Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.100
      1 /*	$NetBSD: cpu.c,v 1.100 2012/07/02 01:05:48 chs Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999 Stefan Grefen
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *      This product includes software developed by the NetBSD
     46  *      Foundation, Inc. and its contributors.
     47  * 4. Neither the name of The NetBSD Foundation nor the names of its
     48  *    contributors may be used to endorse or promote products derived
     49  *    from this software without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     52  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.100 2012/07/02 01:05:48 chs Exp $");
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_mpbios.h"		/* for MPDEBUG */
     69 #include "opt_mtrr.h"
     70 
     71 #include "lapic.h"
     72 #include "ioapic.h"
     73 
     74 #ifdef i386
     75 #include "npx.h"
     76 #endif
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/kmem.h>
     83 #include <sys/cpu.h>
     84 #include <sys/cpufreq.h>
     85 #include <sys/idle.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 
     89 #include <uvm/uvm.h>
     90 
     91 #include <machine/cpufunc.h>
     92 #include <machine/cpuvar.h>
     93 #include <machine/pmap.h>
     94 #include <machine/vmparam.h>
     95 #include <machine/mpbiosvar.h>
     96 #include <machine/pcb.h>
     97 #include <machine/specialreg.h>
     98 #include <machine/segments.h>
     99 #include <machine/gdt.h>
    100 #include <machine/mtrr.h>
    101 #include <machine/pio.h>
    102 #include <machine/cpu_counter.h>
    103 
    104 #ifdef i386
    105 #include <machine/tlog.h>
    106 #endif
    107 
    108 #include <machine/apicvar.h>
    109 #include <machine/i82489reg.h>
    110 #include <machine/i82489var.h>
    111 
    112 #include <dev/ic/mc146818reg.h>
    113 #include <i386/isa/nvram.h>
    114 #include <dev/isa/isareg.h>
    115 
    116 #include "tsc.h"
    117 
    118 static int	cpu_match(device_t, cfdata_t, void *);
    119 static void	cpu_attach(device_t, device_t, void *);
    120 static void	cpu_defer(device_t);
    121 static int	cpu_rescan(device_t, const char *, const int *);
    122 static void	cpu_childdetached(device_t, device_t);
    123 static bool	cpu_stop(device_t);
    124 static bool	cpu_suspend(device_t, const pmf_qual_t *);
    125 static bool	cpu_resume(device_t, const pmf_qual_t *);
    126 static bool	cpu_shutdown(device_t, int);
    127 
    128 struct cpu_softc {
    129 	device_t sc_dev;		/* device tree glue */
    130 	struct cpu_info *sc_info;	/* pointer to CPU info */
    131 	bool sc_wasonline;
    132 };
    133 
    134 int mp_cpu_start(struct cpu_info *, paddr_t);
    135 void mp_cpu_start_cleanup(struct cpu_info *);
    136 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    137 					    mp_cpu_start_cleanup };
    138 
    139 
    140 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    141     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    142 
    143 /*
    144  * Statically-allocated CPU info for the primary CPU (or the only
    145  * CPU, on uniprocessors).  The CPU info list is initialized to
    146  * point at it.
    147  */
    148 #ifdef TRAPLOG
    149 struct tlog tlog_primary;
    150 #endif
    151 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    152 	.ci_dev = 0,
    153 	.ci_self = &cpu_info_primary,
    154 	.ci_idepth = -1,
    155 	.ci_curlwp = &lwp0,
    156 	.ci_curldt = -1,
    157 #ifdef TRAPLOG
    158 	.ci_tlog_base = &tlog_primary,
    159 #endif /* !TRAPLOG */
    160 };
    161 
    162 struct cpu_info *cpu_info_list = &cpu_info_primary;
    163 
    164 static void	cpu_set_tss_gates(struct cpu_info *);
    165 
    166 #ifdef i386
    167 static void	tss_init(struct i386tss *, void *, void *);
    168 #endif
    169 
    170 static void	cpu_init_idle_lwp(struct cpu_info *);
    171 
    172 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    173 			  *	[0] basic features %edx
    174 			  *	[1] basic features %ecx
    175 			  *	[2] extended features %edx
    176 			  *	[3] extended features %ecx
    177 			  *	[4] VIA padlock features
    178 			  */
    179 
    180 extern char x86_64_doubleflt_stack[];
    181 
    182 bool x86_mp_online;
    183 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    184 static vaddr_t cmos_data_mapping;
    185 struct cpu_info *cpu_starting;
    186 
    187 void    	cpu_hatch(void *);
    188 static void    	cpu_boot_secondary(struct cpu_info *ci);
    189 static void    	cpu_start_secondary(struct cpu_info *ci);
    190 static void	cpu_copy_trampoline(void);
    191 
    192 /*
    193  * Runs once per boot once multiprocessor goo has been detected and
    194  * the local APIC on the boot processor has been mapped.
    195  *
    196  * Called from lapic_boot_init() (from mpbios_scan()).
    197  */
    198 void
    199 cpu_init_first(void)
    200 {
    201 
    202 	cpu_info_primary.ci_cpuid = lapic_cpu_number();
    203 	cpu_copy_trampoline();
    204 
    205 	cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
    206 	if (cmos_data_mapping == 0)
    207 		panic("No KVA for page 0");
    208 	pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
    209 	pmap_update(pmap_kernel());
    210 }
    211 
    212 static int
    213 cpu_match(device_t parent, cfdata_t match, void *aux)
    214 {
    215 
    216 	return 1;
    217 }
    218 
    219 static void
    220 cpu_vm_init(struct cpu_info *ci)
    221 {
    222 	int ncolors = 2, i;
    223 
    224 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    225 		struct x86_cache_info *cai;
    226 		int tcolors;
    227 
    228 		cai = &ci->ci_cinfo[i];
    229 
    230 		tcolors = atop(cai->cai_totalsize);
    231 		switch(cai->cai_associativity) {
    232 		case 0xff:
    233 			tcolors = 1; /* fully associative */
    234 			break;
    235 		case 0:
    236 		case 1:
    237 			break;
    238 		default:
    239 			tcolors /= cai->cai_associativity;
    240 		}
    241 		ncolors = max(ncolors, tcolors);
    242 		/*
    243 		 * If the desired number of colors is not a power of
    244 		 * two, it won't be good.  Find the greatest power of
    245 		 * two which is an even divisor of the number of colors,
    246 		 * to preserve even coloring of pages.
    247 		 */
    248 		if (ncolors & (ncolors - 1) ) {
    249 			int try, picked = 1;
    250 			for (try = 1; try < ncolors; try *= 2) {
    251 				if (ncolors % try == 0) picked = try;
    252 			}
    253 			if (picked == 1) {
    254 				panic("desired number of cache colors %d is "
    255 			      	" > 1, but not even!", ncolors);
    256 			}
    257 			ncolors = picked;
    258 		}
    259 	}
    260 
    261 	/*
    262 	 * Knowing the size of the largest cache on this CPU, potentially
    263 	 * re-color our pages.
    264 	 */
    265 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    266 	uvm_page_recolor(ncolors);
    267 
    268 	pmap_tlb_cpu_init(ci);
    269 }
    270 
    271 static void
    272 cpu_attach(device_t parent, device_t self, void *aux)
    273 {
    274 	struct cpu_softc *sc = device_private(self);
    275 	struct cpu_attach_args *caa = aux;
    276 	struct cpu_info *ci;
    277 	uintptr_t ptr;
    278 	int cpunum = caa->cpu_number;
    279 	static bool again;
    280 
    281 	sc->sc_dev = self;
    282 
    283 	if (ncpu == maxcpus) {
    284 #ifndef _LP64
    285 		aprint_error(": too many CPUs, please use NetBSD/amd64\n");
    286 #else
    287 		aprint_error(": too many CPUs\n");
    288 #endif
    289 		return;
    290 	}
    291 
    292 	/*
    293 	 * If we're an Application Processor, allocate a cpu_info
    294 	 * structure, otherwise use the primary's.
    295 	 */
    296 	if (caa->cpu_role == CPU_ROLE_AP) {
    297 		if ((boothowto & RB_MD1) != 0) {
    298 			aprint_error(": multiprocessor boot disabled\n");
    299 			if (!pmf_device_register(self, NULL, NULL))
    300 				aprint_error_dev(self,
    301 				    "couldn't establish power handler\n");
    302 			return;
    303 		}
    304 		aprint_naive(": Application Processor\n");
    305 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    306 		    KM_SLEEP);
    307 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    308 		ci->ci_curldt = -1;
    309 #ifdef TRAPLOG
    310 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    311 #endif
    312 	} else {
    313 		aprint_naive(": %s Processor\n",
    314 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    315 		ci = &cpu_info_primary;
    316 		if (cpunum != lapic_cpu_number()) {
    317 			/* XXX should be done earlier. */
    318 			uint32_t reg;
    319 			aprint_verbose("\n");
    320 			aprint_verbose_dev(self, "running CPU at apic %d"
    321 			    " instead of at expected %d", lapic_cpu_number(),
    322 			    cpunum);
    323 			reg = i82489_readreg(LAPIC_ID);
    324 			i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
    325 			    (cpunum << LAPIC_ID_SHIFT));
    326 		}
    327 		if (cpunum != lapic_cpu_number()) {
    328 			aprint_error_dev(self, "unable to reset apic id\n");
    329 		}
    330 	}
    331 
    332 	ci->ci_self = ci;
    333 	sc->sc_info = ci;
    334 	ci->ci_dev = self;
    335 	ci->ci_acpiid = caa->cpu_id;
    336 	ci->ci_cpuid = caa->cpu_number;
    337 	ci->ci_func = caa->cpu_func;
    338 
    339 	/* Must be before mi_cpu_attach(). */
    340 	cpu_vm_init(ci);
    341 
    342 	if (caa->cpu_role == CPU_ROLE_AP) {
    343 		int error;
    344 
    345 		error = mi_cpu_attach(ci);
    346 		if (error != 0) {
    347 			aprint_normal("\n");
    348 			aprint_error_dev(self,
    349 			    "mi_cpu_attach failed with %d\n", error);
    350 			return;
    351 		}
    352 		cpu_init_tss(ci);
    353 	} else {
    354 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    355 	}
    356 
    357 	pmap_reference(pmap_kernel());
    358 	ci->ci_pmap = pmap_kernel();
    359 	ci->ci_tlbstate = TLBSTATE_STALE;
    360 
    361 	/*
    362 	 * Boot processor may not be attached first, but the below
    363 	 * must be done to allow booting other processors.
    364 	 */
    365 	if (!again) {
    366 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    367 		/* Basic init. */
    368 		cpu_intr_init(ci);
    369 		cpu_get_tsc_freq(ci);
    370 		cpu_init(ci);
    371 		cpu_set_tss_gates(ci);
    372 		pmap_cpu_init_late(ci);
    373 		if (caa->cpu_role != CPU_ROLE_SP) {
    374 			/* Enable lapic. */
    375 			lapic_enable();
    376 			lapic_set_lvt();
    377 			lapic_calibrate_timer(ci);
    378 		}
    379 		/* Make sure DELAY() is initialized. */
    380 		DELAY(1);
    381 		again = true;
    382 	}
    383 
    384 	/* further PCB init done later. */
    385 
    386 	switch (caa->cpu_role) {
    387 	case CPU_ROLE_SP:
    388 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    389 		cpu_identify(ci);
    390 		x86_errata();
    391 		x86_cpu_idle_init();
    392 		break;
    393 
    394 	case CPU_ROLE_BP:
    395 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    396 		cpu_identify(ci);
    397 		x86_errata();
    398 		x86_cpu_idle_init();
    399 		break;
    400 
    401 	case CPU_ROLE_AP:
    402 		/*
    403 		 * report on an AP
    404 		 */
    405 		cpu_intr_init(ci);
    406 		gdt_alloc_cpu(ci);
    407 		cpu_set_tss_gates(ci);
    408 		pmap_cpu_init_late(ci);
    409 		cpu_start_secondary(ci);
    410 		if (ci->ci_flags & CPUF_PRESENT) {
    411 			struct cpu_info *tmp;
    412 
    413 			cpu_identify(ci);
    414 			tmp = cpu_info_list;
    415 			while (tmp->ci_next)
    416 				tmp = tmp->ci_next;
    417 
    418 			tmp->ci_next = ci;
    419 		}
    420 		break;
    421 
    422 	default:
    423 		aprint_normal("\n");
    424 		panic("unknown processor type??\n");
    425 	}
    426 
    427 	pat_init(ci);
    428 
    429 	if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
    430 		aprint_error_dev(self, "couldn't establish power handler\n");
    431 
    432 	if (mp_verbose) {
    433 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    434 		struct pcb *pcb = lwp_getpcb(l);
    435 
    436 		aprint_verbose_dev(self,
    437 		    "idle lwp at %p, idle sp at %p\n",
    438 		    l,
    439 #ifdef i386
    440 		    (void *)pcb->pcb_esp
    441 #else
    442 		    (void *)pcb->pcb_rsp
    443 #endif
    444 		);
    445 	}
    446 
    447 	/*
    448 	 * Postpone the "cpufeaturebus" scan.
    449 	 * It is safe to scan the pseudo-bus
    450 	 * only after all CPUs have attached.
    451 	 */
    452 	(void)config_defer(self, cpu_defer);
    453 }
    454 
    455 static void
    456 cpu_defer(device_t self)
    457 {
    458 	cpu_rescan(self, NULL, NULL);
    459 }
    460 
    461 static int
    462 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    463 {
    464 	struct cpu_softc *sc = device_private(self);
    465 	struct cpufeature_attach_args cfaa;
    466 	struct cpu_info *ci = sc->sc_info;
    467 
    468 	memset(&cfaa, 0, sizeof(cfaa));
    469 	cfaa.ci = ci;
    470 
    471 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    472 
    473 		if (ci->ci_frequency == NULL) {
    474 			cfaa.name = "frequency";
    475 			ci->ci_frequency = config_found_ia(self,
    476 			    "cpufeaturebus", &cfaa, NULL);
    477 		}
    478 
    479 		if (ci->ci_padlock == NULL) {
    480 			cfaa.name = "padlock";
    481 			ci->ci_padlock = config_found_ia(self,
    482 			    "cpufeaturebus", &cfaa, NULL);
    483 		}
    484 
    485 		if (ci->ci_temperature == NULL) {
    486 			cfaa.name = "temperature";
    487 			ci->ci_temperature = config_found_ia(self,
    488 			    "cpufeaturebus", &cfaa, NULL);
    489 		}
    490 
    491 		if (ci->ci_vm == NULL) {
    492 			cfaa.name = "vm";
    493 			ci->ci_vm = config_found_ia(self,
    494 			    "cpufeaturebus", &cfaa, NULL);
    495 		}
    496 	}
    497 
    498 	return 0;
    499 }
    500 
    501 static void
    502 cpu_childdetached(device_t self, device_t child)
    503 {
    504 	struct cpu_softc *sc = device_private(self);
    505 	struct cpu_info *ci = sc->sc_info;
    506 
    507 	if (ci->ci_frequency == child)
    508 		ci->ci_frequency = NULL;
    509 
    510 	if (ci->ci_padlock == child)
    511 		ci->ci_padlock = NULL;
    512 
    513 	if (ci->ci_temperature == child)
    514 		ci->ci_temperature = NULL;
    515 
    516 	if (ci->ci_vm == child)
    517 		ci->ci_vm = NULL;
    518 }
    519 
    520 /*
    521  * Initialize the processor appropriately.
    522  */
    523 
    524 void
    525 cpu_init(struct cpu_info *ci)
    526 {
    527 
    528 	lcr0(rcr0() | CR0_WP);
    529 
    530 	/*
    531 	 * On a P6 or above, enable global TLB caching if the
    532 	 * hardware supports it.
    533 	 */
    534 	if (cpu_feature[0] & CPUID_PGE)
    535 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    536 
    537 	/*
    538 	 * If we have FXSAVE/FXRESTOR, use them.
    539 	 */
    540 	if (cpu_feature[0] & CPUID_FXSR) {
    541 		lcr4(rcr4() | CR4_OSFXSR);
    542 
    543 		/*
    544 		 * If we have SSE/SSE2, enable XMM exceptions.
    545 		 */
    546 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    547 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    548 	}
    549 
    550 #ifdef MTRR
    551 	/*
    552 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    553 	 */
    554 	if (cpu_feature[0] & CPUID_MTRR) {
    555 		if ((ci->ci_flags & CPUF_AP) == 0)
    556 			i686_mtrr_init_first();
    557 		mtrr_init_cpu(ci);
    558 	}
    559 
    560 #ifdef i386
    561 	if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
    562 		/*
    563 		 * Must be a K6-2 Step >= 7 or a K6-III.
    564 		 */
    565 		if (CPUID2FAMILY(ci->ci_signature) == 5) {
    566 			if (CPUID2MODEL(ci->ci_signature) > 8 ||
    567 			    (CPUID2MODEL(ci->ci_signature) == 8 &&
    568 			     CPUID2STEPPING(ci->ci_signature) >= 7)) {
    569 				mtrr_funcs = &k6_mtrr_funcs;
    570 				k6_mtrr_init_first();
    571 				mtrr_init_cpu(ci);
    572 			}
    573 		}
    574 	}
    575 #endif	/* i386 */
    576 #endif /* MTRR */
    577 
    578 	if (ci != &cpu_info_primary) {
    579 		/* Synchronize TSC again, and check for drift. */
    580 		wbinvd();
    581 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    582 		tsc_sync_ap(ci);
    583 	} else {
    584 		atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    585 	}
    586 }
    587 
    588 void
    589 cpu_boot_secondary_processors(void)
    590 {
    591 	struct cpu_info *ci;
    592 	kcpuset_t *cpus;
    593 	u_long i;
    594 
    595 	/* Now that we know the number of CPUs, patch the text segment. */
    596 	x86_patch(false);
    597 
    598 	kcpuset_create(&cpus, true);
    599 	kcpuset_set(cpus, cpu_index(curcpu()));
    600 	for (i = 0; i < maxcpus; i++) {
    601 		ci = cpu_lookup(i);
    602 		if (ci == NULL)
    603 			continue;
    604 		if (ci->ci_data.cpu_idlelwp == NULL)
    605 			continue;
    606 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    607 			continue;
    608 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    609 			continue;
    610 		cpu_boot_secondary(ci);
    611 		kcpuset_set(cpus, cpu_index(ci));
    612 	}
    613 	while (!kcpuset_match(cpus, kcpuset_running))
    614 		;
    615 	kcpuset_destroy(cpus);
    616 
    617 	x86_mp_online = true;
    618 
    619 	/* Now that we know about the TSC, attach the timecounter. */
    620 	tsc_tc_init();
    621 
    622 	/* Enable zeroing of pages in the idle loop if we have SSE2. */
    623 	vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
    624 }
    625 
    626 static void
    627 cpu_init_idle_lwp(struct cpu_info *ci)
    628 {
    629 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    630 	struct pcb *pcb = lwp_getpcb(l);
    631 
    632 	pcb->pcb_cr0 = rcr0();
    633 }
    634 
    635 void
    636 cpu_init_idle_lwps(void)
    637 {
    638 	struct cpu_info *ci;
    639 	u_long i;
    640 
    641 	for (i = 0; i < maxcpus; i++) {
    642 		ci = cpu_lookup(i);
    643 		if (ci == NULL)
    644 			continue;
    645 		if (ci->ci_data.cpu_idlelwp == NULL)
    646 			continue;
    647 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    648 			continue;
    649 		cpu_init_idle_lwp(ci);
    650 	}
    651 }
    652 
    653 void
    654 cpu_start_secondary(struct cpu_info *ci)
    655 {
    656 	extern paddr_t mp_pdirpa;
    657 	u_long psl;
    658 	int i;
    659 
    660 	mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
    661 	atomic_or_32(&ci->ci_flags, CPUF_AP);
    662 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    663 	if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
    664 		return;
    665 	}
    666 
    667 	/*
    668 	 * Wait for it to become ready.   Setting cpu_starting opens the
    669 	 * initial gate and allows the AP to start soft initialization.
    670 	 */
    671 	KASSERT(cpu_starting == NULL);
    672 	cpu_starting = ci;
    673 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    674 #ifdef MPDEBUG
    675 		extern int cpu_trace[3];
    676 		static int otrace[3];
    677 		if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
    678 			aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
    679 			    cpu_trace[0], cpu_trace[1], cpu_trace[2]);
    680 			memcpy(otrace, cpu_trace, sizeof(otrace));
    681 		}
    682 #endif
    683 		i8254_delay(10);
    684 	}
    685 
    686 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    687 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    688 #if defined(MPDEBUG) && defined(DDB)
    689 		printf("dropping into debugger; continue from here to resume boot\n");
    690 		Debugger();
    691 #endif
    692 	} else {
    693 		/*
    694 		 * Synchronize time stamp counters. Invalidate cache and do
    695 		 * twice to try and minimize possible cache effects. Disable
    696 		 * interrupts to try and rule out any external interference.
    697 		 */
    698 		psl = x86_read_psl();
    699 		x86_disable_intr();
    700 		wbinvd();
    701 		tsc_sync_bp(ci);
    702 		x86_write_psl(psl);
    703 	}
    704 
    705 	CPU_START_CLEANUP(ci);
    706 	cpu_starting = NULL;
    707 }
    708 
    709 void
    710 cpu_boot_secondary(struct cpu_info *ci)
    711 {
    712 	int64_t drift;
    713 	u_long psl;
    714 	int i;
    715 
    716 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    717 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    718 		i8254_delay(10);
    719 	}
    720 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    721 		aprint_error_dev(ci->ci_dev, "failed to start\n");
    722 #if defined(MPDEBUG) && defined(DDB)
    723 		printf("dropping into debugger; continue from here to resume boot\n");
    724 		Debugger();
    725 #endif
    726 	} else {
    727 		/* Synchronize TSC again, check for drift. */
    728 		drift = ci->ci_data.cpu_cc_skew;
    729 		psl = x86_read_psl();
    730 		x86_disable_intr();
    731 		wbinvd();
    732 		tsc_sync_bp(ci);
    733 		x86_write_psl(psl);
    734 		drift -= ci->ci_data.cpu_cc_skew;
    735 		aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
    736 		    (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
    737 		tsc_sync_drift(drift);
    738 	}
    739 }
    740 
    741 /*
    742  * The CPU ends up here when its ready to run
    743  * This is called from code in mptramp.s; at this point, we are running
    744  * in the idle pcb/idle stack of the new CPU.  When this function returns,
    745  * this processor will enter the idle loop and start looking for work.
    746  */
    747 void
    748 cpu_hatch(void *v)
    749 {
    750 	struct cpu_info *ci = (struct cpu_info *)v;
    751 	struct pcb *pcb;
    752 	int s, i;
    753 
    754 	cpu_init_msrs(ci, true);
    755 	cpu_probe(ci);
    756 
    757 	ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
    758 	/* cpu_get_tsc_freq(ci); */
    759 
    760 	KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
    761 
    762 	/*
    763 	 * Synchronize time stamp counters.  Invalidate cache and do twice
    764 	 * to try and minimize possible cache effects.  Note that interrupts
    765 	 * are off at this point.
    766 	 */
    767 	wbinvd();
    768 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    769 	tsc_sync_ap(ci);
    770 
    771 	/*
    772 	 * Wait to be brought online.  Use 'monitor/mwait' if available,
    773 	 * in order to make the TSC drift as much as possible. so that
    774 	 * we can detect it later.  If not available, try 'pause'.
    775 	 * We'd like to use 'hlt', but we have interrupts off.
    776 	 */
    777 	while ((ci->ci_flags & CPUF_GO) == 0) {
    778 		if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
    779 			x86_monitor(&ci->ci_flags, 0, 0);
    780 			if ((ci->ci_flags & CPUF_GO) != 0) {
    781 				continue;
    782 			}
    783 			x86_mwait(0, 0);
    784 		} else {
    785 			for (i = 10000; i != 0; i--) {
    786 				x86_pause();
    787 			}
    788 		}
    789 	}
    790 
    791 	/* Because the text may have been patched in x86_patch(). */
    792 	wbinvd();
    793 	x86_flush();
    794 	tlbflushg();
    795 
    796 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    797 
    798 #ifdef PAE
    799 	pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
    800 	for (i = 0 ; i < PDP_SIZE; i++) {
    801 		l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
    802 	}
    803 	lcr3(ci->ci_pae_l3_pdirpa);
    804 #else
    805 	lcr3(pmap_pdirpa(pmap_kernel(), 0));
    806 #endif
    807 
    808 	pcb = lwp_getpcb(curlwp);
    809 	pcb->pcb_cr3 = rcr3();
    810 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    811 	lcr0(pcb->pcb_cr0);
    812 
    813 	cpu_init_idt();
    814 	gdt_init_cpu(ci);
    815 	lapic_enable();
    816 	lapic_set_lvt();
    817 	lapic_initclocks();
    818 
    819 #ifdef i386
    820 #if NNPX > 0
    821 	npxinit(ci);
    822 #endif
    823 #else
    824 	fpuinit(ci);
    825 #endif
    826 	lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
    827 	ltr(ci->ci_tss_sel);
    828 
    829 	cpu_init(ci);
    830 	cpu_get_tsc_freq(ci);
    831 
    832 	s = splhigh();
    833 #ifdef i386
    834 	lapic_tpr = 0;
    835 #else
    836 	lcr8(0);
    837 #endif
    838 	x86_enable_intr();
    839 	splx(s);
    840 	x86_errata();
    841 
    842 	aprint_debug_dev(ci->ci_dev, "running\n");
    843 
    844 	idle_loop(NULL);
    845 	KASSERT(false);
    846 }
    847 
    848 #if defined(DDB)
    849 
    850 #include <ddb/db_output.h>
    851 #include <machine/db_machdep.h>
    852 
    853 /*
    854  * Dump CPU information from ddb.
    855  */
    856 void
    857 cpu_debug_dump(void)
    858 {
    859 	struct cpu_info *ci;
    860 	CPU_INFO_ITERATOR cii;
    861 
    862 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    863 	for (CPU_INFO_FOREACH(cii, ci)) {
    864 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    865 		    ci,
    866 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    867 		    (long)ci->ci_cpuid,
    868 		    ci->ci_flags, ci->ci_ipis,
    869 		    ci->ci_curlwp,
    870 		    ci->ci_fpcurlwp);
    871 	}
    872 }
    873 #endif
    874 
    875 static void
    876 cpu_copy_trampoline(void)
    877 {
    878 	/*
    879 	 * Copy boot code.
    880 	 */
    881 	extern u_char cpu_spinup_trampoline[];
    882 	extern u_char cpu_spinup_trampoline_end[];
    883 
    884 	vaddr_t mp_trampoline_vaddr;
    885 
    886 	mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    887 	    UVM_KMF_VAONLY);
    888 
    889 	pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
    890 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    891 	pmap_update(pmap_kernel());
    892 	memcpy((void *)mp_trampoline_vaddr,
    893 	    cpu_spinup_trampoline,
    894 	    cpu_spinup_trampoline_end - cpu_spinup_trampoline);
    895 
    896 	pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
    897 	pmap_update(pmap_kernel());
    898 	uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
    899 }
    900 
    901 #ifdef i386
    902 static void
    903 tss_init(struct i386tss *tss, void *stack, void *func)
    904 {
    905 	KASSERT(curcpu()->ci_pmap == pmap_kernel());
    906 
    907 	memset(tss, 0, sizeof *tss);
    908 	tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
    909 	tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
    910 	tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
    911 	tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
    912 	tss->tss_gs = tss->__tss_es = tss->__tss_ds =
    913 	    tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
    914 	/* %cr3 contains the value associated to pmap_kernel */
    915 	tss->tss_cr3 = rcr3();
    916 	tss->tss_esp = (int)((char *)stack + USPACE - 16);
    917 	tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
    918 	tss->__tss_eflags = PSL_MBO | PSL_NT;	/* XXX not needed? */
    919 	tss->__tss_eip = (int)func;
    920 }
    921 
    922 /* XXX */
    923 #define IDTVEC(name)	__CONCAT(X, name)
    924 typedef void (vector)(void);
    925 extern vector IDTVEC(tss_trap08);
    926 #ifdef DDB
    927 extern vector Xintrddbipi;
    928 extern int ddb_vec;
    929 #endif
    930 
    931 static void
    932 cpu_set_tss_gates(struct cpu_info *ci)
    933 {
    934 	struct segment_descriptor sd;
    935 
    936 	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    937 	    UVM_KMF_WIRED);
    938 	tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
    939 	    IDTVEC(tss_trap08));
    940 	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
    941 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    942 	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
    943 	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    944 	    GSEL(GTRAPTSS_SEL, SEL_KPL));
    945 
    946 #if defined(DDB)
    947 	/*
    948 	 * Set up separate handler for the DDB IPI, so that it doesn't
    949 	 * stomp on a possibly corrupted stack.
    950 	 *
    951 	 * XXX overwriting the gate set in db_machine_init.
    952 	 * Should rearrange the code so that it's set only once.
    953 	 */
    954 	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
    955 	    UVM_KMF_WIRED);
    956 	tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
    957 
    958 	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
    959 	    SDT_SYS386TSS, SEL_KPL, 0, 0);
    960 	ci->ci_gdt[GIPITSS_SEL].sd = sd;
    961 
    962 	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
    963 	    GSEL(GIPITSS_SEL, SEL_KPL));
    964 #endif
    965 }
    966 #else
    967 static void
    968 cpu_set_tss_gates(struct cpu_info *ci)
    969 {
    970 
    971 }
    972 #endif	/* i386 */
    973 
    974 int
    975 mp_cpu_start(struct cpu_info *ci, paddr_t target)
    976 {
    977 	unsigned short dwordptr[2];
    978 	int error;
    979 
    980 	/*
    981 	 * Bootstrap code must be addressable in real mode
    982 	 * and it must be page aligned.
    983 	 */
    984 	KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
    985 
    986 	/*
    987 	 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
    988 	 */
    989 
    990 	outb(IO_RTC, NVRAM_RESET);
    991 	outb(IO_RTC+1, NVRAM_RESET_JUMP);
    992 
    993 	/*
    994 	 * "and the warm reset vector (DWORD based at 40:67) to point
    995 	 * to the AP startup code ..."
    996 	 */
    997 
    998 	dwordptr[0] = 0;
    999 	dwordptr[1] = target >> 4;
   1000 
   1001 	memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
   1002 
   1003 	if ((cpu_feature[0] & CPUID_APIC) == 0) {
   1004 		aprint_error("mp_cpu_start: CPU does not have APIC\n");
   1005 		return ENODEV;
   1006 	}
   1007 
   1008 	/*
   1009 	 * ... prior to executing the following sequence:".  We'll also add in
   1010 	 * local cache flush, in case the BIOS has left the AP with its cache
   1011 	 * disabled.  It may not be able to cope with MP coherency.
   1012 	 */
   1013 	wbinvd();
   1014 
   1015 	if (ci->ci_flags & CPUF_AP) {
   1016 		error = x86_ipi_init(ci->ci_cpuid);
   1017 		if (error != 0) {
   1018 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
   1019 			    __func__);
   1020 			return error;
   1021 		}
   1022 		i8254_delay(10000);
   1023 
   1024 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1025 		if (error != 0) {
   1026 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
   1027 			    __func__);
   1028 			return error;
   1029 		}
   1030 		i8254_delay(200);
   1031 
   1032 		error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
   1033 		if (error != 0) {
   1034 			aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
   1035 			    __func__);
   1036 			return error;
   1037 		}
   1038 		i8254_delay(200);
   1039 	}
   1040 
   1041 	return 0;
   1042 }
   1043 
   1044 void
   1045 mp_cpu_start_cleanup(struct cpu_info *ci)
   1046 {
   1047 	/*
   1048 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1049 	 */
   1050 
   1051 	outb(IO_RTC, NVRAM_RESET);
   1052 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1053 }
   1054 
   1055 #ifdef __x86_64__
   1056 typedef void (vector)(void);
   1057 extern vector Xsyscall, Xsyscall32;
   1058 #endif
   1059 
   1060 void
   1061 cpu_init_msrs(struct cpu_info *ci, bool full)
   1062 {
   1063 #ifdef __x86_64__
   1064 	wrmsr(MSR_STAR,
   1065 	    ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
   1066 	    ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
   1067 	wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
   1068 	wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
   1069 	wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
   1070 
   1071 	if (full) {
   1072 		wrmsr(MSR_FSBASE, 0);
   1073 		wrmsr(MSR_GSBASE, (uint64_t)ci);
   1074 		wrmsr(MSR_KERNELGSBASE, 0);
   1075 	}
   1076 #endif	/* __x86_64__ */
   1077 
   1078 	if (cpu_feature[2] & CPUID_NOX)
   1079 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1080 }
   1081 
   1082 void
   1083 cpu_offline_md(void)
   1084 {
   1085 	int s;
   1086 
   1087 	s = splhigh();
   1088 #ifdef i386
   1089 #if NNPX > 0
   1090 	npxsave_cpu(true);
   1091 #endif
   1092 #else
   1093 	fpusave_cpu(true);
   1094 #endif
   1095 	splx(s);
   1096 }
   1097 
   1098 /* XXX joerg restructure and restart CPUs individually */
   1099 static bool
   1100 cpu_stop(device_t dv)
   1101 {
   1102 	struct cpu_softc *sc = device_private(dv);
   1103 	struct cpu_info *ci = sc->sc_info;
   1104 	int err;
   1105 
   1106 	KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
   1107 
   1108 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1109 		return true;
   1110 
   1111 	if (ci->ci_data.cpu_idlelwp == NULL)
   1112 		return true;
   1113 
   1114 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1115 
   1116 	if (sc->sc_wasonline) {
   1117 		mutex_enter(&cpu_lock);
   1118 		err = cpu_setstate(ci, false);
   1119 		mutex_exit(&cpu_lock);
   1120 
   1121 		if (err != 0)
   1122 			return false;
   1123 	}
   1124 
   1125 	return true;
   1126 }
   1127 
   1128 static bool
   1129 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1130 {
   1131 	struct cpu_softc *sc = device_private(dv);
   1132 	struct cpu_info *ci = sc->sc_info;
   1133 
   1134 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1135 		return true;
   1136 	else {
   1137 		cpufreq_suspend(ci);
   1138 	}
   1139 
   1140 	return cpu_stop(dv);
   1141 }
   1142 
   1143 static bool
   1144 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1145 {
   1146 	struct cpu_softc *sc = device_private(dv);
   1147 	struct cpu_info *ci = sc->sc_info;
   1148 	int err = 0;
   1149 
   1150 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1151 		return true;
   1152 
   1153 	if ((ci->ci_flags & CPUF_PRIMARY) != 0)
   1154 		goto out;
   1155 
   1156 	if (ci->ci_data.cpu_idlelwp == NULL)
   1157 		goto out;
   1158 
   1159 	if (sc->sc_wasonline) {
   1160 		mutex_enter(&cpu_lock);
   1161 		err = cpu_setstate(ci, true);
   1162 		mutex_exit(&cpu_lock);
   1163 	}
   1164 
   1165 out:
   1166 	if (err != 0)
   1167 		return false;
   1168 
   1169 	cpufreq_resume(ci);
   1170 
   1171 	return true;
   1172 }
   1173 
   1174 static bool
   1175 cpu_shutdown(device_t dv, int how)
   1176 {
   1177 	struct cpu_softc *sc = device_private(dv);
   1178 	struct cpu_info *ci = sc->sc_info;
   1179 
   1180 	if ((ci->ci_flags & CPUF_BSP) != 0)
   1181 		return false;
   1182 
   1183 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1184 		return true;
   1185 
   1186 	return cpu_stop(dv);
   1187 }
   1188 
   1189 void
   1190 cpu_get_tsc_freq(struct cpu_info *ci)
   1191 {
   1192 	uint64_t last_tsc;
   1193 
   1194 	if (cpu_hascounter()) {
   1195 		last_tsc = cpu_counter_serializing();
   1196 		i8254_delay(100000);
   1197 		ci->ci_data.cpu_cc_freq =
   1198 		    (cpu_counter_serializing() - last_tsc) * 10;
   1199 	}
   1200 }
   1201 
   1202 void
   1203 x86_cpu_idle_mwait(void)
   1204 {
   1205 	struct cpu_info *ci = curcpu();
   1206 
   1207 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1208 
   1209 	x86_monitor(&ci->ci_want_resched, 0, 0);
   1210 	if (__predict_false(ci->ci_want_resched)) {
   1211 		return;
   1212 	}
   1213 	x86_mwait(0, 0);
   1214 }
   1215 
   1216 void
   1217 x86_cpu_idle_halt(void)
   1218 {
   1219 	struct cpu_info *ci = curcpu();
   1220 
   1221 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1222 
   1223 	x86_disable_intr();
   1224 	if (!__predict_false(ci->ci_want_resched)) {
   1225 		x86_stihlt();
   1226 	} else {
   1227 		x86_enable_intr();
   1228 	}
   1229 }
   1230 
   1231 /*
   1232  * Loads pmap for the current CPU.
   1233  */
   1234 void
   1235 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1236 {
   1237 #ifdef PAE
   1238 	struct cpu_info *ci = curcpu();
   1239 	pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
   1240 	int i;
   1241 
   1242 	/*
   1243 	 * disable interrupts to block TLB shootdowns, which can reload cr3.
   1244 	 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
   1245 	 * reload cr3.
   1246 	 */
   1247 	x86_disable_intr();
   1248 	for (i = 0 ; i < PDP_SIZE; i++) {
   1249 		l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
   1250 	}
   1251 	x86_enable_intr();
   1252 	tlbflush();
   1253 #else /* PAE */
   1254 	lcr3(pmap_pdirpa(pmap, 0));
   1255 #endif /* PAE */
   1256 }
   1257 
   1258 /*
   1259  * Notify all other cpus to halt.
   1260  */
   1261 
   1262 void
   1263 cpu_broadcast_halt(void)
   1264 {
   1265 	x86_broadcast_ipi(X86_IPI_HALT);
   1266 }
   1267 
   1268 /*
   1269  * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
   1270  */
   1271 
   1272 void
   1273 cpu_kick(struct cpu_info *ci)
   1274 {
   1275 	x86_send_ipi(ci, 0);
   1276 }
   1277