cpu.c revision 1.83 1 1.83 jruoho /* $NetBSD: cpu.c,v 1.83 2011/02/23 11:43:23 jruoho Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.38 ad * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.83 jruoho __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.83 2011/02/23 11:43:23 jruoho Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.2 ad
71 1.2 ad #include "lapic.h"
72 1.2 ad #include "ioapic.h"
73 1.2 ad
74 1.62 bouyer #ifdef i386
75 1.62 bouyer #include "npx.h"
76 1.62 bouyer #endif
77 1.62 bouyer
78 1.2 ad #include <sys/param.h>
79 1.2 ad #include <sys/proc.h>
80 1.2 ad #include <sys/systm.h>
81 1.2 ad #include <sys/device.h>
82 1.61 cegger #include <sys/kmem.h>
83 1.9 ad #include <sys/cpu.h>
84 1.9 ad #include <sys/atomic.h>
85 1.35 ad #include <sys/reboot.h>
86 1.2 ad
87 1.78 uebayasi #include <uvm/uvm.h>
88 1.2 ad
89 1.2 ad #include <machine/cpufunc.h>
90 1.2 ad #include <machine/cpuvar.h>
91 1.2 ad #include <machine/pmap.h>
92 1.2 ad #include <machine/vmparam.h>
93 1.2 ad #include <machine/mpbiosvar.h>
94 1.2 ad #include <machine/pcb.h>
95 1.2 ad #include <machine/specialreg.h>
96 1.2 ad #include <machine/segments.h>
97 1.2 ad #include <machine/gdt.h>
98 1.2 ad #include <machine/mtrr.h>
99 1.2 ad #include <machine/pio.h>
100 1.38 ad #include <machine/cpu_counter.h>
101 1.2 ad
102 1.2 ad #ifdef i386
103 1.2 ad #include <machine/tlog.h>
104 1.2 ad #endif
105 1.2 ad
106 1.2 ad #include <machine/apicvar.h>
107 1.2 ad #include <machine/i82489reg.h>
108 1.2 ad #include <machine/i82489var.h>
109 1.2 ad
110 1.2 ad #include <dev/ic/mc146818reg.h>
111 1.2 ad #include <i386/isa/nvram.h>
112 1.2 ad #include <dev/isa/isareg.h>
113 1.2 ad
114 1.38 ad #include "tsc.h"
115 1.38 ad
116 1.54 ad #if MAXCPUS > 32
117 1.54 ad #error cpu_info contains 32bit bitmasks
118 1.54 ad #endif
119 1.54 ad
120 1.23 cube int cpu_match(device_t, cfdata_t, void *);
121 1.23 cube void cpu_attach(device_t, device_t, void *);
122 1.81 jmcneill int cpu_rescan(device_t, const char *, const int *);
123 1.81 jmcneill void cpu_childdetached(device_t, device_t);
124 1.81 jmcneill
125 1.2 ad
126 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
127 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
128 1.79 jruoho static bool cpu_shutdown(device_t, int);
129 1.12 jmcneill
130 1.2 ad struct cpu_softc {
131 1.23 cube device_t sc_dev; /* device tree glue */
132 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
133 1.20 jmcneill bool sc_wasonline;
134 1.2 ad };
135 1.2 ad
136 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
137 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
138 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 1.2 ad mp_cpu_start_cleanup };
140 1.2 ad
141 1.2 ad
142 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
143 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
144 1.2 ad
145 1.2 ad /*
146 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
147 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
148 1.2 ad * point at it.
149 1.2 ad */
150 1.2 ad #ifdef TRAPLOG
151 1.2 ad struct tlog tlog_primary;
152 1.2 ad #endif
153 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
154 1.2 ad .ci_dev = 0,
155 1.2 ad .ci_self = &cpu_info_primary,
156 1.2 ad .ci_idepth = -1,
157 1.2 ad .ci_curlwp = &lwp0,
158 1.43 ad .ci_curldt = -1,
159 1.2 ad #ifdef TRAPLOG
160 1.2 ad .ci_tlog_base = &tlog_primary,
161 1.2 ad #endif /* !TRAPLOG */
162 1.2 ad };
163 1.2 ad
164 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
165 1.2 ad
166 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
167 1.2 ad
168 1.2 ad #ifdef i386
169 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
170 1.2 ad #endif
171 1.2 ad
172 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
173 1.12 jmcneill
174 1.2 ad uint32_t cpus_attached = 0;
175 1.9 ad uint32_t cpus_running = 0;
176 1.2 ad
177 1.70 jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
178 1.70 jym * [0] basic features %edx
179 1.70 jym * [1] basic features %ecx
180 1.70 jym * [2] extended features %edx
181 1.70 jym * [3] extended features %ecx
182 1.70 jym * [4] VIA padlock features
183 1.70 jym */
184 1.70 jym
185 1.2 ad extern char x86_64_doubleflt_stack[];
186 1.2 ad
187 1.12 jmcneill bool x86_mp_online;
188 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
189 1.14 joerg static vaddr_t cmos_data_mapping;
190 1.45 ad struct cpu_info *cpu_starting;
191 1.2 ad
192 1.2 ad void cpu_hatch(void *);
193 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
194 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
195 1.2 ad static void cpu_copy_trampoline(void);
196 1.2 ad
197 1.2 ad /*
198 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
199 1.2 ad * the local APIC on the boot processor has been mapped.
200 1.2 ad *
201 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
202 1.2 ad */
203 1.2 ad void
204 1.9 ad cpu_init_first(void)
205 1.2 ad {
206 1.2 ad
207 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
208 1.2 ad cpu_copy_trampoline();
209 1.14 joerg
210 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
211 1.14 joerg if (cmos_data_mapping == 0)
212 1.14 joerg panic("No KVA for page 0");
213 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
214 1.14 joerg pmap_update(pmap_kernel());
215 1.2 ad }
216 1.2 ad
217 1.2 ad int
218 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
219 1.2 ad {
220 1.2 ad
221 1.2 ad return 1;
222 1.2 ad }
223 1.2 ad
224 1.2 ad static void
225 1.2 ad cpu_vm_init(struct cpu_info *ci)
226 1.2 ad {
227 1.2 ad int ncolors = 2, i;
228 1.2 ad
229 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
230 1.2 ad struct x86_cache_info *cai;
231 1.2 ad int tcolors;
232 1.2 ad
233 1.2 ad cai = &ci->ci_cinfo[i];
234 1.2 ad
235 1.2 ad tcolors = atop(cai->cai_totalsize);
236 1.2 ad switch(cai->cai_associativity) {
237 1.2 ad case 0xff:
238 1.2 ad tcolors = 1; /* fully associative */
239 1.2 ad break;
240 1.2 ad case 0:
241 1.2 ad case 1:
242 1.2 ad break;
243 1.2 ad default:
244 1.2 ad tcolors /= cai->cai_associativity;
245 1.2 ad }
246 1.2 ad ncolors = max(ncolors, tcolors);
247 1.32 tls /*
248 1.32 tls * If the desired number of colors is not a power of
249 1.32 tls * two, it won't be good. Find the greatest power of
250 1.32 tls * two which is an even divisor of the number of colors,
251 1.32 tls * to preserve even coloring of pages.
252 1.32 tls */
253 1.32 tls if (ncolors & (ncolors - 1) ) {
254 1.32 tls int try, picked = 1;
255 1.32 tls for (try = 1; try < ncolors; try *= 2) {
256 1.32 tls if (ncolors % try == 0) picked = try;
257 1.32 tls }
258 1.32 tls if (picked == 1) {
259 1.32 tls panic("desired number of cache colors %d is "
260 1.32 tls " > 1, but not even!", ncolors);
261 1.32 tls }
262 1.32 tls ncolors = picked;
263 1.32 tls }
264 1.2 ad }
265 1.2 ad
266 1.2 ad /*
267 1.2 ad * Knowing the size of the largest cache on this CPU, re-color
268 1.2 ad * our pages.
269 1.2 ad */
270 1.2 ad if (ncolors <= uvmexp.ncolors)
271 1.2 ad return;
272 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
273 1.2 ad uvm_page_recolor(ncolors);
274 1.2 ad }
275 1.2 ad
276 1.2 ad
277 1.2 ad void
278 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
279 1.2 ad {
280 1.23 cube struct cpu_softc *sc = device_private(self);
281 1.2 ad struct cpu_attach_args *caa = aux;
282 1.2 ad struct cpu_info *ci;
283 1.21 ad uintptr_t ptr;
284 1.2 ad int cpunum = caa->cpu_number;
285 1.51 ad static bool again;
286 1.2 ad
287 1.23 cube sc->sc_dev = self;
288 1.23 cube
289 1.48 ad if (cpus_attached == ~0) {
290 1.54 ad aprint_error(": increase MAXCPUS\n");
291 1.48 ad return;
292 1.48 ad }
293 1.48 ad
294 1.2 ad /*
295 1.2 ad * If we're an Application Processor, allocate a cpu_info
296 1.2 ad * structure, otherwise use the primary's.
297 1.2 ad */
298 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
299 1.36 ad if ((boothowto & RB_MD1) != 0) {
300 1.35 ad aprint_error(": multiprocessor boot disabled\n");
301 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
302 1.56 jmcneill aprint_error_dev(self,
303 1.56 jmcneill "couldn't establish power handler\n");
304 1.35 ad return;
305 1.35 ad }
306 1.2 ad aprint_naive(": Application Processor\n");
307 1.72 rmind ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
308 1.61 cegger KM_SLEEP);
309 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
310 1.43 ad ci->ci_curldt = -1;
311 1.2 ad #ifdef TRAPLOG
312 1.61 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
313 1.2 ad #endif
314 1.2 ad } else {
315 1.2 ad aprint_naive(": %s Processor\n",
316 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
317 1.2 ad ci = &cpu_info_primary;
318 1.2 ad if (cpunum != lapic_cpu_number()) {
319 1.51 ad /* XXX should be done earlier. */
320 1.39 ad uint32_t reg;
321 1.39 ad aprint_verbose("\n");
322 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
323 1.47 ad " instead of at expected %d", lapic_cpu_number(),
324 1.23 cube cpunum);
325 1.39 ad reg = i82489_readreg(LAPIC_ID);
326 1.39 ad i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
327 1.39 ad (cpunum << LAPIC_ID_SHIFT));
328 1.2 ad }
329 1.47 ad if (cpunum != lapic_cpu_number()) {
330 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
331 1.47 ad }
332 1.2 ad }
333 1.2 ad
334 1.2 ad ci->ci_self = ci;
335 1.2 ad sc->sc_info = ci;
336 1.2 ad ci->ci_dev = self;
337 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
338 1.42 ad ci->ci_cpuid = caa->cpu_number;
339 1.2 ad ci->ci_func = caa->cpu_func;
340 1.2 ad
341 1.55 ad /* Must be before mi_cpu_attach(). */
342 1.55 ad cpu_vm_init(ci);
343 1.55 ad
344 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
345 1.2 ad int error;
346 1.2 ad
347 1.2 ad error = mi_cpu_attach(ci);
348 1.2 ad if (error != 0) {
349 1.2 ad aprint_normal("\n");
350 1.47 ad aprint_error_dev(self,
351 1.30 cegger "mi_cpu_attach failed with %d\n", error);
352 1.2 ad return;
353 1.2 ad }
354 1.15 yamt cpu_init_tss(ci);
355 1.2 ad } else {
356 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
357 1.2 ad }
358 1.2 ad
359 1.42 ad ci->ci_cpumask = (1 << cpu_index(ci));
360 1.2 ad pmap_reference(pmap_kernel());
361 1.2 ad ci->ci_pmap = pmap_kernel();
362 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
363 1.2 ad
364 1.51 ad /*
365 1.51 ad * Boot processor may not be attached first, but the below
366 1.51 ad * must be done to allow booting other processors.
367 1.51 ad */
368 1.51 ad if (!again) {
369 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
370 1.51 ad /* Basic init. */
371 1.2 ad cpu_intr_init(ci);
372 1.40 ad cpu_get_tsc_freq(ci);
373 1.2 ad cpu_init(ci);
374 1.2 ad cpu_set_tss_gates(ci);
375 1.2 ad pmap_cpu_init_late(ci);
376 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
377 1.51 ad /* Enable lapic. */
378 1.51 ad lapic_enable();
379 1.51 ad lapic_set_lvt();
380 1.51 ad lapic_calibrate_timer(ci);
381 1.51 ad }
382 1.51 ad /* Make sure DELAY() is initialized. */
383 1.51 ad DELAY(1);
384 1.51 ad again = true;
385 1.51 ad }
386 1.51 ad
387 1.51 ad /* further PCB init done later. */
388 1.51 ad
389 1.51 ad switch (caa->cpu_role) {
390 1.51 ad case CPU_ROLE_SP:
391 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
392 1.51 ad cpu_identify(ci);
393 1.53 ad x86_errata();
394 1.37 joerg x86_cpu_idle_init();
395 1.2 ad break;
396 1.2 ad
397 1.2 ad case CPU_ROLE_BP:
398 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
399 1.40 ad cpu_identify(ci);
400 1.53 ad x86_errata();
401 1.37 joerg x86_cpu_idle_init();
402 1.2 ad break;
403 1.2 ad
404 1.2 ad case CPU_ROLE_AP:
405 1.2 ad /*
406 1.2 ad * report on an AP
407 1.2 ad */
408 1.2 ad cpu_intr_init(ci);
409 1.2 ad gdt_alloc_cpu(ci);
410 1.2 ad cpu_set_tss_gates(ci);
411 1.2 ad pmap_cpu_init_early(ci);
412 1.2 ad pmap_cpu_init_late(ci);
413 1.2 ad cpu_start_secondary(ci);
414 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
415 1.59 cegger struct cpu_info *tmp;
416 1.59 cegger
417 1.40 ad cpu_identify(ci);
418 1.59 cegger tmp = cpu_info_list;
419 1.59 cegger while (tmp->ci_next)
420 1.59 cegger tmp = tmp->ci_next;
421 1.59 cegger
422 1.59 cegger tmp->ci_next = ci;
423 1.2 ad }
424 1.2 ad break;
425 1.2 ad
426 1.2 ad default:
427 1.28 cegger aprint_normal("\n");
428 1.2 ad panic("unknown processor type??\n");
429 1.2 ad }
430 1.51 ad
431 1.71 cegger pat_init(ci);
432 1.47 ad atomic_or_32(&cpus_attached, ci->ci_cpumask);
433 1.2 ad
434 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
435 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
436 1.12 jmcneill
437 1.2 ad if (mp_verbose) {
438 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
439 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
440 1.2 ad
441 1.47 ad aprint_verbose_dev(self,
442 1.28 cegger "idle lwp at %p, idle sp at %p\n",
443 1.28 cegger l,
444 1.2 ad #ifdef i386
445 1.65 rmind (void *)pcb->pcb_esp
446 1.2 ad #else
447 1.65 rmind (void *)pcb->pcb_rsp
448 1.2 ad #endif
449 1.2 ad );
450 1.2 ad }
451 1.81 jmcneill
452 1.81 jmcneill cpu_rescan(self, NULL, NULL);
453 1.81 jmcneill }
454 1.81 jmcneill
455 1.81 jmcneill int
456 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
457 1.81 jmcneill {
458 1.83 jruoho struct cpu_softc *sc = device_private(self);
459 1.81 jmcneill struct cpufeature_attach_args cfaa;
460 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
461 1.81 jmcneill
462 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
463 1.81 jmcneill cfaa.ci = ci;
464 1.81 jmcneill
465 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
466 1.82 jruoho
467 1.83 jruoho if (ci->ci_frequency == NULL) {
468 1.83 jruoho cfaa.name = "est";
469 1.83 jruoho ci->ci_frequency = config_found_ia(self,
470 1.83 jruoho "cpufeaturebus", &cfaa, NULL);
471 1.83 jruoho }
472 1.83 jruoho
473 1.81 jmcneill if (ci->ci_padlock == NULL) {
474 1.81 jmcneill cfaa.name = "padlock";
475 1.81 jmcneill ci->ci_padlock = config_found_ia(self,
476 1.81 jmcneill "cpufeaturebus", &cfaa, NULL);
477 1.81 jmcneill }
478 1.82 jruoho
479 1.82 jruoho if (ci->ci_tempsensor == NULL) {
480 1.82 jruoho cfaa.name = "coretemp";
481 1.82 jruoho ci->ci_tempsensor = config_found_ia(self,
482 1.82 jruoho "cpufeaturebus", &cfaa, NULL);
483 1.82 jruoho }
484 1.81 jmcneill }
485 1.81 jmcneill
486 1.81 jmcneill return 0;
487 1.81 jmcneill }
488 1.81 jmcneill
489 1.81 jmcneill void
490 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
491 1.81 jmcneill {
492 1.81 jmcneill struct cpu_softc *sc = device_private(self);
493 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
494 1.81 jmcneill
495 1.83 jruoho if (ci->ci_frequency == child)
496 1.83 jruoho ci->ci_frequency = NULL;
497 1.82 jruoho
498 1.81 jmcneill if (ci->ci_padlock == child)
499 1.81 jmcneill ci->ci_padlock = NULL;
500 1.83 jruoho
501 1.83 jruoho if (ci->ci_tempsensor == child)
502 1.83 jruoho ci->ci_tempsensor = NULL;
503 1.2 ad }
504 1.2 ad
505 1.2 ad /*
506 1.2 ad * Initialize the processor appropriately.
507 1.2 ad */
508 1.2 ad
509 1.2 ad void
510 1.9 ad cpu_init(struct cpu_info *ci)
511 1.2 ad {
512 1.2 ad
513 1.2 ad lcr0(rcr0() | CR0_WP);
514 1.2 ad
515 1.2 ad /*
516 1.2 ad * On a P6 or above, enable global TLB caching if the
517 1.2 ad * hardware supports it.
518 1.2 ad */
519 1.70 jym if (cpu_feature[0] & CPUID_PGE)
520 1.2 ad lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
521 1.2 ad
522 1.2 ad /*
523 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
524 1.2 ad */
525 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
526 1.2 ad lcr4(rcr4() | CR4_OSFXSR);
527 1.2 ad
528 1.2 ad /*
529 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
530 1.2 ad */
531 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
532 1.2 ad lcr4(rcr4() | CR4_OSXMMEXCPT);
533 1.2 ad }
534 1.2 ad
535 1.2 ad #ifdef MTRR
536 1.2 ad /*
537 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
538 1.2 ad */
539 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
540 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
541 1.2 ad i686_mtrr_init_first();
542 1.2 ad mtrr_init_cpu(ci);
543 1.2 ad }
544 1.2 ad
545 1.2 ad #ifdef i386
546 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
547 1.2 ad /*
548 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
549 1.2 ad */
550 1.2 ad if (CPUID2FAMILY(ci->ci_signature) == 5) {
551 1.2 ad if (CPUID2MODEL(ci->ci_signature) > 8 ||
552 1.2 ad (CPUID2MODEL(ci->ci_signature) == 8 &&
553 1.2 ad CPUID2STEPPING(ci->ci_signature) >= 7)) {
554 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
555 1.2 ad k6_mtrr_init_first();
556 1.2 ad mtrr_init_cpu(ci);
557 1.2 ad }
558 1.2 ad }
559 1.2 ad }
560 1.2 ad #endif /* i386 */
561 1.2 ad #endif /* MTRR */
562 1.2 ad
563 1.9 ad atomic_or_32(&cpus_running, ci->ci_cpumask);
564 1.9 ad
565 1.38 ad if (ci != &cpu_info_primary) {
566 1.38 ad /* Synchronize TSC again, and check for drift. */
567 1.38 ad wbinvd();
568 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
569 1.38 ad tsc_sync_ap(ci);
570 1.38 ad } else {
571 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
572 1.38 ad }
573 1.2 ad }
574 1.2 ad
575 1.2 ad void
576 1.12 jmcneill cpu_boot_secondary_processors(void)
577 1.2 ad {
578 1.2 ad struct cpu_info *ci;
579 1.2 ad u_long i;
580 1.2 ad
581 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
582 1.60 ad x86_patch(false);
583 1.5 ad
584 1.54 ad for (i=0; i < maxcpus; i++) {
585 1.57 ad ci = cpu_lookup(i);
586 1.2 ad if (ci == NULL)
587 1.2 ad continue;
588 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
589 1.2 ad continue;
590 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
591 1.2 ad continue;
592 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
593 1.2 ad continue;
594 1.2 ad cpu_boot_secondary(ci);
595 1.2 ad }
596 1.2 ad
597 1.2 ad x86_mp_online = true;
598 1.38 ad
599 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
600 1.38 ad tsc_tc_init();
601 1.55 ad
602 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
603 1.70 jym vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
604 1.2 ad }
605 1.2 ad
606 1.2 ad static void
607 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
608 1.2 ad {
609 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
610 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
611 1.2 ad
612 1.2 ad pcb->pcb_cr0 = rcr0();
613 1.2 ad }
614 1.2 ad
615 1.2 ad void
616 1.12 jmcneill cpu_init_idle_lwps(void)
617 1.2 ad {
618 1.2 ad struct cpu_info *ci;
619 1.2 ad u_long i;
620 1.2 ad
621 1.54 ad for (i = 0; i < maxcpus; i++) {
622 1.57 ad ci = cpu_lookup(i);
623 1.2 ad if (ci == NULL)
624 1.2 ad continue;
625 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
626 1.2 ad continue;
627 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
628 1.2 ad continue;
629 1.2 ad cpu_init_idle_lwp(ci);
630 1.2 ad }
631 1.2 ad }
632 1.2 ad
633 1.2 ad void
634 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
635 1.2 ad {
636 1.38 ad extern paddr_t mp_pdirpa;
637 1.38 ad u_long psl;
638 1.2 ad int i;
639 1.2 ad
640 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
641 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
642 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
643 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
644 1.25 ad return;
645 1.45 ad }
646 1.2 ad
647 1.2 ad /*
648 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
649 1.50 ad * initial gate and allows the AP to start soft initialization.
650 1.2 ad */
651 1.50 ad KASSERT(cpu_starting == NULL);
652 1.50 ad cpu_starting = ci;
653 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
654 1.24 ad #ifdef MPDEBUG
655 1.24 ad extern int cpu_trace[3];
656 1.24 ad static int otrace[3];
657 1.24 ad if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
658 1.26 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
659 1.26 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
660 1.24 ad memcpy(otrace, cpu_trace, sizeof(otrace));
661 1.24 ad }
662 1.24 ad #endif
663 1.11 ad i8254_delay(10);
664 1.2 ad }
665 1.38 ad
666 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
667 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
668 1.2 ad #if defined(MPDEBUG) && defined(DDB)
669 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
670 1.2 ad Debugger();
671 1.2 ad #endif
672 1.38 ad } else {
673 1.38 ad /*
674 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
675 1.68 jym * twice to try and minimize possible cache effects. Disable
676 1.68 jym * interrupts to try and rule out any external interference.
677 1.38 ad */
678 1.38 ad psl = x86_read_psl();
679 1.38 ad x86_disable_intr();
680 1.38 ad wbinvd();
681 1.38 ad tsc_sync_bp(ci);
682 1.38 ad x86_write_psl(psl);
683 1.2 ad }
684 1.2 ad
685 1.2 ad CPU_START_CLEANUP(ci);
686 1.45 ad cpu_starting = NULL;
687 1.2 ad }
688 1.2 ad
689 1.2 ad void
690 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
691 1.2 ad {
692 1.38 ad int64_t drift;
693 1.38 ad u_long psl;
694 1.2 ad int i;
695 1.2 ad
696 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
697 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
698 1.11 ad i8254_delay(10);
699 1.2 ad }
700 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
701 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
702 1.2 ad #if defined(MPDEBUG) && defined(DDB)
703 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
704 1.2 ad Debugger();
705 1.2 ad #endif
706 1.38 ad } else {
707 1.38 ad /* Synchronize TSC again, check for drift. */
708 1.38 ad drift = ci->ci_data.cpu_cc_skew;
709 1.38 ad psl = x86_read_psl();
710 1.38 ad x86_disable_intr();
711 1.38 ad wbinvd();
712 1.38 ad tsc_sync_bp(ci);
713 1.38 ad x86_write_psl(psl);
714 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
715 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
716 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
717 1.38 ad tsc_sync_drift(drift);
718 1.2 ad }
719 1.2 ad }
720 1.2 ad
721 1.2 ad /*
722 1.2 ad * The CPU ends up here when its ready to run
723 1.2 ad * This is called from code in mptramp.s; at this point, we are running
724 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
725 1.2 ad * this processor will enter the idle loop and start looking for work.
726 1.2 ad */
727 1.2 ad void
728 1.2 ad cpu_hatch(void *v)
729 1.2 ad {
730 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
731 1.65 rmind struct pcb *pcb;
732 1.6 ad int s, i;
733 1.2 ad
734 1.12 jmcneill cpu_init_msrs(ci, true);
735 1.40 ad cpu_probe(ci);
736 1.46 ad
737 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
738 1.46 ad /* cpu_get_tsc_freq(ci); */
739 1.38 ad
740 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
741 1.38 ad
742 1.38 ad /*
743 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
744 1.38 ad * to try and minimize possible cache effects. Note that interrupts
745 1.38 ad * are off at this point.
746 1.38 ad */
747 1.38 ad wbinvd();
748 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
749 1.38 ad tsc_sync_ap(ci);
750 1.38 ad
751 1.38 ad /*
752 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
753 1.38 ad * in order to make the TSC drift as much as possible. so that
754 1.38 ad * we can detect it later. If not available, try 'pause'.
755 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
756 1.38 ad */
757 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
758 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
759 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
760 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
761 1.38 ad continue;
762 1.38 ad }
763 1.38 ad x86_mwait(0, 0);
764 1.38 ad } else {
765 1.38 ad for (i = 10000; i != 0; i--) {
766 1.38 ad x86_pause();
767 1.38 ad }
768 1.38 ad }
769 1.6 ad }
770 1.5 ad
771 1.26 cegger /* Because the text may have been patched in x86_patch(). */
772 1.5 ad wbinvd();
773 1.5 ad x86_flush();
774 1.5 ad
775 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
776 1.2 ad
777 1.73 jym #ifdef PAE
778 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
779 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
780 1.73 jym l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
781 1.73 jym }
782 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
783 1.73 jym #else
784 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
785 1.73 jym #endif
786 1.73 jym
787 1.65 rmind pcb = lwp_getpcb(curlwp);
788 1.73 jym pcb->pcb_cr3 = rcr3();
789 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
790 1.65 rmind lcr0(pcb->pcb_cr0);
791 1.65 rmind
792 1.2 ad cpu_init_idt();
793 1.8 ad gdt_init_cpu(ci);
794 1.8 ad lapic_enable();
795 1.2 ad lapic_set_lvt();
796 1.8 ad lapic_initclocks();
797 1.2 ad
798 1.2 ad #ifdef i386
799 1.62 bouyer #if NNPX > 0
800 1.2 ad npxinit(ci);
801 1.62 bouyer #endif
802 1.2 ad #else
803 1.2 ad fpuinit(ci);
804 1.4 yamt #endif
805 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
806 1.15 yamt ltr(ci->ci_tss_sel);
807 1.2 ad
808 1.2 ad cpu_init(ci);
809 1.7 ad cpu_get_tsc_freq(ci);
810 1.2 ad
811 1.2 ad s = splhigh();
812 1.2 ad #ifdef i386
813 1.2 ad lapic_tpr = 0;
814 1.2 ad #else
815 1.2 ad lcr8(0);
816 1.2 ad #endif
817 1.3 ad x86_enable_intr();
818 1.2 ad splx(s);
819 1.6 ad x86_errata();
820 1.2 ad
821 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
822 1.2 ad }
823 1.2 ad
824 1.2 ad #if defined(DDB)
825 1.2 ad
826 1.2 ad #include <ddb/db_output.h>
827 1.2 ad #include <machine/db_machdep.h>
828 1.2 ad
829 1.2 ad /*
830 1.2 ad * Dump CPU information from ddb.
831 1.2 ad */
832 1.2 ad void
833 1.2 ad cpu_debug_dump(void)
834 1.2 ad {
835 1.2 ad struct cpu_info *ci;
836 1.2 ad CPU_INFO_ITERATOR cii;
837 1.2 ad
838 1.29 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
839 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
840 1.2 ad db_printf("%p %s %ld %x %x %10p %10p\n",
841 1.2 ad ci,
842 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
843 1.2 ad (long)ci->ci_cpuid,
844 1.2 ad ci->ci_flags, ci->ci_ipis,
845 1.2 ad ci->ci_curlwp,
846 1.2 ad ci->ci_fpcurlwp);
847 1.2 ad }
848 1.2 ad }
849 1.2 ad #endif
850 1.2 ad
851 1.2 ad static void
852 1.12 jmcneill cpu_copy_trampoline(void)
853 1.2 ad {
854 1.2 ad /*
855 1.2 ad * Copy boot code.
856 1.2 ad */
857 1.2 ad extern u_char cpu_spinup_trampoline[];
858 1.2 ad extern u_char cpu_spinup_trampoline_end[];
859 1.12 jmcneill
860 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
861 1.12 jmcneill
862 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
863 1.12 jmcneill UVM_KMF_VAONLY);
864 1.12 jmcneill
865 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
866 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
867 1.2 ad pmap_update(pmap_kernel());
868 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
869 1.2 ad cpu_spinup_trampoline,
870 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
871 1.12 jmcneill
872 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
873 1.12 jmcneill pmap_update(pmap_kernel());
874 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
875 1.2 ad }
876 1.2 ad
877 1.2 ad #ifdef i386
878 1.2 ad static void
879 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
880 1.2 ad {
881 1.73 jym KASSERT(curcpu()->ci_pmap == pmap_kernel());
882 1.73 jym
883 1.2 ad memset(tss, 0, sizeof *tss);
884 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
885 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
886 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
887 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
888 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
889 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
890 1.73 jym /* %cr3 contains the value associated to pmap_kernel */
891 1.73 jym tss->tss_cr3 = rcr3();
892 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
893 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
894 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
895 1.2 ad tss->__tss_eip = (int)func;
896 1.2 ad }
897 1.2 ad
898 1.2 ad /* XXX */
899 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
900 1.2 ad typedef void (vector)(void);
901 1.2 ad extern vector IDTVEC(tss_trap08);
902 1.2 ad #ifdef DDB
903 1.2 ad extern vector Xintrddbipi;
904 1.2 ad extern int ddb_vec;
905 1.2 ad #endif
906 1.2 ad
907 1.2 ad static void
908 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
909 1.2 ad {
910 1.2 ad struct segment_descriptor sd;
911 1.2 ad
912 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
913 1.2 ad UVM_KMF_WIRED);
914 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
915 1.2 ad IDTVEC(tss_trap08));
916 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
917 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
918 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
919 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
920 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
921 1.2 ad
922 1.44 ad #if defined(DDB)
923 1.2 ad /*
924 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
925 1.2 ad * stomp on a possibly corrupted stack.
926 1.2 ad *
927 1.2 ad * XXX overwriting the gate set in db_machine_init.
928 1.2 ad * Should rearrange the code so that it's set only once.
929 1.2 ad */
930 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
931 1.2 ad UVM_KMF_WIRED);
932 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
933 1.2 ad
934 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
935 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
936 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
937 1.2 ad
938 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
939 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
940 1.2 ad #endif
941 1.2 ad }
942 1.2 ad #else
943 1.2 ad static void
944 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
945 1.2 ad {
946 1.2 ad
947 1.2 ad }
948 1.2 ad #endif /* i386 */
949 1.2 ad
950 1.2 ad int
951 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
952 1.2 ad {
953 1.44 ad unsigned short dwordptr[2];
954 1.2 ad int error;
955 1.14 joerg
956 1.14 joerg /*
957 1.14 joerg * Bootstrap code must be addressable in real mode
958 1.14 joerg * and it must be page aligned.
959 1.14 joerg */
960 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
961 1.2 ad
962 1.2 ad /*
963 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
964 1.2 ad */
965 1.2 ad
966 1.2 ad outb(IO_RTC, NVRAM_RESET);
967 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
968 1.2 ad
969 1.2 ad /*
970 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
971 1.2 ad * to the AP startup code ..."
972 1.2 ad */
973 1.2 ad
974 1.2 ad dwordptr[0] = 0;
975 1.14 joerg dwordptr[1] = target >> 4;
976 1.2 ad
977 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
978 1.2 ad
979 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
980 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
981 1.25 ad return ENODEV;
982 1.25 ad }
983 1.25 ad
984 1.2 ad /*
985 1.51 ad * ... prior to executing the following sequence:". We'll also add in
986 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
987 1.51 ad * disabled. It may not be able to cope with MP coherency.
988 1.2 ad */
989 1.51 ad wbinvd();
990 1.2 ad
991 1.2 ad if (ci->ci_flags & CPUF_AP) {
992 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
993 1.26 cegger if (error != 0) {
994 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
995 1.50 ad __func__);
996 1.2 ad return error;
997 1.25 ad }
998 1.11 ad i8254_delay(10000);
999 1.2 ad
1000 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1001 1.26 cegger if (error != 0) {
1002 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1003 1.50 ad __func__);
1004 1.25 ad return error;
1005 1.25 ad }
1006 1.25 ad i8254_delay(200);
1007 1.2 ad
1008 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1009 1.26 cegger if (error != 0) {
1010 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1011 1.50 ad __func__);
1012 1.25 ad return error;
1013 1.2 ad }
1014 1.25 ad i8254_delay(200);
1015 1.2 ad }
1016 1.44 ad
1017 1.2 ad return 0;
1018 1.2 ad }
1019 1.2 ad
1020 1.2 ad void
1021 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1022 1.2 ad {
1023 1.2 ad /*
1024 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1025 1.2 ad */
1026 1.2 ad
1027 1.2 ad outb(IO_RTC, NVRAM_RESET);
1028 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1029 1.2 ad }
1030 1.2 ad
1031 1.2 ad #ifdef __x86_64__
1032 1.2 ad typedef void (vector)(void);
1033 1.2 ad extern vector Xsyscall, Xsyscall32;
1034 1.70 jym #endif
1035 1.2 ad
1036 1.2 ad void
1037 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1038 1.2 ad {
1039 1.70 jym #ifdef __x86_64__
1040 1.2 ad wrmsr(MSR_STAR,
1041 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1042 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1043 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1044 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1045 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1046 1.2 ad
1047 1.12 jmcneill if (full) {
1048 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1049 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1050 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1051 1.12 jmcneill }
1052 1.70 jym #endif /* __x86_64__ */
1053 1.2 ad
1054 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1055 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1056 1.2 ad }
1057 1.7 ad
1058 1.18 joerg void
1059 1.18 joerg cpu_offline_md(void)
1060 1.18 joerg {
1061 1.18 joerg int s;
1062 1.18 joerg
1063 1.18 joerg s = splhigh();
1064 1.62 bouyer #ifdef i386
1065 1.62 bouyer #if NNPX > 0
1066 1.18 joerg npxsave_cpu(true);
1067 1.62 bouyer #endif
1068 1.18 joerg #else
1069 1.18 joerg fpusave_cpu(true);
1070 1.18 joerg #endif
1071 1.18 joerg splx(s);
1072 1.18 joerg }
1073 1.18 joerg
1074 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1075 1.12 jmcneill static bool
1076 1.69 dyoung cpu_suspend(device_t dv, const pmf_qual_t *qual)
1077 1.12 jmcneill {
1078 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1079 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1080 1.18 joerg int err;
1081 1.12 jmcneill
1082 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
1083 1.12 jmcneill return true;
1084 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1085 1.12 jmcneill return true;
1086 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
1087 1.12 jmcneill return true;
1088 1.12 jmcneill
1089 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1090 1.17 joerg
1091 1.20 jmcneill if (sc->sc_wasonline) {
1092 1.20 jmcneill mutex_enter(&cpu_lock);
1093 1.58 rmind err = cpu_setstate(ci, false);
1094 1.20 jmcneill mutex_exit(&cpu_lock);
1095 1.79 jruoho
1096 1.20 jmcneill if (err)
1097 1.20 jmcneill return false;
1098 1.20 jmcneill }
1099 1.17 joerg
1100 1.17 joerg return true;
1101 1.12 jmcneill }
1102 1.12 jmcneill
1103 1.12 jmcneill static bool
1104 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1105 1.12 jmcneill {
1106 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1107 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1108 1.20 jmcneill int err = 0;
1109 1.12 jmcneill
1110 1.13 joerg if (ci->ci_flags & CPUF_PRIMARY)
1111 1.12 jmcneill return true;
1112 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1113 1.12 jmcneill return true;
1114 1.12 jmcneill if ((ci->ci_flags & CPUF_PRESENT) == 0)
1115 1.12 jmcneill return true;
1116 1.12 jmcneill
1117 1.20 jmcneill if (sc->sc_wasonline) {
1118 1.20 jmcneill mutex_enter(&cpu_lock);
1119 1.58 rmind err = cpu_setstate(ci, true);
1120 1.20 jmcneill mutex_exit(&cpu_lock);
1121 1.20 jmcneill }
1122 1.13 joerg
1123 1.13 joerg return err == 0;
1124 1.12 jmcneill }
1125 1.12 jmcneill
1126 1.79 jruoho static bool
1127 1.79 jruoho cpu_shutdown(device_t dv, int how)
1128 1.79 jruoho {
1129 1.79 jruoho return cpu_suspend(dv, NULL);
1130 1.79 jruoho }
1131 1.79 jruoho
1132 1.7 ad void
1133 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1134 1.7 ad {
1135 1.7 ad uint64_t last_tsc;
1136 1.7 ad
1137 1.70 jym if (cpu_hascounter()) {
1138 1.80 bouyer last_tsc = cpu_counter_serializing();
1139 1.7 ad i8254_delay(100000);
1140 1.80 bouyer ci->ci_data.cpu_cc_freq =
1141 1.80 bouyer (cpu_counter_serializing() - last_tsc) * 10;
1142 1.7 ad }
1143 1.7 ad }
1144 1.37 joerg
1145 1.37 joerg void
1146 1.37 joerg x86_cpu_idle_mwait(void)
1147 1.37 joerg {
1148 1.37 joerg struct cpu_info *ci = curcpu();
1149 1.37 joerg
1150 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1151 1.37 joerg
1152 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1153 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1154 1.37 joerg return;
1155 1.37 joerg }
1156 1.37 joerg x86_mwait(0, 0);
1157 1.37 joerg }
1158 1.37 joerg
1159 1.37 joerg void
1160 1.37 joerg x86_cpu_idle_halt(void)
1161 1.37 joerg {
1162 1.37 joerg struct cpu_info *ci = curcpu();
1163 1.37 joerg
1164 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1165 1.37 joerg
1166 1.37 joerg x86_disable_intr();
1167 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1168 1.37 joerg x86_stihlt();
1169 1.37 joerg } else {
1170 1.37 joerg x86_enable_intr();
1171 1.37 joerg }
1172 1.37 joerg }
1173 1.73 jym
1174 1.73 jym /*
1175 1.73 jym * Loads pmap for the current CPU.
1176 1.73 jym */
1177 1.73 jym void
1178 1.73 jym cpu_load_pmap(struct pmap *pmap)
1179 1.73 jym {
1180 1.73 jym #ifdef PAE
1181 1.73 jym int i, s;
1182 1.73 jym struct cpu_info *ci;
1183 1.73 jym
1184 1.73 jym s = splvm(); /* just to be safe */
1185 1.73 jym ci = curcpu();
1186 1.73 jym pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1187 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1188 1.73 jym l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1189 1.73 jym }
1190 1.73 jym splx(s);
1191 1.73 jym tlbflush();
1192 1.73 jym #else /* PAE */
1193 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1194 1.73 jym #endif /* PAE */
1195 1.73 jym }
1196