetached(device_t, device_t);
    124  1.81  jmcneill 
    125   1.2        ad 
    126  1.69    dyoung static bool	cpu_suspend(device_t, const pmf_qual_t *);
    127  1.69    dyoung static bool	cpu_resume(device_t, const pmf_qual_t *);
    128  1.79    jruoho static bool	cpu_shutdown(device_t, int);
    129  1.12  jmcneill 
    130   1.2        ad struct cpu_softc {
    131  1.23      cube 	device_t sc_dev;		/* device tree glue */
    132   1.2        ad 	struct cpu_info *sc_info;	/* pointer to CPU info */
    133  1.20  jmcneill 	bool sc_wasonline;
    134   1.2        ad };
    135   1.2        ad 
    136  1.14     joerg int mp_cpu_start(struct cpu_info *, paddr_t);
    137   1.2        ad void mp_cpu_start_cleanup(struct cpu_info *);
    138   1.2        ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    139   1.2        ad 					    mp_cpu_start_cleanup };
    140   1.2        ad 
    141   1.2        ad 
    142  1.81  jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    143  1.81  jmcneill     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    144   1.2        ad 
    145   1.2        ad /*
    146   1.2        ad  * Statically-allocated CPU info for the primary CPU (or the only
    147   1.2        ad  * CPU, on uniprocessors).  The CPU info list is initialized to
    148   1.2        ad  * point at it.
    149   1.2        ad  */
    150   1.2        ad #ifdef TRAPLOG
    151   1.2        ad struct tlog tlog_primary;
    152   1.2        ad #endif
    153  1.21        ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    154   1.2        ad 	.ci_dev = 0,
    155   1.2        ad 	.ci_self = &cpu_info_primary,
    156   1.2        ad 	.ci_idepth = -1,
    157   1.2        ad 	.ci_curlwp = &lwp0,
    158  1.43        ad 	.ci_curldt = -1,
    159   1.2        ad #ifdef TRAPLOG
    160   1.2        ad 	.ci_tlog_base = &tlog_primary,
    161   1.2        ad #endif /* !TRAPLOG */
    162   1.2        ad };
    163   1.2        ad 
    164   1.2        ad struct cpu_info *cpu_info_list = &cpu_info_primary;
    165   1.2        ad 
    166  1.12  jmcneill static void	cpu_set_tss_gates(struct cpu_info *);
    167   1.2        ad 
    168   1.2        ad #ifdef i386
    169  1.15      yamt static void	tss_init(struct i386tss *, void *, void *);
    170   1.2        ad #endif
    171   1.2        ad 
    172  1.12  jmcneill static void	cpu_init_idle_lwp(struct cpu_info *);
    173  1.12  jmcneill 
    174   1.2        ad uint32_t cpus_attached = 0;
    175   1.9        ad uint32_t cpus_running = 0;
    176   1.2        ad 
    177  1.70       jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    178  1.70       jym 			  *	[0] basic features %edx
    179  1.70       jym 			  *	[1] basic features %ecx
    180  1.70       jym 			  *	[2] extended features %edx
    181  1.70       jym 			  *	[3] extended features %ecx
    182  1.70       jym 			  *	[4] VIA padlock features
    183  1.70       jym 			  */
    184  1.70       jym 
    185   1.2        ad extern char x86_64_doubleflt_stack[];
    186   1.2        ad 
    187  1.12  jmcneill bool x86_mp_online;
    188  1.12  jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    189  1.14     joerg static vaddr_t cmos_data_mapping;
    190  1.45        ad struct cpu_info *cpu_starting;
    191   1.2        ad 
    192   1.2        ad void    	cpu_hatch(void *);
    193   1.2        ad static void    	cpu_boot_secondary(struct cpu_info *ci);
    194   1.2        ad static void    	cpu_start_secondary(struct cpu_info *ci);
    195   1.2        ad static void	cpu_copy_trampoline(void);
    196   1.2        ad 
    197   1.2        ad /*
    198   1.2        ad  * Runs once per boot once multiprocessor goo has been detected and
    199   1.2        ad  * the local APIC on the boot processor has been mapped.
    200   1.2        ad  *
    201   1.2        ad  * Called from lapic_boot_init() (from mpbios_scan()).
    202   1.2        ad  */
    203   1.2        ad void
    204   1.9        ad cpu_init_first(void)
    205   1.2        ad {
    206   1.2        ad 
    207  1.45        ad 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    208   1.2        ad 	cpu_copy_trampoline();
    209  1.14     joerg 
    210  1.14     joerg 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    211  1.14     joerg 	if (cmos_data_mapping == 0)
    212  1.14     joerg 		panic("No KVA for page 0");
    213  1.64    cegger 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    214  1.14     joerg 	pmap_update(pmap_kernel());
    215   1.2        ad }
    216   1.2        ad 
    217   1.2        ad int
    218  1.23      cube cpu_match(device_t parent, cfdata_t match, void *aux)
    219   1.2        ad {
    220   1.2        ad 
    221   1.2        ad 	return 1;
    222   1.2        ad }
    223   1.2        ad 
    224   1.2        ad static void
    225   1.2        ad cpu_vm_init(struct cpu_info *ci)
    226   1.2        ad {
    227   1.2        ad 	int ncolors = 2, i;
    228   1.2        ad 
    229   1.2        ad 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    230   1.2        ad 		struct x86_cache_info *cai;
    231   1.2        ad 		int tcolors;
    232   1.2        ad 
    233   1.2        ad 		cai = &ci->ci_cinfo[i];
    234   1.2        ad 
    235   1.2        ad 		tcolors = atop(cai->cai_totalsize);
    236   1.2        ad 		switch(cai->cai_associativity) {
    237   1.2        ad 		case 0xff:
    238   1.2        ad 			tcolors = 1; /* fully associative */
    239   1.2        ad 			break;
    240   1.2        ad 		case 0:
    241   1.2        ad 		case 1:
    242   1.2        ad 			break;
    243   1.2        ad 		default:
    244   1.2        ad 			tcolors /= cai->cai_associativity;
    245   1.2        ad 		}
    246   1.2        ad 		ncolors = max(ncolors, tcolors);
    247  1.32       tls 		/*
    248  1.32       tls 		 * If the desired number of colors is not a power of
    249  1.32       tls 		 * two, it won't be good.  Find the greatest power of
    250  1.32       tls 		 * two which is an even divisor of the number of colors,
    251  1.32       tls 		 * to preserve even coloring of pages.
    252  1.32       tls 		 */
    253  1.32       tls 		if (ncolors & (ncolors - 1) ) {
    254  1.32       tls 			int try, picked = 1;
    255  1.32       tls 			for (try = 1; try < ncolors; try *= 2) {
    256  1.32       tls 				if (ncolors % try == 0) picked = try;
    257  1.32       tls 			}
    258  1.32       tls 			if (picked == 1) {
    259  1.32       tls 				panic("desired number of cache colors %d is "
    260  1.32       tls 			      	" > 1, but not even!", ncolors);
    261  1.32       tls 			}
    262  1.32       tls 			ncolors = picked;
    263  1.32       tls 		}
    264   1.2        ad 	}
    265   1.2        ad 
    266   1.2        ad 	/*
    267   1.2        ad 	 * Knowing the size of the largest cache on this CPU, re-color
    268   1.2        ad 	 * our pages.
    269   1.2        ad 	 */
    270   1.2        ad 	if (ncolors <= uvmexp.ncolors)
    271   1.2        ad 		return;
    272  1.52        ad 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    273   1.2        ad 	uvm_page_recolor(ncolors);
    274   1.2        ad }
    275   1.2        ad 
    276   1.2        ad 
    277   1.2        ad void
    278  1.23      cube cpu_attach(device_t parent, device_t self, void *aux)
    279   1.2        ad {
    280  1.23      cube 	struct cpu_softc *sc = device_private(self);
    281   1.2        ad 	struct cpu_attach_args *caa = aux;
    282   1.2        ad 	struct cpu_info *ci;
    283  1.21        ad 	uintptr_t ptr;
    284   1.2        ad 	int cpunum = caa->cpu_number;
    285  1.51        ad 	static bool again;
    286   1.2        ad 
    287  1.23      cube 	sc->sc_dev = self;
    288  1.23      cube 
    289  1.48        ad 	if (cpus_attached == ~0) {
    290  1.54        ad 		aprint_error(": increase MAXCPUS\n");
    291  1.48        ad 		return;
    292  1.48        ad 	}
    293  1.48        ad 
    294   1.2        ad 	/*
    295   1.2        ad 	 * If we're an Application Processor, allocate a cpu_info
    296   1.2        ad 	 * structure, otherwise use the primary's.
    297   1.2        ad 	 */
    298   1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    299  1.36        ad 		if ((boothowto & RB_MD1) != 0) {
    300  1.35        ad 			aprint_error(": multiprocessor boot disabled\n");
    301  1.56  jmcneill 			if (!pmf_device_register(self, NULL, NULL))
    302  1.56  jmcneill 				aprint_error_dev(self,
    303  1.56  jmcneill 				    "couldn't establish power handler\n");
    304  1.35        ad 			return;
    305  1.35        ad 		}
    306   1.2        ad 		aprint_naive(": Application Processor\n");
    307  1.72     rmind 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    308  1.61    cegger 		    KM_SLEEP);
    309  1.67       jym 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    310  1.43        ad 		ci->ci_curldt = -1;
    311   1.2        ad #ifdef TRAPLOG
    312  1.61    cegger 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    313   1.2        ad #endif
    314   1.2        ad 	} else {
    315   1.2        ad 		aprint_naive(": %s Processor\n",
    316   1.2        ad 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    317   1.2        ad 		ci = &cpu_info_primary;
    318   1.2        ad 		if (cpunum != lapic_cpu_number()) {
    319  1.51        ad 			/* XXX should be done earlier. */
    320  1.39        ad 			uint32_t reg;
    321  1.39        ad 			aprint_verbose("\n");
    322  1.47        ad 			aprint_verbose_dev(self, "running CPU at apic %d"
    323  1.47        ad 			    " instead of at expected %d", lapic_cpu_number(),
    324  1.23      cube 			    cpunum);
    325  1.39        ad 			reg = i82489_readreg(LAPIC_ID);
    326  1.39        ad 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    327  1.39        ad 			    (cpunum << LAPIC_ID_SHIFT));
    328   1.2        ad 		}
    329  1.47        ad 		if (cpunum != lapic_cpu_number()) {
    330  1.47        ad 			aprint_error_dev(self, "unable to reset apic id\n");
    331  1.47        ad 		}
    332   1.2        ad 	}
    333   1.2        ad 
    334   1.2        ad 	ci->ci_self = ci;
    335   1.2        ad 	sc->sc_info = ci;
    336   1.2        ad 	ci->ci_dev = self;
    337  1.74    jruoho 	ci->ci_acpiid = caa->cpu_id;
    338  1.42        ad 	ci->ci_cpuid = caa->cpu_number;
    339   1.2        ad 	ci->ci_func = caa->cpu_func;
    340   1.2        ad 
    341  1.55        ad 	/* Must be before mi_cpu_attach(). */
    342  1.55        ad 	cpu_vm_init(ci);
    343  1.55        ad 
    344   1.2        ad 	if (caa->cpu_role == CPU_ROLE_AP) {
    345   1.2        ad 		int error;
    346   1.2        ad 
    347   1.2        ad 		error = mi_cpu_attach(ci);
    348   1.2        ad 		if (error != 0) {
    349   1.2        ad 			aprint_normal("\n");
    350  1.47        ad 			aprint_error_dev(self,
    351  1.30    cegger 			    "mi_cpu_attach failed with %d\n", error);
    352   1.2        ad 			return;
    353   1.2        ad 		}
    354  1.15      yamt 		cpu_init_tss(ci);
    355   1.2        ad 	} else {
    356   1.2        ad 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    357   1.2        ad 	}
    358   1.2        ad 
    359  1.42        ad 	ci->ci_cpumask = (1 << cpu_index(ci));
    360   1.2        ad 	pmap_reference(pmap_kernel());
    361   1.2        ad 	ci->ci_pmap = pmap_kernel();
    362   1.2        ad 	ci->ci_tlbstate = TLBSTATE_STALE;
    363   1.2        ad 
    364  1.51        ad 	/*
    365  1.51        ad 	 * Boot processor may not be attached first, but the below
    366  1.51        ad 	 * must be done to allow booting other processors.
    367  1.51        ad 	 */
    368  1.51        ad 	if (!again) {
    369  1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    370  1.51        ad 		/* Basic init. */
    371   1.2        ad 		cpu_intr_init(ci);
    372  1.40        ad 		cpu_get_tsc_freq(ci);
    373   1.2        ad 		cpu_init(ci);
    374   1.2        ad 		cpu_set_tss_gates(ci);
    375   1.2        ad 		pmap_cpu_init_late(ci);
    376  1.51        ad 		if (caa->cpu_role != CPU_ROLE_SP) {
    377  1.51        ad 			/* Enable lapic. */
    378  1.51        ad 			lapic_enable();
    379  1.51        ad 			lapic_set_lvt();
    380  1.51        ad 			lapic_calibrate_timer(ci);
    381  1.51        ad 		}
    382  1.51        ad 		/* Make sure DELAY() is initialized. */
    383  1.51        ad 		DELAY(1);
    384  1.51        ad 		again = true;
    385  1.51        ad 	}
    386  1.51        ad 
    387  1.51        ad 	/* further PCB init done later. */
    388  1.51        ad 
    389  1.51        ad 	switch (caa->cpu_role) {
    390  1.51        ad 	case CPU_ROLE_SP:
    391  1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    392  1.51        ad 		cpu_identify(ci);
    393  1.53        ad 		x86_errata();
    394  1.37     joerg 		x86_cpu_idle_init();
    395   1.2        ad 		break;
    396   1.2        ad 
    397   1.2        ad 	case CPU_ROLE_BP:
    398  1.51        ad 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    399  1.40        ad 		cpu_identify(ci);
    400  1.53        ad 		x86_errata();
    401  1.37     joerg 		x86_cpu_idle_init();
    402   1.2        ad 		break;
    403   1.2        ad 
    404   1.2        ad 	case CPU_ROLE_AP:
    405   1.2        ad 		/*
    406   1.2        ad 		 * report on an AP
    407   1.2        ad 		 */
    408   1.2        ad 		cpu_intr_init(ci);
    409   1.2        ad 		gdt_alloc_cpu(ci);
    410   1.2        ad 		cpu_set_tss_gates(ci);
    411   1.2        ad 		pmap_cpu_init_early(ci);
    412   1.2        ad 		pmap_cpu_init_late(ci);
    413   1.2        ad 		cpu_start_secondary(ci);
    414   1.2        ad 		if (ci->ci_flags & CPUF_PRESENT) {
    415  1.59    cegger 			struct cpu_info *tmp;
    416  1.59    cegger 
    417  1.40        ad 			cpu_identify(ci);
    418  1.59    cegger 			tmp = cpu_info_list;
    419  1.59    cegger 			while (tmp->ci_next)
    420  1.59    cegger 				tmp = tmp->ci_next;
    421  1.59    cegger 
    422  1.59    cegger 			tmp->ci_next = ci;
    423   1.2        ad 		}
    424   1.2        ad 		break;
    425   1.2        ad 
    426   1.2        ad 	default:
    427  1.28    cegger 		aprint_normal("\n");
    428   1.2        ad 		panic("unknown processor type??\n");
    429   1.2        ad 	}
    430  1.51        ad 
    431  1.71    cegger 	pat_init(ci);
    432  1.47        ad 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    433   1.2        ad 
    434  1.79    jruoho 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    435  1.12  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    436  1.12  jmcneill 
    437   1.2        ad 	if (mp_verbose) {
    438   1.2        ad 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    439  1.65     rmind 		struct pcb *pcb = lwp_getpcb(l);
    440   1.2        ad 
    441  1.47        ad 		aprint_verbose_dev(self,
    442  1.28    cegger 		    "idle lwp at %p, idle sp at %p\n",
    443  1.28    cegger 		    l,
    444   1.2        ad #ifdef i386
    445  1.65     rmind 		    (void *)pcb->pcb_esp
    446   1.2        ad #else
    447  1.65     rmind 		    (void *)pcb->pcb_rsp
    448   1.2        ad #endif
    449   1.2        ad 		);
    450   1.2        ad 	}
    451  1.81  jmcneill 
    452  1.81  jmcneill 	cpu_rescan(self, NULL, NULL);
    453  1.81  jmcneill }
    454  1.81  jmcneill 
    455  1.81  jmcneill int
    456  1.81  jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
    457  1.81  jmcneill {
    458  1.81  jmcneill 	struct cpufeature_attach_args cfaa;
    459  1.81  jmcneill 	struct cpu_softc *sc = device_private(self);
    460  1.81  jmcneill 	struct cpu_info *ci = sc->sc_info;
    461  1.81  jmcneill 
    462  1.81  jmcneill 	memset(&cfaa, 0, sizeof(cfaa));
    463  1.81  jmcneill 	cfaa.ci = ci;
    464  1.81  jmcneill 
    465  1.81  jmcneill 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    466  1.82    jruoho 
    467  1.81  jmcneill 		if (ci->ci_padlock == NULL) {
    468  1.81  jmcneill 			cfaa.name = "padlock";
    469  1.81  jmcneill 			ci->ci_padlock = config_found_ia(self,
    470  1.81  jmcneill 			    "cpufeaturebus", &cfaa, NULL);
    471  1.81  jmcneill 		}
    472  1.82    jruoho 
    473  1.82    jruoho 		if (ci->ci_tempsensor == NULL) {
    474  1.82    jruoho 			cfaa.name = "coretemp";
    475  1.82    jruoho 			ci->ci_tempsensor = config_found_ia(self,
    476  1.82    jruoho 			    "cpufeaturebus", &cfaa, NULL);
    477  1.82    jruoho 		}
    478  1.81  jmcneill 	}
    479  1.81  jmcneill 
    480  1.81  jmcneill 	return 0;
    481  1.81  jmcneill }
    482  1.81  jmcneill 
    483  1.81  jmcneill void
    484  1.81  jmcneill cpu_childdetached(device_t self, device_t child)
    485  1.81  jmcneill {
    486  1.81  jmcneill 	struct cpu_softc *sc = device_private(self);
    487  1.81  jmcneill 	struct cpu_info *ci = sc->sc_info;
    488  1.81  jmcneill 
    489  1.82    jruoho 	if (ci->ci_tempsensor == child)
    490  1.82    jruoho 		ci->ci_tempsensor = NULL;
    491  1.82    jruoho 
    492  1.81  jmcneill 	if (ci->ci_padlock == child)
    493  1.81  jmcneill 		ci->ci_padlock = NULL;
    494   1.2        ad }
    495   1.2        ad 
    496   1.2        ad /*
    497   1.2        ad  * Initialize the processor appropriately.
    498   1.2        ad  */
    499   1.2        ad 
    500   1.2        ad void
    501   1.9        ad cpu_init(struct cpu_info *ci)
    502   1.2        ad {
    503   1.2        ad 
    504   1.2        ad 	lcr0(rcr0() | CR0_WP);
    505   1.2        ad 
    506   1.2        ad 	/*
    507   1.2        ad 	 * On a P6 or above, enable global TLB caching if the
    508   1.2        ad 	 * hardware supports it.
    509   1.2        ad 	 */
    510  1.70       jym 	if (cpu_feature[0] & CPUID_PGE)
    511   1.2        ad 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    512   1.2        ad 
    513   1.2        ad 	/*
    514   1.2        ad 	 * If we have FXSAVE/FXRESTOR, use them.
    515   1.2        ad 	 */
    516  1.70       jym 	if (cpu_feature[0] & CPUID_FXSR) {
    517   1.2        ad 		lcr4(rcr4() | CR4_OSFXSR);
    518   1.2        ad 
    519   1.2        ad 		/*
    520   1.2        ad 		 * If we have SSE/SSE2, enable XMM exceptions.
    521   1.2        ad 		 */
    522  1.70       jym 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    523   1.2        ad 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    524   1.2        ad 	}
    525   1.2        ad 
    526   1.2        ad #ifdef MTRR
    527   1.2        ad 	/*
    528   1.2        ad 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    529   1.2        ad 	 */
    530  1.70       jym 	if (cpu_feature[0] & CPUID_MTRR) {
    531   1.2        ad 		if ((ci->ci_flags & CPUF_AP) == 0)
    532   1.2        ad 			i686_mtrr_init_first();
    533   1.2        ad 		mtrr_init_cpu(ci);
    534   1.2        ad 	}
    535   1.2        ad 
    536   1.2        ad #ifdef i386
    537   1.2        ad 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    538   1.2        ad 		/*
    539   1.2        ad 		 * Must be a K6-2 Step >= 7 or a K6-III.
    540   1.2        ad 		 */
    541   1.2        ad 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    542   1.2        ad 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    543   1.2        ad 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    544   1.2        ad 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    545   1.2        ad 				mtrr_funcs = &k6_mtrr_funcs;
    546   1.2        ad 				k6_mtrr_init_first();
    547   1.2        ad 				mtrr_init_cpu(ci);
    548   1.2        ad 			}
    549   1.2        ad 		}
    550   1.2        ad 	}
    551   1.2        ad #endif	/* i386 */
    552   1.2        ad #endif /* MTRR */
    553   1.2        ad 
    554   1.9        ad 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    555   1.9        ad 
    556  1.38        ad 	if (ci != &cpu_info_primary) {
    557  1.38        ad 		/* Synchronize TSC again, and check for drift. */
    558  1.38        ad 		wbinvd();
    559  1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    560  1.38        ad 		tsc_sync_ap(ci);
    561  1.38        ad 	} else {
    562  1.38        ad 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    563  1.38        ad 	}
    564   1.2        ad }
    565   1.2        ad 
    566   1.2        ad void
    567  1.12  jmcneill cpu_boot_secondary_processors(void)
    568   1.2        ad {
    569   1.2        ad 	struct cpu_info *ci;
    570   1.2        ad 	u_long i;
    571   1.2        ad 
    572   1.5        ad 	/* Now that we know the number of CPUs, patch the text segment. */
    573  1.60        ad 	x86_patch(false);
    574   1.5        ad 
    575  1.54        ad 	for (i=0; i < maxcpus; i++) {
    576  1.57        ad 		ci = cpu_lookup(i);
    577   1.2        ad 		if (ci == NULL)
    578   1.2        ad 			continue;
    579   1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    580   1.2        ad 			continue;
    581   1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    582   1.2        ad 			continue;
    583   1.2        ad 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    584   1.2        ad 			continue;
    585   1.2        ad 		cpu_boot_secondary(ci);
    586   1.2        ad 	}
    587   1.2        ad 
    588   1.2        ad 	x86_mp_online = true;
    589  1.38        ad 
    590  1.38        ad 	/* Now that we know about the TSC, attach the timecounter. */
    591  1.38        ad 	tsc_tc_init();
    592  1.55        ad 
    593  1.55        ad 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    594  1.70       jym 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
    595   1.2        ad }
    596   1.2        ad 
    597   1.2        ad static void
    598   1.2        ad cpu_init_idle_lwp(struct cpu_info *ci)
    599   1.2        ad {
    600   1.2        ad 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    601  1.65     rmind 	struct pcb *pcb = lwp_getpcb(l);
    602   1.2        ad 
    603   1.2        ad 	pcb->pcb_cr0 = rcr0();
    604   1.2        ad }
    605   1.2        ad 
    606   1.2        ad void
    607  1.12  jmcneill cpu_init_idle_lwps(void)
    608   1.2        ad {
    609   1.2        ad 	struct cpu_info *ci;
    610   1.2        ad 	u_long i;
    611   1.2        ad 
    612  1.54        ad 	for (i = 0; i < maxcpus; i++) {
    613  1.57        ad 		ci = cpu_lookup(i);
    614   1.2        ad 		if (ci == NULL)
    615   1.2        ad 			continue;
    616   1.2        ad 		if (ci->ci_data.cpu_idlelwp == NULL)
    617   1.2        ad 			continue;
    618   1.2        ad 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    619   1.2        ad 			continue;
    620   1.2        ad 		cpu_init_idle_lwp(ci);
    621   1.2        ad 	}
    622   1.2        ad }
    623   1.2        ad 
    624   1.2        ad void
    625  1.12  jmcneill cpu_start_secondary(struct cpu_info *ci)
    626   1.2        ad {
    627  1.38        ad 	extern paddr_t mp_pdirpa;
    628  1.38        ad 	u_long psl;
    629   1.2        ad 	int i;
    630   1.2        ad 
    631  1.12  jmcneill 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    632   1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    633   1.2        ad 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    634  1.45        ad 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    635  1.25        ad 		return;
    636  1.45        ad 	}
    637   1.2        ad 
    638   1.2        ad 	/*
    639  1.50        ad 	 * Wait for it to become ready.   Setting cpu_starting opens the
    640  1.50        ad 	 * initial gate and allows the AP to start soft initialization.
    641   1.2        ad 	 */
    642  1.50        ad 	KASSERT(cpu_starting == NULL);
    643  1.50        ad 	cpu_starting = ci;
    644  1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    645  1.24        ad #ifdef MPDEBUG
    646  1.24        ad 		extern int cpu_trace[3];
    647  1.24        ad 		static int otrace[3];
    648  1.24        ad 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    649  1.26    cegger 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    650  1.26    cegger 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    651  1.24        ad 			memcpy(otrace, cpu_trace, sizeof(otrace));
    652  1.24        ad 		}
    653  1.24        ad #endif
    654  1.11        ad 		i8254_delay(10);
    655   1.2        ad 	}
    656  1.38        ad 
    657   1.9        ad 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    658  1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    659   1.2        ad #if defined(MPDEBUG) && defined(DDB)
    660   1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    661   1.2        ad 		Debugger();
    662   1.2        ad #endif
    663  1.38        ad 	} else {
    664  1.38        ad 		/*
    665  1.68       jym 		 * Synchronize time stamp counters. Invalidate cache and do
    666  1.68       jym 		 * twice to try and minimize possible cache effects. Disable
    667  1.68       jym 		 * interrupts to try and rule out any external interference.
    668  1.38        ad 		 */
    669  1.38        ad 		psl = x86_read_psl();
    670  1.38        ad 		x86_disable_intr();
    671  1.38        ad 		wbinvd();
    672  1.38        ad 		tsc_sync_bp(ci);
    673  1.38        ad 		x86_write_psl(psl);
    674   1.2        ad 	}
    675   1.2        ad 
    676   1.2        ad 	CPU_START_CLEANUP(ci);
    677  1.45        ad 	cpu_starting = NULL;
    678   1.2        ad }
    679   1.2        ad 
    680   1.2        ad void
    681  1.12  jmcneill cpu_boot_secondary(struct cpu_info *ci)
    682   1.2        ad {
    683  1.38        ad 	int64_t drift;
    684  1.38        ad 	u_long psl;
    685   1.2        ad 	int i;
    686   1.2        ad 
    687   1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    688  1.26    cegger 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    689  1.11        ad 		i8254_delay(10);
    690   1.2        ad 	}
    691   1.9        ad 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    692  1.26    cegger 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    693   1.2        ad #if defined(MPDEBUG) && defined(DDB)
    694   1.2        ad 		printf("dropping into debugger; continue from here to resume boot\n");
    695   1.2        ad 		Debugger();
    696   1.2        ad #endif
    697  1.38        ad 	} else {
    698  1.38        ad 		/* Synchronize TSC again, check for drift. */
    699  1.38        ad 		drift = ci->ci_data.cpu_cc_skew;
    700  1.38        ad 		psl = x86_read_psl();
    701  1.38        ad 		x86_disable_intr();
    702  1.38        ad 		wbinvd();
    703  1.38        ad 		tsc_sync_bp(ci);
    704  1.38        ad 		x86_write_psl(psl);
    705  1.38        ad 		drift -= ci->ci_data.cpu_cc_skew;
    706  1.38        ad 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    707  1.38        ad 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    708  1.38        ad 		tsc_sync_drift(drift);
    709   1.2        ad 	}
    710   1.2        ad }
    711   1.2        ad 
    712   1.2        ad /*
    713   1.2        ad  * The CPU ends up here when its ready to run
    714   1.2        ad  * This is called from code in mptramp.s; at this point, we are running
    715   1.2        ad  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    716   1.2        ad  * this processor will enter the idle loop and start looking for work.
    717   1.2        ad  */
    718   1.2        ad void
    719   1.2        ad cpu_hatch(void *v)
    720   1.2        ad {
    721   1.2        ad 	struct cpu_info *ci = (struct cpu_info *)v;
    722  1.65     rmind 	struct pcb *pcb;
    723   1.6        ad 	int s, i;
    724   1.2        ad 
    725  1.12  jmcneill 	cpu_init_msrs(ci, true);
    726  1.40        ad 	cpu_probe(ci);
    727  1.46        ad 
    728  1.46        ad 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    729  1.46        ad 	/* cpu_get_tsc_freq(ci); */
    730  1.38        ad 
    731   1.8        ad 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    732  1.38        ad 
    733  1.38        ad 	/*
    734  1.38        ad 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    735  1.38        ad 	 * to try and minimize possible cache effects.  Note that interrupts
    736  1.38        ad 	 * are off at this point.
    737  1.38        ad 	 */
    738  1.38        ad 	wbinvd();
    739   1.9        ad 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    740  1.38        ad 	tsc_sync_ap(ci);
    741  1.38        ad 
    742  1.38        ad 	/*
    743  1.38        ad 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    744  1.38        ad 	 * in order to make the TSC drift as much as possible. so that
    745  1.38        ad 	 * we can detect it later.  If not available, try 'pause'.
    746  1.38        ad 	 * We'd like to use 'hlt', but we have interrupts off.
    747  1.38        ad 	 */
    748   1.6        ad 	while ((ci->ci_flags & CPUF_GO) == 0) {
    749  1.70       jym 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    750  1.38        ad 			x86_monitor(&ci->ci_flags, 0, 0);
    751  1.38        ad 			if ((ci->ci_flags & CPUF_GO) != 0) {
    752  1.38        ad 				continue;
    753  1.38        ad 			}
    754  1.38        ad 			x86_mwait(0, 0);
    755  1.38        ad 		} else {
    756  1.38        ad 			for (i = 10000; i != 0; i--) {
    757  1.38        ad 				x86_pause();
    758  1.38        ad 			}
    759  1.38        ad 		}
    760   1.6        ad 	}
    761   1.5        ad 
    762  1.26    cegger 	/* Because the text may have been patched in x86_patch(). */
    763   1.5        ad 	wbinvd();
    764   1.5        ad 	x86_flush();
    765   1.5        ad 
    766   1.8        ad 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    767   1.2        ad 
    768  1.73       jym #ifdef PAE
    769  1.73       jym 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    770  1.73       jym 	for (i = 0 ; i < PDP_SIZE; i++) {
    771  1.73       jym 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
    772  1.73       jym 	}
    773  1.73       jym 	lcr3(ci->ci_pae_l3_pdirpa);
    774  1.73       jym #else
    775  1.73       jym 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    776  1.73       jym #endif
    777  1.73       jym 
    778  1.65     rmind 	pcb = lwp_getpcb(curlwp);
    779  1.73       jym 	pcb->pcb_cr3 = rcr3();
    780  1.65     rmind 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    781  1.65     rmind 	lcr0(pcb->pcb_cr0);
    782  1.65     rmind 
    783   1.2        ad 	cpu_init_idt();
    784   1.8        ad 	gdt_init_cpu(ci);
    785   1.8        ad 	lapic_enable();
    786   1.2        ad 	lapic_set_lvt();
    787   1.8        ad 	lapic_initclocks();
    788   1.2        ad 
    789   1.2        ad #ifdef i386
    790  1.62    bouyer #if NNPX > 0
    791   1.2        ad 	npxinit(ci);
    792  1.62    bouyer #endif
    793   1.2        ad #else
    794   1.2        ad 	fpuinit(ci);
    795   1.4      yamt #endif
    796   1.2        ad 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    797  1.15      yamt 	ltr(ci->ci_tss_sel);
    798   1.2        ad 
    799   1.2        ad 	cpu_init(ci);
    800   1.7        ad 	cpu_get_tsc_freq(ci);
    801   1.2        ad 
    802   1.2        ad 	s = splhigh();
    803   1.2        ad #ifdef i386
    804   1.2        ad 	lapic_tpr = 0;
    805   1.2        ad #else
    806   1.2        ad 	lcr8(0);
    807   1.2        ad #endif
    808   1.3        ad 	x86_enable_intr();
    809   1.2        ad 	splx(s);
    810   1.6        ad 	x86_errata();
    811   1.2        ad 
    812  1.42        ad 	aprint_debug_dev(ci->ci_dev, "running\n");
    813   1.2        ad }
    814   1.2        ad 
    815   1.2        ad #if defined(DDB)
    816   1.2        ad 
    817   1.2        ad #include <ddb/db_output.h>
    818   1.2        ad #include <machine/db_machdep.h>
    819   1.2        ad 
    820   1.2        ad /*
    821   1.2        ad  * Dump CPU information from ddb.
    822   1.2        ad  */
    823   1.2        ad void
    824   1.2        ad cpu_debug_dump(void)
    825   1.2        ad {
    826   1.2        ad 	struct cpu_info *ci;
    827   1.2        ad 	CPU_INFO_ITERATOR cii;
    828   1.2        ad 
    829  1.29      yamt 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    830   1.2        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    831   1.2        ad 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    832   1.2        ad 		    ci,
    833  1.27    cegger 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    834   1.2        ad 		    (long)ci->ci_cpuid,
    835   1.2        ad 		    ci->ci_flags, ci->ci_ipis,
    836   1.2        ad 		    ci->ci_curlwp,
    837   1.2        ad 		    ci->ci_fpcurlwp);
    838   1.2        ad 	}
    839   1.2        ad }
    840   1.2        ad #endif
    841   1.2        ad 
    842   1.2        ad static void
    843  1.12  jmcneill cpu_copy_trampoline(void)
    844   1.2        ad {
    845   1.2        ad 	/*
    846   1.2        ad 	 * Copy boot code.
    847   1.2        ad 	 */
    848   1.2        ad 	extern u_char cpu_spinup_trampoline[];
    849   1.2        ad 	extern u_char cpu_spinup_trampoline_end[];
    850  1.12  jmcneill 
    851  1.12  jmcneill 	vaddr_t mp_trampoline_vaddr;
    852  1.12  jmcneill 
    853  1.12  jmcneill 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    854  1.12  jmcneill 	    UVM_KMF_VAONLY);
    855  1.12  jmcneill 
    856  1.12  jmcneill 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    857  1.64    cegger 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    858   1.2        ad 	pmap_update(pmap_kernel());
    859  1.12  jmcneill 	memcpy((void *)mp_trampoline_vaddr,
    860   1.2        ad 	    cpu_spinup_trampoline,
    861  1.26    cegger 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    862  1.12  jmcneill 
    863  1.12  jmcneill 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    864  1.12  jmcneill 	pmap_update(pmap_kernel());
    865  1.12  jmcneill 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    866   1.2        ad }
    867   1.2        ad 
    868   1.2        ad #ifdef i386
    869   1.2        ad static void
    870  1.15      yamt tss_init(struct i386tss *tss, void *stack, void *func)
    871   1.2        ad {
    872  1.73       jym 	KASSERT(curcpu()->ci_pmap == pmap_kernel());
    873  1.73       jym 
    874   1.2        ad 	memset(tss, 0, sizeof *tss);
    875   1.2        ad 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    876   1.2        ad 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    877   1.2        ad 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    878   1.2        ad 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    879   1.2        ad 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    880   1.2        ad 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    881  1.73       jym 	/* %cr3 contains the value associated to pmap_kernel */
    882  1.73       jym 	tss->tss_cr3 = rcr3();
    883   1.2        ad 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    884   1.2        ad 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    885   1.2        ad 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    886   1.2        ad 	tss->__tss_eip = (int)func;
    887   1.2        ad }
    888   1.2        ad 
    889   1.2        ad /* XXX */
    890   1.2        ad #define IDTVEC(name)	__CONCAT(X, name)
    891   1.2        ad typedef void (vector)(void);
    892   1.2        ad extern vector IDTVEC(tss_trap08);
    893   1.2        ad #ifdef DDB
    894   1.2        ad extern vector Xintrddbipi;
    895   1.2        ad extern int ddb_vec;
    896   1.2        ad #endif
    897   1.2        ad 
    898   1.2        ad static void
    899   1.2        ad cpu_set_tss_gates(struct cpu_info *ci)
    900   1.2        ad {
    901   1.2        ad 	struct segment_descriptor sd;
    902   1.2        ad 
    903   1.2        ad 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    904   1.2        ad 	    UVM_KMF_WIRED);
    905  1.15      yamt 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    906   1.2        ad 	    IDTVEC(tss_trap08));
    907   1.2        ad 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    908   1.2        ad 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    909   1.2        ad 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    910   1.2        ad 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    911   1.2        ad 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    912   1.2        ad 
    913  1.44        ad #if defined(DDB)
    914   1.2        ad 	/*
    915   1.2        ad 	 * Set up separate handler for the DDB IPI, so that it doesn't
    916   1.2        ad 	 * stomp on a possibly corrupted stack.
    917   1.2        ad 	 *
    918   1.2        ad 	 * XXX overwriting the gate set in db_machine_init.
    919   1.2        ad 	 * Should rearrange the code so that it's set only once.
    920   1.2        ad 	 */
    921   1.2        ad 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    922   1.2        ad 	    UVM_KMF_WIRED);
    923  1.15      yamt 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    924   1.2        ad 
    925   1.2        ad 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    926   1.2        ad 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    927   1.2        ad 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    928   1.2        ad 
    929   1.2        ad 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    930   1.2        ad 	    GSEL(GIPITSS_SEL, SEL_KPL));
    931   1.2        ad #endif
    932   1.2        ad }
    933   1.2        ad #else
    934   1.2        ad static void
    935   1.2        ad cpu_set_tss_gates(struct cpu_info *ci)
    936   1.2        ad {
    937   1.2        ad 
    938   1.2        ad }
    939   1.2        ad #endif	/* i386 */
    940   1.2        ad 
    941   1.2        ad int
    942  1.14     joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
    943   1.2        ad {
    944  1.44        ad 	unsigned short dwordptr[2];
    945   1.2        ad 	int error;
    946  1.14     joerg 
    947  1.14     joerg 	/*
    948  1.14     joerg 	 * Bootstrap code must be addressable in real mode
    949  1.14     joerg 	 * and it must be page aligned.
    950  1.14     joerg 	 */
    951  1.14     joerg 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    952   1.2        ad 
    953   1.2        ad 	/*
    954   1.2        ad 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    955   1.2        ad 	 */
    956   1.2        ad 
    957   1.2        ad 	outb(IO_RTC, NVRAM_RESET);
    958   1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    959   1.2        ad 
    960   1.2        ad 	/*
    961   1.2        ad 	 * "and the warm reset vector (DWORD based at 40:67) to point
    962   1.2        ad 	 * to the AP startup code ..."
    963   1.2        ad 	 */
    964   1.2        ad 
    965   1.2        ad 	dwordptr[0] = 0;
    966  1.14     joerg 	dwordptr[1] = target >> 4;
    967   1.2        ad 
    968  1.25        ad 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
    969   1.2        ad 
    970  1.70       jym 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
    971  1.25        ad 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
    972  1.25        ad 		return ENODEV;
    973  1.25        ad 	}
    974  1.25        ad 
    975   1.2        ad 	/*
    976  1.51        ad 	 * ... prior to executing the following sequence:".  We'll also add in
    977  1.51        ad 	 * local cache flush, in case the BIOS has left the AP with its cache
    978  1.51        ad 	 * disabled.  It may not be able to cope with MP coherency.
    979   1.2        ad 	 */
    980  1.51        ad 	wbinvd();
    981   1.2        ad 
    982   1.2        ad 	if (ci->ci_flags & CPUF_AP) {
    983  1.42        ad 		error = x86_ipi_init(ci->ci_cpuid);
    984  1.26    cegger 		if (error != 0) {
    985  1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
    986  1.50        ad 			    __func__);
    987   1.2        ad 			return error;
    988  1.25        ad 		}
    989  1.11        ad 		i8254_delay(10000);
    990   1.2        ad 
    991  1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
    992  1.26    cegger 		if (error != 0) {
    993  1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
    994  1.50        ad 			    __func__);
    995  1.25        ad 			return error;
    996  1.25        ad 		}
    997  1.25        ad 		i8254_delay(200);
    998   1.2        ad 
    999  1.50        ad 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1000  1.26    cegger 		if (error != 0) {
   1001  1.26    cegger 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1002  1.50        ad 			    __func__);
   1003  1.25        ad 			return error;
   1004   1.2        ad 		}
   1005  1.25        ad 		i8254_delay(200);
   1006   1.2        ad 	}
   1007  1.44        ad 
   1008   1.2        ad 	return 0;
   1009   1.2        ad }
   1010   1.2        ad 
   1011   1.2        ad void
   1012   1.2        ad mp_cpu_start_cleanup(struct cpu_info *ci)
   1013   1.2        ad {
   1014   1.2        ad 	/*
   1015   1.2        ad 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1016   1.2        ad 	 */
   1017   1.2        ad 
   1018   1.2        ad 	outb(IO_RTC, NVRAM_RESET);
   1019   1.2        ad 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1020   1.2        ad }
   1021   1.2        ad 
   1022   1.2        ad #ifdef __x86_64__
   1023   1.2        ad typedef void (vector)(void);
   1024   1.2        ad extern vector Xsyscall, Xsyscall32;
   1025  1.70       jym #endif
   1026   1.2        ad 
   1027   1.2        ad void
   1028  1.12  jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
   1029   1.2        ad {
   1030  1.70       jym #ifdef __x86_64__
   1031   1.2        ad 	wrmsr(MSR_STAR,
   1032   1.2        ad 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1033   1.2        ad 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1034   1.2        ad 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1035   1.2        ad 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1036   1.2        ad 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
   1037   1.2        ad 
   1038  1.12  jmcneill 	if (full) {
   1039  1.12  jmcneill 		wrmsr(MSR_FSBASE, 0);
   1040  1.27    cegger 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1041  1.12  jmcneill 		wrmsr(MSR_KERNELGSBASE, 0);
   1042  1.12  jmcneill 	}
   1043  1.70       jym #endif	/* __x86_64__ */
   1044   1.2        ad 
   1045  1.70       jym 	if (cpu_feature[2] & CPUID_NOX)
   1046   1.2        ad 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1047   1.2        ad }
   1048   1.7        ad 
   1049  1.18     joerg void
   1050  1.18     joerg cpu_offline_md(void)
   1051  1.18     joerg {
   1052  1.18     joerg 	int s;
   1053  1.18     joerg 
   1054  1.18     joerg 	s = splhigh();
   1055  1.62    bouyer #ifdef i386
   1056  1.62    bouyer #if NNPX > 0
   1057  1.18     joerg 	npxsave_cpu(true);
   1058  1.62    bouyer #endif
   1059  1.18     joerg #else
   1060  1.18     joerg 	fpusave_cpu(true);
   1061  1.18     joerg #endif
   1062  1.18     joerg 	splx(s);
   1063  1.18     joerg }
   1064  1.18     joerg 
   1065  1.12  jmcneill /* XXX joerg restructure and restart CPUs individually */
   1066  1.12  jmcneill static bool
   1067  1.69    dyoung cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1068  1.12  jmcneill {
   1069  1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1070  1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1071  1.18     joerg 	int err;
   1072  1.12  jmcneill 
   1073  1.13     joerg 	if (ci->ci_flags & CPUF_PRIMARY)
   1074  1.12  jmcneill 		return true;
   1075  1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1076  1.12  jmcneill 		return true;
   1077  1.12  jmcneill 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1078  1.12  jmcneill 		return true;
   1079  1.12  jmcneill 
   1080  1.20  jmcneill 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1081  1.17     joerg 
   1082  1.20  jmcneill 	if (sc->sc_wasonline) {
   1083  1.20  jmcneill 		mutex_enter(&cpu_lock);
   1084  1.58     rmind 		err = cpu_setstate(ci, false);
   1085  1.20  jmcneill 		mutex_exit(&cpu_lock);
   1086  1.79    jruoho 
   1087  1.20  jmcneill 		if (err)
   1088  1.20  jmcneill 			return false;
   1089  1.20  jmcneill 	}
   1090  1.17     joerg 
   1091  1.17     joerg 	return true;
   1092  1.12  jmcneill }
   1093  1.12  jmcneill 
   1094  1.12  jmcneill static bool
   1095  1.69    dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
   1096  1.12  jmcneill {
   1097  1.12  jmcneill 	struct cpu_softc *sc = device_private(dv);
   1098  1.12  jmcneill 	struct cpu_info *ci = sc->sc_info;
   1099  1.20  jmcneill 	int err = 0;
   1100  1.12  jmcneill 
   1101  1.13     joerg 	if (ci->ci_flags & CPUF_PRIMARY)
   1102  1.12  jmcneill 		return true;
   1103  1.12  jmcneill 	if (ci->ci_data.cpu_idlelwp == NULL)
   1104  1.12  jmcneill 		return true;
   1105  1.12  jmcneill 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1106  1.12  jmcneill 		return true;
   1107  1.12  jmcneill 
   1108  1.20  jmcneill 	if (sc->sc_wasonline) {
   1109  1.20  jmcneill 		mutex_enter(&cpu_lock);
   1110  1.58     rmind 		err = cpu_setstate(ci, true);
   1111  1.20  jmcneill 		mutex_exit(&cpu_lock);
   1112  1.20  jmcneill 	}
   1113  1.13     joerg 
   1114  1.13     joerg 	return err == 0;
   1115  1.12  jmcneill }
   1116  1.12  jmcneill 
   1117  1.79    jruoho static bool
   1118  1.79    jruoho cpu_shutdown(device_t dv, int how)
   1119  1.79    jruoho {
   1120  1.79    jruoho 	return cpu_suspend(dv, NULL);
   1121  1.79    jruoho }
   1122  1.79    jruoho 
   1123   1.7        ad void
   1124   1.7        ad cpu_get_tsc_freq(struct cpu_info *ci)
   1125   1.7        ad {
   1126   1.7        ad 	uint64_t last_tsc;
   1127   1.7        ad 
   1128  1.70       jym 	if (cpu_hascounter()) {
   1129  1.80    bouyer 		last_tsc = cpu_counter_serializing();
   1130   1.7        ad 		i8254_delay(100000);
   1131  1.80    bouyer 		ci->ci_data.cpu_cc_freq =
   1132  1.80    bouyer 		    (cpu_counter_serializing() - last_tsc) * 10;
   1133   1.7        ad 	}
   1134   1.7        ad }
   1135  1.37     joerg 
   1136  1.37     joerg void
   1137  1.37     joerg x86_cpu_idle_mwait(void)
   1138  1.37     joerg {
   1139  1.37     joerg 	struct cpu_info *ci = curcpu();
   1140  1.37     joerg 
   1141  1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1142  1.37     joerg 
   1143  1.37     joerg 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1144  1.37     joerg 	if (__predict_false(ci->ci_want_resched)) {
   1145  1.37     joerg 		return;
   1146  1.37     joerg 	}
   1147  1.37     joerg 	x86_mwait(0, 0);
   1148  1.37     joerg }
   1149  1.37     joerg 
   1150  1.37     joerg void
   1151  1.37     joerg x86_cpu_idle_halt(void)
   1152  1.37     joerg {
   1153  1.37     joerg 	struct cpu_info *ci = curcpu();
   1154  1.37     joerg 
   1155  1.37     joerg 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1156  1.37     joerg 
   1157  1.37     joerg 	x86_disable_intr();
   1158  1.37     joerg 	if (!__predict_false(ci->ci_want_resched)) {
   1159  1.37     joerg 		x86_stihlt();
   1160  1.37     joerg 	} else {
   1161  1.37     joerg 		x86_enable_intr();
   1162  1.37     joerg 	}
   1163  1.37     joerg }
   1164  1.73       jym 
   1165  1.73       jym /*
   1166  1.73       jym  * Loads pmap for the current CPU.
   1167  1.73       jym  */
   1168  1.73       jym void
   1169  1.73       jym cpu_load_pmap(struct pmap *pmap)
   1170  1.73       jym {
   1171  1.73       jym #ifdef PAE
   1172  1.73       jym 	int i, s;
   1173  1.73       jym 	struct cpu_info *ci;
   1174  1.73       jym 
   1175  1.73       jym 	s = splvm(); /* just to be safe */
   1176  1.73       jym 	ci = curcpu();
   1177  1.73       jym 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1178  1.73       jym 	for (i = 0 ; i < PDP_SIZE; i++) {
   1179  1.73       jym 		l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
   1180  1.73       jym 	}
   1181  1.73       jym 	splx(s);
   1182  1.73       jym 	tlbflush();
   1183  1.73       jym #else /* PAE */
   1184  1.73       jym 	lcr3(pmap_pdirpa(pmap, 0));
   1185  1.73       jym #endif /* PAE */
   1186  1.73       jym }
   1187