cpu.c revision 1.93 1 1.93 jruoho /* $NetBSD: cpu.c,v 1.93 2011/09/28 15:38:21 jruoho Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.38 ad * Copyright (c) 2000, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.11 ad * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Copyright (c) 1999 Stefan Grefen
34 1.2 ad *
35 1.2 ad * Redistribution and use in source and binary forms, with or without
36 1.2 ad * modification, are permitted provided that the following conditions
37 1.2 ad * are met:
38 1.2 ad * 1. Redistributions of source code must retain the above copyright
39 1.2 ad * notice, this list of conditions and the following disclaimer.
40 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
41 1.2 ad * notice, this list of conditions and the following disclaimer in the
42 1.2 ad * documentation and/or other materials provided with the distribution.
43 1.2 ad * 3. All advertising materials mentioning features or use of this software
44 1.2 ad * must display the following acknowledgement:
45 1.2 ad * This product includes software developed by the NetBSD
46 1.2 ad * Foundation, Inc. and its contributors.
47 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
48 1.2 ad * contributors may be used to endorse or promote products derived
49 1.2 ad * from this software without specific prior written permission.
50 1.2 ad *
51 1.2 ad * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 1.2 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.2 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.2 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 1.2 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.2 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.2 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.2 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.2 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.2 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.2 ad * SUCH DAMAGE.
62 1.2 ad */
63 1.2 ad
64 1.2 ad #include <sys/cdefs.h>
65 1.93 jruoho __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.93 2011/09/28 15:38:21 jruoho Exp $");
66 1.2 ad
67 1.2 ad #include "opt_ddb.h"
68 1.2 ad #include "opt_mpbios.h" /* for MPDEBUG */
69 1.2 ad #include "opt_mtrr.h"
70 1.2 ad
71 1.2 ad #include "lapic.h"
72 1.2 ad #include "ioapic.h"
73 1.2 ad
74 1.62 bouyer #ifdef i386
75 1.62 bouyer #include "npx.h"
76 1.62 bouyer #endif
77 1.62 bouyer
78 1.2 ad #include <sys/param.h>
79 1.2 ad #include <sys/proc.h>
80 1.2 ad #include <sys/systm.h>
81 1.2 ad #include <sys/device.h>
82 1.61 cegger #include <sys/kmem.h>
83 1.9 ad #include <sys/cpu.h>
84 1.93 jruoho #include <sys/cpufreq.h>
85 1.9 ad #include <sys/atomic.h>
86 1.35 ad #include <sys/reboot.h>
87 1.2 ad
88 1.78 uebayasi #include <uvm/uvm.h>
89 1.2 ad
90 1.2 ad #include <machine/cpufunc.h>
91 1.2 ad #include <machine/cpuvar.h>
92 1.2 ad #include <machine/pmap.h>
93 1.2 ad #include <machine/vmparam.h>
94 1.2 ad #include <machine/mpbiosvar.h>
95 1.2 ad #include <machine/pcb.h>
96 1.2 ad #include <machine/specialreg.h>
97 1.2 ad #include <machine/segments.h>
98 1.2 ad #include <machine/gdt.h>
99 1.2 ad #include <machine/mtrr.h>
100 1.2 ad #include <machine/pio.h>
101 1.38 ad #include <machine/cpu_counter.h>
102 1.2 ad
103 1.2 ad #ifdef i386
104 1.2 ad #include <machine/tlog.h>
105 1.2 ad #endif
106 1.2 ad
107 1.2 ad #include <machine/apicvar.h>
108 1.2 ad #include <machine/i82489reg.h>
109 1.2 ad #include <machine/i82489var.h>
110 1.2 ad
111 1.2 ad #include <dev/ic/mc146818reg.h>
112 1.2 ad #include <i386/isa/nvram.h>
113 1.2 ad #include <dev/isa/isareg.h>
114 1.2 ad
115 1.38 ad #include "tsc.h"
116 1.38 ad
117 1.54 ad #if MAXCPUS > 32
118 1.54 ad #error cpu_info contains 32bit bitmasks
119 1.54 ad #endif
120 1.54 ad
121 1.87 jruoho static int cpu_match(device_t, cfdata_t, void *);
122 1.87 jruoho static void cpu_attach(device_t, device_t, void *);
123 1.87 jruoho static void cpu_defer(device_t);
124 1.87 jruoho static int cpu_rescan(device_t, const char *, const int *);
125 1.87 jruoho static void cpu_childdetached(device_t, device_t);
126 1.69 dyoung static bool cpu_suspend(device_t, const pmf_qual_t *);
127 1.69 dyoung static bool cpu_resume(device_t, const pmf_qual_t *);
128 1.79 jruoho static bool cpu_shutdown(device_t, int);
129 1.12 jmcneill
130 1.2 ad struct cpu_softc {
131 1.23 cube device_t sc_dev; /* device tree glue */
132 1.2 ad struct cpu_info *sc_info; /* pointer to CPU info */
133 1.20 jmcneill bool sc_wasonline;
134 1.2 ad };
135 1.2 ad
136 1.14 joerg int mp_cpu_start(struct cpu_info *, paddr_t);
137 1.2 ad void mp_cpu_start_cleanup(struct cpu_info *);
138 1.2 ad const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 1.2 ad mp_cpu_start_cleanup };
140 1.2 ad
141 1.2 ad
142 1.81 jmcneill CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
143 1.81 jmcneill cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
144 1.2 ad
145 1.2 ad /*
146 1.2 ad * Statically-allocated CPU info for the primary CPU (or the only
147 1.2 ad * CPU, on uniprocessors). The CPU info list is initialized to
148 1.2 ad * point at it.
149 1.2 ad */
150 1.2 ad #ifdef TRAPLOG
151 1.2 ad struct tlog tlog_primary;
152 1.2 ad #endif
153 1.21 ad struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
154 1.2 ad .ci_dev = 0,
155 1.2 ad .ci_self = &cpu_info_primary,
156 1.2 ad .ci_idepth = -1,
157 1.2 ad .ci_curlwp = &lwp0,
158 1.43 ad .ci_curldt = -1,
159 1.88 rmind .ci_cpumask = 1,
160 1.2 ad #ifdef TRAPLOG
161 1.2 ad .ci_tlog_base = &tlog_primary,
162 1.2 ad #endif /* !TRAPLOG */
163 1.2 ad };
164 1.2 ad
165 1.2 ad struct cpu_info *cpu_info_list = &cpu_info_primary;
166 1.2 ad
167 1.12 jmcneill static void cpu_set_tss_gates(struct cpu_info *);
168 1.2 ad
169 1.2 ad #ifdef i386
170 1.15 yamt static void tss_init(struct i386tss *, void *, void *);
171 1.2 ad #endif
172 1.2 ad
173 1.12 jmcneill static void cpu_init_idle_lwp(struct cpu_info *);
174 1.12 jmcneill
175 1.2 ad uint32_t cpus_attached = 0;
176 1.88 rmind uint32_t cpus_running = 1;
177 1.2 ad
178 1.70 jym uint32_t cpu_feature[5]; /* X86 CPUID feature bits
179 1.70 jym * [0] basic features %edx
180 1.70 jym * [1] basic features %ecx
181 1.70 jym * [2] extended features %edx
182 1.70 jym * [3] extended features %ecx
183 1.70 jym * [4] VIA padlock features
184 1.70 jym */
185 1.70 jym
186 1.2 ad extern char x86_64_doubleflt_stack[];
187 1.2 ad
188 1.12 jmcneill bool x86_mp_online;
189 1.12 jmcneill paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
190 1.14 joerg static vaddr_t cmos_data_mapping;
191 1.45 ad struct cpu_info *cpu_starting;
192 1.2 ad
193 1.2 ad void cpu_hatch(void *);
194 1.2 ad static void cpu_boot_secondary(struct cpu_info *ci);
195 1.2 ad static void cpu_start_secondary(struct cpu_info *ci);
196 1.2 ad static void cpu_copy_trampoline(void);
197 1.2 ad
198 1.2 ad /*
199 1.2 ad * Runs once per boot once multiprocessor goo has been detected and
200 1.2 ad * the local APIC on the boot processor has been mapped.
201 1.2 ad *
202 1.2 ad * Called from lapic_boot_init() (from mpbios_scan()).
203 1.2 ad */
204 1.2 ad void
205 1.9 ad cpu_init_first(void)
206 1.2 ad {
207 1.2 ad
208 1.45 ad cpu_info_primary.ci_cpuid = lapic_cpu_number();
209 1.2 ad cpu_copy_trampoline();
210 1.14 joerg
211 1.14 joerg cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
212 1.14 joerg if (cmos_data_mapping == 0)
213 1.14 joerg panic("No KVA for page 0");
214 1.64 cegger pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
215 1.14 joerg pmap_update(pmap_kernel());
216 1.2 ad }
217 1.2 ad
218 1.87 jruoho static int
219 1.23 cube cpu_match(device_t parent, cfdata_t match, void *aux)
220 1.2 ad {
221 1.2 ad
222 1.2 ad return 1;
223 1.2 ad }
224 1.2 ad
225 1.2 ad static void
226 1.2 ad cpu_vm_init(struct cpu_info *ci)
227 1.2 ad {
228 1.2 ad int ncolors = 2, i;
229 1.2 ad
230 1.2 ad for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
231 1.2 ad struct x86_cache_info *cai;
232 1.2 ad int tcolors;
233 1.2 ad
234 1.2 ad cai = &ci->ci_cinfo[i];
235 1.2 ad
236 1.2 ad tcolors = atop(cai->cai_totalsize);
237 1.2 ad switch(cai->cai_associativity) {
238 1.2 ad case 0xff:
239 1.2 ad tcolors = 1; /* fully associative */
240 1.2 ad break;
241 1.2 ad case 0:
242 1.2 ad case 1:
243 1.2 ad break;
244 1.2 ad default:
245 1.2 ad tcolors /= cai->cai_associativity;
246 1.2 ad }
247 1.2 ad ncolors = max(ncolors, tcolors);
248 1.32 tls /*
249 1.32 tls * If the desired number of colors is not a power of
250 1.32 tls * two, it won't be good. Find the greatest power of
251 1.32 tls * two which is an even divisor of the number of colors,
252 1.32 tls * to preserve even coloring of pages.
253 1.32 tls */
254 1.32 tls if (ncolors & (ncolors - 1) ) {
255 1.32 tls int try, picked = 1;
256 1.32 tls for (try = 1; try < ncolors; try *= 2) {
257 1.32 tls if (ncolors % try == 0) picked = try;
258 1.32 tls }
259 1.32 tls if (picked == 1) {
260 1.32 tls panic("desired number of cache colors %d is "
261 1.32 tls " > 1, but not even!", ncolors);
262 1.32 tls }
263 1.32 tls ncolors = picked;
264 1.32 tls }
265 1.2 ad }
266 1.2 ad
267 1.2 ad /*
268 1.2 ad * Knowing the size of the largest cache on this CPU, re-color
269 1.2 ad * our pages.
270 1.2 ad */
271 1.2 ad if (ncolors <= uvmexp.ncolors)
272 1.2 ad return;
273 1.52 ad aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
274 1.2 ad uvm_page_recolor(ncolors);
275 1.2 ad }
276 1.2 ad
277 1.2 ad
278 1.87 jruoho static void
279 1.23 cube cpu_attach(device_t parent, device_t self, void *aux)
280 1.2 ad {
281 1.23 cube struct cpu_softc *sc = device_private(self);
282 1.2 ad struct cpu_attach_args *caa = aux;
283 1.2 ad struct cpu_info *ci;
284 1.21 ad uintptr_t ptr;
285 1.2 ad int cpunum = caa->cpu_number;
286 1.51 ad static bool again;
287 1.2 ad
288 1.23 cube sc->sc_dev = self;
289 1.23 cube
290 1.48 ad if (cpus_attached == ~0) {
291 1.54 ad aprint_error(": increase MAXCPUS\n");
292 1.48 ad return;
293 1.48 ad }
294 1.48 ad
295 1.2 ad /*
296 1.2 ad * If we're an Application Processor, allocate a cpu_info
297 1.2 ad * structure, otherwise use the primary's.
298 1.2 ad */
299 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
300 1.36 ad if ((boothowto & RB_MD1) != 0) {
301 1.35 ad aprint_error(": multiprocessor boot disabled\n");
302 1.56 jmcneill if (!pmf_device_register(self, NULL, NULL))
303 1.56 jmcneill aprint_error_dev(self,
304 1.56 jmcneill "couldn't establish power handler\n");
305 1.35 ad return;
306 1.35 ad }
307 1.2 ad aprint_naive(": Application Processor\n");
308 1.72 rmind ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
309 1.61 cegger KM_SLEEP);
310 1.67 jym ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
311 1.43 ad ci->ci_curldt = -1;
312 1.2 ad #ifdef TRAPLOG
313 1.61 cegger ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
314 1.2 ad #endif
315 1.2 ad } else {
316 1.2 ad aprint_naive(": %s Processor\n",
317 1.2 ad caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
318 1.2 ad ci = &cpu_info_primary;
319 1.2 ad if (cpunum != lapic_cpu_number()) {
320 1.51 ad /* XXX should be done earlier. */
321 1.39 ad uint32_t reg;
322 1.39 ad aprint_verbose("\n");
323 1.47 ad aprint_verbose_dev(self, "running CPU at apic %d"
324 1.47 ad " instead of at expected %d", lapic_cpu_number(),
325 1.23 cube cpunum);
326 1.39 ad reg = i82489_readreg(LAPIC_ID);
327 1.39 ad i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
328 1.39 ad (cpunum << LAPIC_ID_SHIFT));
329 1.2 ad }
330 1.47 ad if (cpunum != lapic_cpu_number()) {
331 1.47 ad aprint_error_dev(self, "unable to reset apic id\n");
332 1.47 ad }
333 1.2 ad }
334 1.2 ad
335 1.2 ad ci->ci_self = ci;
336 1.2 ad sc->sc_info = ci;
337 1.2 ad ci->ci_dev = self;
338 1.74 jruoho ci->ci_acpiid = caa->cpu_id;
339 1.42 ad ci->ci_cpuid = caa->cpu_number;
340 1.2 ad ci->ci_func = caa->cpu_func;
341 1.2 ad
342 1.55 ad /* Must be before mi_cpu_attach(). */
343 1.55 ad cpu_vm_init(ci);
344 1.55 ad
345 1.2 ad if (caa->cpu_role == CPU_ROLE_AP) {
346 1.2 ad int error;
347 1.2 ad
348 1.2 ad error = mi_cpu_attach(ci);
349 1.2 ad if (error != 0) {
350 1.2 ad aprint_normal("\n");
351 1.47 ad aprint_error_dev(self,
352 1.30 cegger "mi_cpu_attach failed with %d\n", error);
353 1.2 ad return;
354 1.2 ad }
355 1.15 yamt cpu_init_tss(ci);
356 1.2 ad } else {
357 1.2 ad KASSERT(ci->ci_data.cpu_idlelwp != NULL);
358 1.2 ad }
359 1.2 ad
360 1.42 ad ci->ci_cpumask = (1 << cpu_index(ci));
361 1.2 ad pmap_reference(pmap_kernel());
362 1.2 ad ci->ci_pmap = pmap_kernel();
363 1.2 ad ci->ci_tlbstate = TLBSTATE_STALE;
364 1.2 ad
365 1.51 ad /*
366 1.51 ad * Boot processor may not be attached first, but the below
367 1.51 ad * must be done to allow booting other processors.
368 1.51 ad */
369 1.51 ad if (!again) {
370 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
371 1.51 ad /* Basic init. */
372 1.2 ad cpu_intr_init(ci);
373 1.40 ad cpu_get_tsc_freq(ci);
374 1.2 ad cpu_init(ci);
375 1.2 ad cpu_set_tss_gates(ci);
376 1.2 ad pmap_cpu_init_late(ci);
377 1.51 ad if (caa->cpu_role != CPU_ROLE_SP) {
378 1.51 ad /* Enable lapic. */
379 1.51 ad lapic_enable();
380 1.51 ad lapic_set_lvt();
381 1.51 ad lapic_calibrate_timer(ci);
382 1.51 ad }
383 1.51 ad /* Make sure DELAY() is initialized. */
384 1.51 ad DELAY(1);
385 1.51 ad again = true;
386 1.51 ad }
387 1.51 ad
388 1.51 ad /* further PCB init done later. */
389 1.51 ad
390 1.51 ad switch (caa->cpu_role) {
391 1.51 ad case CPU_ROLE_SP:
392 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_SP);
393 1.51 ad cpu_identify(ci);
394 1.53 ad x86_errata();
395 1.37 joerg x86_cpu_idle_init();
396 1.2 ad break;
397 1.2 ad
398 1.2 ad case CPU_ROLE_BP:
399 1.51 ad atomic_or_32(&ci->ci_flags, CPUF_BSP);
400 1.40 ad cpu_identify(ci);
401 1.53 ad x86_errata();
402 1.37 joerg x86_cpu_idle_init();
403 1.2 ad break;
404 1.2 ad
405 1.2 ad case CPU_ROLE_AP:
406 1.2 ad /*
407 1.2 ad * report on an AP
408 1.2 ad */
409 1.2 ad cpu_intr_init(ci);
410 1.2 ad gdt_alloc_cpu(ci);
411 1.2 ad cpu_set_tss_gates(ci);
412 1.2 ad pmap_cpu_init_late(ci);
413 1.2 ad cpu_start_secondary(ci);
414 1.2 ad if (ci->ci_flags & CPUF_PRESENT) {
415 1.59 cegger struct cpu_info *tmp;
416 1.59 cegger
417 1.40 ad cpu_identify(ci);
418 1.59 cegger tmp = cpu_info_list;
419 1.59 cegger while (tmp->ci_next)
420 1.59 cegger tmp = tmp->ci_next;
421 1.59 cegger
422 1.59 cegger tmp->ci_next = ci;
423 1.2 ad }
424 1.2 ad break;
425 1.2 ad
426 1.2 ad default:
427 1.28 cegger aprint_normal("\n");
428 1.2 ad panic("unknown processor type??\n");
429 1.2 ad }
430 1.51 ad
431 1.71 cegger pat_init(ci);
432 1.47 ad atomic_or_32(&cpus_attached, ci->ci_cpumask);
433 1.2 ad
434 1.79 jruoho if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
435 1.12 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
436 1.12 jmcneill
437 1.2 ad if (mp_verbose) {
438 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
439 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
440 1.2 ad
441 1.47 ad aprint_verbose_dev(self,
442 1.28 cegger "idle lwp at %p, idle sp at %p\n",
443 1.28 cegger l,
444 1.2 ad #ifdef i386
445 1.65 rmind (void *)pcb->pcb_esp
446 1.2 ad #else
447 1.65 rmind (void *)pcb->pcb_rsp
448 1.2 ad #endif
449 1.2 ad );
450 1.2 ad }
451 1.81 jmcneill
452 1.89 jruoho /*
453 1.89 jruoho * Postpone the "cpufeaturebus" scan.
454 1.89 jruoho * It is safe to scan the pseudo-bus
455 1.89 jruoho * only after all CPUs have attached.
456 1.89 jruoho */
457 1.87 jruoho (void)config_defer(self, cpu_defer);
458 1.87 jruoho }
459 1.87 jruoho
460 1.87 jruoho static void
461 1.87 jruoho cpu_defer(device_t self)
462 1.87 jruoho {
463 1.81 jmcneill cpu_rescan(self, NULL, NULL);
464 1.81 jmcneill }
465 1.81 jmcneill
466 1.87 jruoho static int
467 1.81 jmcneill cpu_rescan(device_t self, const char *ifattr, const int *locators)
468 1.81 jmcneill {
469 1.83 jruoho struct cpu_softc *sc = device_private(self);
470 1.81 jmcneill struct cpufeature_attach_args cfaa;
471 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
472 1.81 jmcneill
473 1.81 jmcneill memset(&cfaa, 0, sizeof(cfaa));
474 1.81 jmcneill cfaa.ci = ci;
475 1.81 jmcneill
476 1.81 jmcneill if (ifattr_match(ifattr, "cpufeaturebus")) {
477 1.82 jruoho
478 1.83 jruoho if (ci->ci_frequency == NULL) {
479 1.86 jruoho cfaa.name = "frequency";
480 1.84 jruoho ci->ci_frequency = config_found_ia(self,
481 1.84 jruoho "cpufeaturebus", &cfaa, NULL);
482 1.84 jruoho }
483 1.84 jruoho
484 1.81 jmcneill if (ci->ci_padlock == NULL) {
485 1.81 jmcneill cfaa.name = "padlock";
486 1.81 jmcneill ci->ci_padlock = config_found_ia(self,
487 1.81 jmcneill "cpufeaturebus", &cfaa, NULL);
488 1.81 jmcneill }
489 1.82 jruoho
490 1.86 jruoho if (ci->ci_temperature == NULL) {
491 1.86 jruoho cfaa.name = "temperature";
492 1.86 jruoho ci->ci_temperature = config_found_ia(self,
493 1.85 jruoho "cpufeaturebus", &cfaa, NULL);
494 1.85 jruoho }
495 1.81 jmcneill }
496 1.81 jmcneill
497 1.81 jmcneill return 0;
498 1.81 jmcneill }
499 1.81 jmcneill
500 1.87 jruoho static void
501 1.81 jmcneill cpu_childdetached(device_t self, device_t child)
502 1.81 jmcneill {
503 1.81 jmcneill struct cpu_softc *sc = device_private(self);
504 1.81 jmcneill struct cpu_info *ci = sc->sc_info;
505 1.81 jmcneill
506 1.83 jruoho if (ci->ci_frequency == child)
507 1.83 jruoho ci->ci_frequency = NULL;
508 1.82 jruoho
509 1.81 jmcneill if (ci->ci_padlock == child)
510 1.81 jmcneill ci->ci_padlock = NULL;
511 1.83 jruoho
512 1.86 jruoho if (ci->ci_temperature == child)
513 1.86 jruoho ci->ci_temperature = NULL;
514 1.2 ad }
515 1.2 ad
516 1.2 ad /*
517 1.2 ad * Initialize the processor appropriately.
518 1.2 ad */
519 1.2 ad
520 1.2 ad void
521 1.9 ad cpu_init(struct cpu_info *ci)
522 1.2 ad {
523 1.2 ad
524 1.2 ad lcr0(rcr0() | CR0_WP);
525 1.2 ad
526 1.2 ad /*
527 1.2 ad * On a P6 or above, enable global TLB caching if the
528 1.2 ad * hardware supports it.
529 1.2 ad */
530 1.70 jym if (cpu_feature[0] & CPUID_PGE)
531 1.2 ad lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
532 1.2 ad
533 1.2 ad /*
534 1.2 ad * If we have FXSAVE/FXRESTOR, use them.
535 1.2 ad */
536 1.70 jym if (cpu_feature[0] & CPUID_FXSR) {
537 1.2 ad lcr4(rcr4() | CR4_OSFXSR);
538 1.2 ad
539 1.2 ad /*
540 1.2 ad * If we have SSE/SSE2, enable XMM exceptions.
541 1.2 ad */
542 1.70 jym if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
543 1.2 ad lcr4(rcr4() | CR4_OSXMMEXCPT);
544 1.2 ad }
545 1.2 ad
546 1.2 ad #ifdef MTRR
547 1.2 ad /*
548 1.2 ad * On a P6 or above, initialize MTRR's if the hardware supports them.
549 1.2 ad */
550 1.70 jym if (cpu_feature[0] & CPUID_MTRR) {
551 1.2 ad if ((ci->ci_flags & CPUF_AP) == 0)
552 1.2 ad i686_mtrr_init_first();
553 1.2 ad mtrr_init_cpu(ci);
554 1.2 ad }
555 1.2 ad
556 1.2 ad #ifdef i386
557 1.2 ad if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
558 1.2 ad /*
559 1.2 ad * Must be a K6-2 Step >= 7 or a K6-III.
560 1.2 ad */
561 1.2 ad if (CPUID2FAMILY(ci->ci_signature) == 5) {
562 1.2 ad if (CPUID2MODEL(ci->ci_signature) > 8 ||
563 1.2 ad (CPUID2MODEL(ci->ci_signature) == 8 &&
564 1.2 ad CPUID2STEPPING(ci->ci_signature) >= 7)) {
565 1.2 ad mtrr_funcs = &k6_mtrr_funcs;
566 1.2 ad k6_mtrr_init_first();
567 1.2 ad mtrr_init_cpu(ci);
568 1.2 ad }
569 1.2 ad }
570 1.2 ad }
571 1.2 ad #endif /* i386 */
572 1.2 ad #endif /* MTRR */
573 1.2 ad
574 1.9 ad atomic_or_32(&cpus_running, ci->ci_cpumask);
575 1.9 ad
576 1.38 ad if (ci != &cpu_info_primary) {
577 1.38 ad /* Synchronize TSC again, and check for drift. */
578 1.38 ad wbinvd();
579 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
580 1.38 ad tsc_sync_ap(ci);
581 1.38 ad } else {
582 1.38 ad atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
583 1.38 ad }
584 1.2 ad }
585 1.2 ad
586 1.2 ad void
587 1.12 jmcneill cpu_boot_secondary_processors(void)
588 1.2 ad {
589 1.2 ad struct cpu_info *ci;
590 1.2 ad u_long i;
591 1.2 ad
592 1.5 ad /* Now that we know the number of CPUs, patch the text segment. */
593 1.60 ad x86_patch(false);
594 1.5 ad
595 1.54 ad for (i=0; i < maxcpus; i++) {
596 1.57 ad ci = cpu_lookup(i);
597 1.2 ad if (ci == NULL)
598 1.2 ad continue;
599 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
600 1.2 ad continue;
601 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
602 1.2 ad continue;
603 1.2 ad if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
604 1.2 ad continue;
605 1.2 ad cpu_boot_secondary(ci);
606 1.2 ad }
607 1.2 ad
608 1.2 ad x86_mp_online = true;
609 1.38 ad
610 1.38 ad /* Now that we know about the TSC, attach the timecounter. */
611 1.38 ad tsc_tc_init();
612 1.55 ad
613 1.55 ad /* Enable zeroing of pages in the idle loop if we have SSE2. */
614 1.70 jym vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
615 1.2 ad }
616 1.2 ad
617 1.2 ad static void
618 1.2 ad cpu_init_idle_lwp(struct cpu_info *ci)
619 1.2 ad {
620 1.2 ad struct lwp *l = ci->ci_data.cpu_idlelwp;
621 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
622 1.2 ad
623 1.2 ad pcb->pcb_cr0 = rcr0();
624 1.2 ad }
625 1.2 ad
626 1.2 ad void
627 1.12 jmcneill cpu_init_idle_lwps(void)
628 1.2 ad {
629 1.2 ad struct cpu_info *ci;
630 1.2 ad u_long i;
631 1.2 ad
632 1.54 ad for (i = 0; i < maxcpus; i++) {
633 1.57 ad ci = cpu_lookup(i);
634 1.2 ad if (ci == NULL)
635 1.2 ad continue;
636 1.2 ad if (ci->ci_data.cpu_idlelwp == NULL)
637 1.2 ad continue;
638 1.2 ad if ((ci->ci_flags & CPUF_PRESENT) == 0)
639 1.2 ad continue;
640 1.2 ad cpu_init_idle_lwp(ci);
641 1.2 ad }
642 1.2 ad }
643 1.2 ad
644 1.2 ad void
645 1.12 jmcneill cpu_start_secondary(struct cpu_info *ci)
646 1.2 ad {
647 1.38 ad extern paddr_t mp_pdirpa;
648 1.38 ad u_long psl;
649 1.2 ad int i;
650 1.2 ad
651 1.12 jmcneill mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
652 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_AP);
653 1.2 ad ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
654 1.45 ad if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
655 1.25 ad return;
656 1.45 ad }
657 1.2 ad
658 1.2 ad /*
659 1.50 ad * Wait for it to become ready. Setting cpu_starting opens the
660 1.50 ad * initial gate and allows the AP to start soft initialization.
661 1.2 ad */
662 1.50 ad KASSERT(cpu_starting == NULL);
663 1.50 ad cpu_starting = ci;
664 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
665 1.24 ad #ifdef MPDEBUG
666 1.24 ad extern int cpu_trace[3];
667 1.24 ad static int otrace[3];
668 1.24 ad if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
669 1.26 cegger aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
670 1.26 cegger cpu_trace[0], cpu_trace[1], cpu_trace[2]);
671 1.24 ad memcpy(otrace, cpu_trace, sizeof(otrace));
672 1.24 ad }
673 1.24 ad #endif
674 1.11 ad i8254_delay(10);
675 1.2 ad }
676 1.38 ad
677 1.9 ad if ((ci->ci_flags & CPUF_PRESENT) == 0) {
678 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to become ready\n");
679 1.2 ad #if defined(MPDEBUG) && defined(DDB)
680 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
681 1.2 ad Debugger();
682 1.2 ad #endif
683 1.38 ad } else {
684 1.38 ad /*
685 1.68 jym * Synchronize time stamp counters. Invalidate cache and do
686 1.68 jym * twice to try and minimize possible cache effects. Disable
687 1.68 jym * interrupts to try and rule out any external interference.
688 1.38 ad */
689 1.38 ad psl = x86_read_psl();
690 1.38 ad x86_disable_intr();
691 1.38 ad wbinvd();
692 1.38 ad tsc_sync_bp(ci);
693 1.38 ad x86_write_psl(psl);
694 1.2 ad }
695 1.2 ad
696 1.2 ad CPU_START_CLEANUP(ci);
697 1.45 ad cpu_starting = NULL;
698 1.2 ad }
699 1.2 ad
700 1.2 ad void
701 1.12 jmcneill cpu_boot_secondary(struct cpu_info *ci)
702 1.2 ad {
703 1.38 ad int64_t drift;
704 1.38 ad u_long psl;
705 1.2 ad int i;
706 1.2 ad
707 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_GO);
708 1.26 cegger for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
709 1.11 ad i8254_delay(10);
710 1.2 ad }
711 1.9 ad if ((ci->ci_flags & CPUF_RUNNING) == 0) {
712 1.26 cegger aprint_error_dev(ci->ci_dev, "failed to start\n");
713 1.2 ad #if defined(MPDEBUG) && defined(DDB)
714 1.2 ad printf("dropping into debugger; continue from here to resume boot\n");
715 1.2 ad Debugger();
716 1.2 ad #endif
717 1.38 ad } else {
718 1.38 ad /* Synchronize TSC again, check for drift. */
719 1.38 ad drift = ci->ci_data.cpu_cc_skew;
720 1.38 ad psl = x86_read_psl();
721 1.38 ad x86_disable_intr();
722 1.38 ad wbinvd();
723 1.38 ad tsc_sync_bp(ci);
724 1.38 ad x86_write_psl(psl);
725 1.38 ad drift -= ci->ci_data.cpu_cc_skew;
726 1.38 ad aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
727 1.38 ad (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
728 1.38 ad tsc_sync_drift(drift);
729 1.2 ad }
730 1.2 ad }
731 1.2 ad
732 1.2 ad /*
733 1.2 ad * The CPU ends up here when its ready to run
734 1.2 ad * This is called from code in mptramp.s; at this point, we are running
735 1.2 ad * in the idle pcb/idle stack of the new CPU. When this function returns,
736 1.2 ad * this processor will enter the idle loop and start looking for work.
737 1.2 ad */
738 1.2 ad void
739 1.2 ad cpu_hatch(void *v)
740 1.2 ad {
741 1.2 ad struct cpu_info *ci = (struct cpu_info *)v;
742 1.65 rmind struct pcb *pcb;
743 1.6 ad int s, i;
744 1.2 ad
745 1.12 jmcneill cpu_init_msrs(ci, true);
746 1.40 ad cpu_probe(ci);
747 1.46 ad
748 1.46 ad ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
749 1.46 ad /* cpu_get_tsc_freq(ci); */
750 1.38 ad
751 1.8 ad KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
752 1.38 ad
753 1.38 ad /*
754 1.38 ad * Synchronize time stamp counters. Invalidate cache and do twice
755 1.38 ad * to try and minimize possible cache effects. Note that interrupts
756 1.38 ad * are off at this point.
757 1.38 ad */
758 1.38 ad wbinvd();
759 1.9 ad atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
760 1.38 ad tsc_sync_ap(ci);
761 1.38 ad
762 1.38 ad /*
763 1.38 ad * Wait to be brought online. Use 'monitor/mwait' if available,
764 1.38 ad * in order to make the TSC drift as much as possible. so that
765 1.38 ad * we can detect it later. If not available, try 'pause'.
766 1.38 ad * We'd like to use 'hlt', but we have interrupts off.
767 1.38 ad */
768 1.6 ad while ((ci->ci_flags & CPUF_GO) == 0) {
769 1.70 jym if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
770 1.38 ad x86_monitor(&ci->ci_flags, 0, 0);
771 1.38 ad if ((ci->ci_flags & CPUF_GO) != 0) {
772 1.38 ad continue;
773 1.38 ad }
774 1.38 ad x86_mwait(0, 0);
775 1.38 ad } else {
776 1.38 ad for (i = 10000; i != 0; i--) {
777 1.38 ad x86_pause();
778 1.38 ad }
779 1.38 ad }
780 1.6 ad }
781 1.5 ad
782 1.26 cegger /* Because the text may have been patched in x86_patch(). */
783 1.5 ad wbinvd();
784 1.5 ad x86_flush();
785 1.88 rmind tlbflushg();
786 1.5 ad
787 1.8 ad KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
788 1.2 ad
789 1.73 jym #ifdef PAE
790 1.73 jym pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
791 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
792 1.73 jym l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
793 1.73 jym }
794 1.73 jym lcr3(ci->ci_pae_l3_pdirpa);
795 1.73 jym #else
796 1.73 jym lcr3(pmap_pdirpa(pmap_kernel(), 0));
797 1.73 jym #endif
798 1.73 jym
799 1.65 rmind pcb = lwp_getpcb(curlwp);
800 1.73 jym pcb->pcb_cr3 = rcr3();
801 1.65 rmind pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
802 1.65 rmind lcr0(pcb->pcb_cr0);
803 1.65 rmind
804 1.2 ad cpu_init_idt();
805 1.8 ad gdt_init_cpu(ci);
806 1.8 ad lapic_enable();
807 1.2 ad lapic_set_lvt();
808 1.8 ad lapic_initclocks();
809 1.2 ad
810 1.2 ad #ifdef i386
811 1.62 bouyer #if NNPX > 0
812 1.2 ad npxinit(ci);
813 1.62 bouyer #endif
814 1.2 ad #else
815 1.2 ad fpuinit(ci);
816 1.4 yamt #endif
817 1.2 ad lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
818 1.15 yamt ltr(ci->ci_tss_sel);
819 1.2 ad
820 1.2 ad cpu_init(ci);
821 1.7 ad cpu_get_tsc_freq(ci);
822 1.2 ad
823 1.2 ad s = splhigh();
824 1.2 ad #ifdef i386
825 1.2 ad lapic_tpr = 0;
826 1.2 ad #else
827 1.2 ad lcr8(0);
828 1.2 ad #endif
829 1.3 ad x86_enable_intr();
830 1.2 ad splx(s);
831 1.6 ad x86_errata();
832 1.2 ad
833 1.42 ad aprint_debug_dev(ci->ci_dev, "running\n");
834 1.2 ad }
835 1.2 ad
836 1.2 ad #if defined(DDB)
837 1.2 ad
838 1.2 ad #include <ddb/db_output.h>
839 1.2 ad #include <machine/db_machdep.h>
840 1.2 ad
841 1.2 ad /*
842 1.2 ad * Dump CPU information from ddb.
843 1.2 ad */
844 1.2 ad void
845 1.2 ad cpu_debug_dump(void)
846 1.2 ad {
847 1.2 ad struct cpu_info *ci;
848 1.2 ad CPU_INFO_ITERATOR cii;
849 1.2 ad
850 1.29 yamt db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
851 1.2 ad for (CPU_INFO_FOREACH(cii, ci)) {
852 1.2 ad db_printf("%p %s %ld %x %x %10p %10p\n",
853 1.2 ad ci,
854 1.27 cegger ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
855 1.2 ad (long)ci->ci_cpuid,
856 1.2 ad ci->ci_flags, ci->ci_ipis,
857 1.2 ad ci->ci_curlwp,
858 1.2 ad ci->ci_fpcurlwp);
859 1.2 ad }
860 1.2 ad }
861 1.2 ad #endif
862 1.2 ad
863 1.2 ad static void
864 1.12 jmcneill cpu_copy_trampoline(void)
865 1.2 ad {
866 1.2 ad /*
867 1.2 ad * Copy boot code.
868 1.2 ad */
869 1.2 ad extern u_char cpu_spinup_trampoline[];
870 1.2 ad extern u_char cpu_spinup_trampoline_end[];
871 1.12 jmcneill
872 1.12 jmcneill vaddr_t mp_trampoline_vaddr;
873 1.12 jmcneill
874 1.12 jmcneill mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
875 1.12 jmcneill UVM_KMF_VAONLY);
876 1.12 jmcneill
877 1.12 jmcneill pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
878 1.64 cegger VM_PROT_READ | VM_PROT_WRITE, 0);
879 1.2 ad pmap_update(pmap_kernel());
880 1.12 jmcneill memcpy((void *)mp_trampoline_vaddr,
881 1.2 ad cpu_spinup_trampoline,
882 1.26 cegger cpu_spinup_trampoline_end - cpu_spinup_trampoline);
883 1.12 jmcneill
884 1.12 jmcneill pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
885 1.12 jmcneill pmap_update(pmap_kernel());
886 1.12 jmcneill uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
887 1.2 ad }
888 1.2 ad
889 1.2 ad #ifdef i386
890 1.2 ad static void
891 1.15 yamt tss_init(struct i386tss *tss, void *stack, void *func)
892 1.2 ad {
893 1.73 jym KASSERT(curcpu()->ci_pmap == pmap_kernel());
894 1.73 jym
895 1.2 ad memset(tss, 0, sizeof *tss);
896 1.2 ad tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
897 1.2 ad tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
898 1.2 ad tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
899 1.2 ad tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
900 1.2 ad tss->tss_gs = tss->__tss_es = tss->__tss_ds =
901 1.2 ad tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
902 1.73 jym /* %cr3 contains the value associated to pmap_kernel */
903 1.73 jym tss->tss_cr3 = rcr3();
904 1.2 ad tss->tss_esp = (int)((char *)stack + USPACE - 16);
905 1.2 ad tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
906 1.2 ad tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
907 1.2 ad tss->__tss_eip = (int)func;
908 1.2 ad }
909 1.2 ad
910 1.2 ad /* XXX */
911 1.2 ad #define IDTVEC(name) __CONCAT(X, name)
912 1.2 ad typedef void (vector)(void);
913 1.2 ad extern vector IDTVEC(tss_trap08);
914 1.2 ad #ifdef DDB
915 1.2 ad extern vector Xintrddbipi;
916 1.2 ad extern int ddb_vec;
917 1.2 ad #endif
918 1.2 ad
919 1.2 ad static void
920 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
921 1.2 ad {
922 1.2 ad struct segment_descriptor sd;
923 1.2 ad
924 1.2 ad ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
925 1.2 ad UVM_KMF_WIRED);
926 1.15 yamt tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
927 1.2 ad IDTVEC(tss_trap08));
928 1.2 ad setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
929 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
930 1.2 ad ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
931 1.2 ad setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
932 1.2 ad GSEL(GTRAPTSS_SEL, SEL_KPL));
933 1.2 ad
934 1.44 ad #if defined(DDB)
935 1.2 ad /*
936 1.2 ad * Set up separate handler for the DDB IPI, so that it doesn't
937 1.2 ad * stomp on a possibly corrupted stack.
938 1.2 ad *
939 1.2 ad * XXX overwriting the gate set in db_machine_init.
940 1.2 ad * Should rearrange the code so that it's set only once.
941 1.2 ad */
942 1.2 ad ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
943 1.2 ad UVM_KMF_WIRED);
944 1.15 yamt tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
945 1.2 ad
946 1.2 ad setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
947 1.2 ad SDT_SYS386TSS, SEL_KPL, 0, 0);
948 1.2 ad ci->ci_gdt[GIPITSS_SEL].sd = sd;
949 1.2 ad
950 1.2 ad setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
951 1.2 ad GSEL(GIPITSS_SEL, SEL_KPL));
952 1.2 ad #endif
953 1.2 ad }
954 1.2 ad #else
955 1.2 ad static void
956 1.2 ad cpu_set_tss_gates(struct cpu_info *ci)
957 1.2 ad {
958 1.2 ad
959 1.2 ad }
960 1.2 ad #endif /* i386 */
961 1.2 ad
962 1.2 ad int
963 1.14 joerg mp_cpu_start(struct cpu_info *ci, paddr_t target)
964 1.2 ad {
965 1.44 ad unsigned short dwordptr[2];
966 1.2 ad int error;
967 1.14 joerg
968 1.14 joerg /*
969 1.14 joerg * Bootstrap code must be addressable in real mode
970 1.14 joerg * and it must be page aligned.
971 1.14 joerg */
972 1.14 joerg KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
973 1.2 ad
974 1.2 ad /*
975 1.2 ad * "The BSP must initialize CMOS shutdown code to 0Ah ..."
976 1.2 ad */
977 1.2 ad
978 1.2 ad outb(IO_RTC, NVRAM_RESET);
979 1.2 ad outb(IO_RTC+1, NVRAM_RESET_JUMP);
980 1.2 ad
981 1.2 ad /*
982 1.2 ad * "and the warm reset vector (DWORD based at 40:67) to point
983 1.2 ad * to the AP startup code ..."
984 1.2 ad */
985 1.2 ad
986 1.2 ad dwordptr[0] = 0;
987 1.14 joerg dwordptr[1] = target >> 4;
988 1.2 ad
989 1.25 ad memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
990 1.2 ad
991 1.70 jym if ((cpu_feature[0] & CPUID_APIC) == 0) {
992 1.25 ad aprint_error("mp_cpu_start: CPU does not have APIC\n");
993 1.25 ad return ENODEV;
994 1.25 ad }
995 1.25 ad
996 1.2 ad /*
997 1.51 ad * ... prior to executing the following sequence:". We'll also add in
998 1.51 ad * local cache flush, in case the BIOS has left the AP with its cache
999 1.51 ad * disabled. It may not be able to cope with MP coherency.
1000 1.2 ad */
1001 1.51 ad wbinvd();
1002 1.2 ad
1003 1.2 ad if (ci->ci_flags & CPUF_AP) {
1004 1.42 ad error = x86_ipi_init(ci->ci_cpuid);
1005 1.26 cegger if (error != 0) {
1006 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1007 1.50 ad __func__);
1008 1.2 ad return error;
1009 1.25 ad }
1010 1.11 ad i8254_delay(10000);
1011 1.2 ad
1012 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1013 1.26 cegger if (error != 0) {
1014 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1015 1.50 ad __func__);
1016 1.25 ad return error;
1017 1.25 ad }
1018 1.25 ad i8254_delay(200);
1019 1.2 ad
1020 1.50 ad error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1021 1.26 cegger if (error != 0) {
1022 1.26 cegger aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1023 1.50 ad __func__);
1024 1.25 ad return error;
1025 1.2 ad }
1026 1.25 ad i8254_delay(200);
1027 1.2 ad }
1028 1.44 ad
1029 1.2 ad return 0;
1030 1.2 ad }
1031 1.2 ad
1032 1.2 ad void
1033 1.2 ad mp_cpu_start_cleanup(struct cpu_info *ci)
1034 1.2 ad {
1035 1.2 ad /*
1036 1.2 ad * Ensure the NVRAM reset byte contains something vaguely sane.
1037 1.2 ad */
1038 1.2 ad
1039 1.2 ad outb(IO_RTC, NVRAM_RESET);
1040 1.2 ad outb(IO_RTC+1, NVRAM_RESET_RST);
1041 1.2 ad }
1042 1.2 ad
1043 1.2 ad #ifdef __x86_64__
1044 1.2 ad typedef void (vector)(void);
1045 1.2 ad extern vector Xsyscall, Xsyscall32;
1046 1.70 jym #endif
1047 1.2 ad
1048 1.2 ad void
1049 1.12 jmcneill cpu_init_msrs(struct cpu_info *ci, bool full)
1050 1.2 ad {
1051 1.70 jym #ifdef __x86_64__
1052 1.2 ad wrmsr(MSR_STAR,
1053 1.2 ad ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1054 1.2 ad ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1055 1.2 ad wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1056 1.2 ad wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1057 1.2 ad wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1058 1.2 ad
1059 1.12 jmcneill if (full) {
1060 1.12 jmcneill wrmsr(MSR_FSBASE, 0);
1061 1.27 cegger wrmsr(MSR_GSBASE, (uint64_t)ci);
1062 1.12 jmcneill wrmsr(MSR_KERNELGSBASE, 0);
1063 1.12 jmcneill }
1064 1.70 jym #endif /* __x86_64__ */
1065 1.2 ad
1066 1.70 jym if (cpu_feature[2] & CPUID_NOX)
1067 1.2 ad wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1068 1.2 ad }
1069 1.7 ad
1070 1.18 joerg void
1071 1.18 joerg cpu_offline_md(void)
1072 1.18 joerg {
1073 1.18 joerg int s;
1074 1.18 joerg
1075 1.18 joerg s = splhigh();
1076 1.62 bouyer #ifdef i386
1077 1.62 bouyer #if NNPX > 0
1078 1.18 joerg npxsave_cpu(true);
1079 1.62 bouyer #endif
1080 1.18 joerg #else
1081 1.18 joerg fpusave_cpu(true);
1082 1.18 joerg #endif
1083 1.18 joerg splx(s);
1084 1.18 joerg }
1085 1.18 joerg
1086 1.12 jmcneill /* XXX joerg restructure and restart CPUs individually */
1087 1.12 jmcneill static bool
1088 1.69 dyoung cpu_suspend(device_t dv, const pmf_qual_t *qual)
1089 1.12 jmcneill {
1090 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1091 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1092 1.18 joerg int err;
1093 1.12 jmcneill
1094 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1095 1.12 jmcneill return true;
1096 1.93 jruoho
1097 1.93 jruoho cpufreq_suspend(ci);
1098 1.93 jruoho
1099 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1100 1.93 jruoho return true;
1101 1.93 jruoho
1102 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1103 1.12 jmcneill return true;
1104 1.12 jmcneill
1105 1.20 jmcneill sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1106 1.17 joerg
1107 1.20 jmcneill if (sc->sc_wasonline) {
1108 1.20 jmcneill mutex_enter(&cpu_lock);
1109 1.58 rmind err = cpu_setstate(ci, false);
1110 1.20 jmcneill mutex_exit(&cpu_lock);
1111 1.79 jruoho
1112 1.93 jruoho if (err != 0)
1113 1.20 jmcneill return false;
1114 1.20 jmcneill }
1115 1.17 joerg
1116 1.17 joerg return true;
1117 1.12 jmcneill }
1118 1.12 jmcneill
1119 1.12 jmcneill static bool
1120 1.69 dyoung cpu_resume(device_t dv, const pmf_qual_t *qual)
1121 1.12 jmcneill {
1122 1.12 jmcneill struct cpu_softc *sc = device_private(dv);
1123 1.12 jmcneill struct cpu_info *ci = sc->sc_info;
1124 1.20 jmcneill int err = 0;
1125 1.12 jmcneill
1126 1.93 jruoho if ((ci->ci_flags & CPUF_PRESENT) == 0)
1127 1.12 jmcneill return true;
1128 1.93 jruoho
1129 1.93 jruoho if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1130 1.93 jruoho goto out;
1131 1.93 jruoho
1132 1.12 jmcneill if (ci->ci_data.cpu_idlelwp == NULL)
1133 1.93 jruoho goto out;
1134 1.12 jmcneill
1135 1.20 jmcneill if (sc->sc_wasonline) {
1136 1.20 jmcneill mutex_enter(&cpu_lock);
1137 1.58 rmind err = cpu_setstate(ci, true);
1138 1.20 jmcneill mutex_exit(&cpu_lock);
1139 1.20 jmcneill }
1140 1.13 joerg
1141 1.93 jruoho out:
1142 1.93 jruoho if (err != 0)
1143 1.93 jruoho return false;
1144 1.93 jruoho
1145 1.93 jruoho cpufreq_resume(ci);
1146 1.93 jruoho
1147 1.93 jruoho return true;
1148 1.12 jmcneill }
1149 1.12 jmcneill
1150 1.79 jruoho static bool
1151 1.79 jruoho cpu_shutdown(device_t dv, int how)
1152 1.79 jruoho {
1153 1.90 dyoung struct cpu_softc *sc = device_private(dv);
1154 1.90 dyoung struct cpu_info *ci = sc->sc_info;
1155 1.90 dyoung
1156 1.90 dyoung if (ci->ci_flags & CPUF_BSP)
1157 1.90 dyoung return false;
1158 1.90 dyoung
1159 1.79 jruoho return cpu_suspend(dv, NULL);
1160 1.79 jruoho }
1161 1.79 jruoho
1162 1.7 ad void
1163 1.7 ad cpu_get_tsc_freq(struct cpu_info *ci)
1164 1.7 ad {
1165 1.7 ad uint64_t last_tsc;
1166 1.7 ad
1167 1.70 jym if (cpu_hascounter()) {
1168 1.80 bouyer last_tsc = cpu_counter_serializing();
1169 1.7 ad i8254_delay(100000);
1170 1.80 bouyer ci->ci_data.cpu_cc_freq =
1171 1.80 bouyer (cpu_counter_serializing() - last_tsc) * 10;
1172 1.7 ad }
1173 1.7 ad }
1174 1.37 joerg
1175 1.37 joerg void
1176 1.37 joerg x86_cpu_idle_mwait(void)
1177 1.37 joerg {
1178 1.37 joerg struct cpu_info *ci = curcpu();
1179 1.37 joerg
1180 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1181 1.37 joerg
1182 1.37 joerg x86_monitor(&ci->ci_want_resched, 0, 0);
1183 1.37 joerg if (__predict_false(ci->ci_want_resched)) {
1184 1.37 joerg return;
1185 1.37 joerg }
1186 1.37 joerg x86_mwait(0, 0);
1187 1.37 joerg }
1188 1.37 joerg
1189 1.37 joerg void
1190 1.37 joerg x86_cpu_idle_halt(void)
1191 1.37 joerg {
1192 1.37 joerg struct cpu_info *ci = curcpu();
1193 1.37 joerg
1194 1.37 joerg KASSERT(ci->ci_ilevel == IPL_NONE);
1195 1.37 joerg
1196 1.37 joerg x86_disable_intr();
1197 1.37 joerg if (!__predict_false(ci->ci_want_resched)) {
1198 1.37 joerg x86_stihlt();
1199 1.37 joerg } else {
1200 1.37 joerg x86_enable_intr();
1201 1.37 joerg }
1202 1.37 joerg }
1203 1.73 jym
1204 1.73 jym /*
1205 1.73 jym * Loads pmap for the current CPU.
1206 1.73 jym */
1207 1.73 jym void
1208 1.73 jym cpu_load_pmap(struct pmap *pmap)
1209 1.73 jym {
1210 1.73 jym #ifdef PAE
1211 1.73 jym int i, s;
1212 1.73 jym struct cpu_info *ci;
1213 1.73 jym
1214 1.73 jym s = splvm(); /* just to be safe */
1215 1.73 jym ci = curcpu();
1216 1.73 jym pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1217 1.73 jym for (i = 0 ; i < PDP_SIZE; i++) {
1218 1.73 jym l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1219 1.73 jym }
1220 1.73 jym splx(s);
1221 1.73 jym tlbflush();
1222 1.73 jym #else /* PAE */
1223 1.73 jym lcr3(pmap_pdirpa(pmap, 0));
1224 1.73 jym #endif /* PAE */
1225 1.73 jym }
1226 1.91 cherry
1227 1.91 cherry /*
1228 1.91 cherry * Notify all other cpus to halt.
1229 1.91 cherry */
1230 1.91 cherry
1231 1.91 cherry void
1232 1.92 cherry cpu_broadcast_halt(void)
1233 1.91 cherry {
1234 1.91 cherry x86_broadcast_ipi(X86_IPI_HALT);
1235 1.91 cherry }
1236 1.91 cherry
1237 1.91 cherry /*
1238 1.91 cherry * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1239 1.91 cherry */
1240 1.91 cherry
1241 1.91 cherry void
1242 1.91 cherry cpu_kick(struct cpu_info *ci)
1243 1.91 cherry {
1244 1.91 cherry x86_send_ipi(ci, 0);
1245 1.91 cherry }
1246