cpu.c revision 1.109 1 /* $NetBSD: cpu.c,v 1.109 2014/02/19 21:23:02 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.109 2014/02/19 21:23:02 dsl Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70 #include "opt_multiprocessor.h"
71
72 #include "lapic.h"
73 #include "ioapic.h"
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/systm.h>
78 #include <sys/device.h>
79 #include <sys/kmem.h>
80 #include <sys/cpu.h>
81 #include <sys/cpufreq.h>
82 #include <sys/idle.h>
83 #include <sys/atomic.h>
84 #include <sys/reboot.h>
85
86 #include <uvm/uvm.h>
87
88 #include "acpica.h" /* for NACPICA, for mp_verbose */
89
90 #include <machine/cpufunc.h>
91 #include <machine/cpuvar.h>
92 #include <machine/pmap.h>
93 #include <machine/vmparam.h>
94 #if defined(MULTIPROCESSOR)
95 #include <machine/mpbiosvar.h>
96 #endif
97 #include <machine/mpconfig.h> /* for mp_verbose */
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104 #include <machine/cpu_counter.h>
105
106 #include <x86/fpu.h>
107
108 #ifdef i386
109 #include <machine/tlog.h>
110 #endif
111
112 #if NLAPIC > 0
113 #include <machine/apicvar.h>
114 #include <machine/i82489reg.h>
115 #include <machine/i82489var.h>
116 #endif
117
118 #include <dev/ic/mc146818reg.h>
119 #include <i386/isa/nvram.h>
120 #include <dev/isa/isareg.h>
121
122 #include "tsc.h"
123
124 static int cpu_match(device_t, cfdata_t, void *);
125 static void cpu_attach(device_t, device_t, void *);
126 static void cpu_defer(device_t);
127 static int cpu_rescan(device_t, const char *, const int *);
128 static void cpu_childdetached(device_t, device_t);
129 static bool cpu_stop(device_t);
130 static bool cpu_suspend(device_t, const pmf_qual_t *);
131 static bool cpu_resume(device_t, const pmf_qual_t *);
132 static bool cpu_shutdown(device_t, int);
133
134 struct cpu_softc {
135 device_t sc_dev; /* device tree glue */
136 struct cpu_info *sc_info; /* pointer to CPU info */
137 bool sc_wasonline;
138 };
139
140 #ifdef MULTIPROCESSOR
141 int mp_cpu_start(struct cpu_info *, paddr_t);
142 void mp_cpu_start_cleanup(struct cpu_info *);
143 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
144 mp_cpu_start_cleanup };
145 #endif
146
147
148 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
149 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
150
151 /*
152 * Statically-allocated CPU info for the primary CPU (or the only
153 * CPU, on uniprocessors). The CPU info list is initialized to
154 * point at it.
155 */
156 #ifdef TRAPLOG
157 struct tlog tlog_primary;
158 #endif
159 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 .ci_dev = 0,
161 .ci_self = &cpu_info_primary,
162 .ci_idepth = -1,
163 .ci_curlwp = &lwp0,
164 .ci_curldt = -1,
165 #ifdef TRAPLOG
166 .ci_tlog_base = &tlog_primary,
167 #endif /* !TRAPLOG */
168 };
169
170 struct cpu_info *cpu_info_list = &cpu_info_primary;
171
172 static void cpu_set_tss_gates(struct cpu_info *);
173
174 #ifdef i386
175 static void tss_init(struct i386tss *, void *, void *);
176 #endif
177
178 static void cpu_init_idle_lwp(struct cpu_info *);
179
180 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
181 * [0] basic features %edx
182 * [1] basic features %ecx
183 * [2] extended features %edx
184 * [3] extended features %ecx
185 * [4] VIA padlock features
186 */
187
188 extern char x86_64_doubleflt_stack[];
189
190 #ifdef MULTIPROCESSOR
191 bool x86_mp_online;
192 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
193 #endif
194 #if NLAPIC > 0
195 static vaddr_t cmos_data_mapping;
196 #endif
197 struct cpu_info *cpu_starting;
198
199 #ifdef MULTIPROCESSOR
200 void cpu_hatch(void *);
201 static void cpu_boot_secondary(struct cpu_info *ci);
202 static void cpu_start_secondary(struct cpu_info *ci);
203 #endif
204 #if NLAPIC > 0
205 static void cpu_copy_trampoline(void);
206 #endif
207
208 /*
209 * Runs once per boot once multiprocessor goo has been detected and
210 * the local APIC on the boot processor has been mapped.
211 *
212 * Called from lapic_boot_init() (from mpbios_scan()).
213 */
214 #if NLAPIC > 0
215 void
216 cpu_init_first(void)
217 {
218
219 cpu_info_primary.ci_cpuid = lapic_cpu_number();
220 cpu_copy_trampoline();
221
222 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
223 if (cmos_data_mapping == 0)
224 panic("No KVA for page 0");
225 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
226 pmap_update(pmap_kernel());
227 }
228 #endif
229
230 static int
231 cpu_match(device_t parent, cfdata_t match, void *aux)
232 {
233
234 return 1;
235 }
236
237 static void
238 cpu_vm_init(struct cpu_info *ci)
239 {
240 int ncolors = 2, i;
241
242 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
243 struct x86_cache_info *cai;
244 int tcolors;
245
246 cai = &ci->ci_cinfo[i];
247
248 tcolors = atop(cai->cai_totalsize);
249 switch(cai->cai_associativity) {
250 case 0xff:
251 tcolors = 1; /* fully associative */
252 break;
253 case 0:
254 case 1:
255 break;
256 default:
257 tcolors /= cai->cai_associativity;
258 }
259 ncolors = max(ncolors, tcolors);
260 /*
261 * If the desired number of colors is not a power of
262 * two, it won't be good. Find the greatest power of
263 * two which is an even divisor of the number of colors,
264 * to preserve even coloring of pages.
265 */
266 if (ncolors & (ncolors - 1) ) {
267 int try, picked = 1;
268 for (try = 1; try < ncolors; try *= 2) {
269 if (ncolors % try == 0) picked = try;
270 }
271 if (picked == 1) {
272 panic("desired number of cache colors %d is "
273 " > 1, but not even!", ncolors);
274 }
275 ncolors = picked;
276 }
277 }
278
279 /*
280 * Knowing the size of the largest cache on this CPU, potentially
281 * re-color our pages.
282 */
283 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
284 uvm_page_recolor(ncolors);
285
286 pmap_tlb_cpu_init(ci);
287 }
288
289 static void
290 cpu_attach(device_t parent, device_t self, void *aux)
291 {
292 struct cpu_softc *sc = device_private(self);
293 struct cpu_attach_args *caa = aux;
294 struct cpu_info *ci;
295 uintptr_t ptr;
296 #if NLAPIC > 0
297 int cpunum = caa->cpu_number;
298 #endif
299 static bool again;
300
301 sc->sc_dev = self;
302
303 if (ncpu == maxcpus) {
304 #ifndef _LP64
305 aprint_error(": too many CPUs, please use NetBSD/amd64\n");
306 #else
307 aprint_error(": too many CPUs\n");
308 #endif
309 return;
310 }
311
312 /*
313 * If we're an Application Processor, allocate a cpu_info
314 * structure, otherwise use the primary's.
315 */
316 if (caa->cpu_role == CPU_ROLE_AP) {
317 if ((boothowto & RB_MD1) != 0) {
318 aprint_error(": multiprocessor boot disabled\n");
319 if (!pmf_device_register(self, NULL, NULL))
320 aprint_error_dev(self,
321 "couldn't establish power handler\n");
322 return;
323 }
324 aprint_naive(": Application Processor\n");
325 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
326 KM_SLEEP);
327 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
328 ci->ci_curldt = -1;
329 #ifdef TRAPLOG
330 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
331 #endif
332 } else {
333 aprint_naive(": %s Processor\n",
334 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
335 ci = &cpu_info_primary;
336 #if NLAPIC > 0
337 if (cpunum != lapic_cpu_number()) {
338 /* XXX should be done earlier. */
339 uint32_t reg;
340 aprint_verbose("\n");
341 aprint_verbose_dev(self, "running CPU at apic %d"
342 " instead of at expected %d", lapic_cpu_number(),
343 cpunum);
344 reg = i82489_readreg(LAPIC_ID);
345 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
346 (cpunum << LAPIC_ID_SHIFT));
347 }
348 if (cpunum != lapic_cpu_number()) {
349 aprint_error_dev(self, "unable to reset apic id\n");
350 }
351 #endif
352 }
353
354 ci->ci_self = ci;
355 sc->sc_info = ci;
356 ci->ci_dev = self;
357 ci->ci_acpiid = caa->cpu_id;
358 ci->ci_cpuid = caa->cpu_number;
359 ci->ci_func = caa->cpu_func;
360
361 /* Must be before mi_cpu_attach(). */
362 cpu_vm_init(ci);
363
364 if (caa->cpu_role == CPU_ROLE_AP) {
365 int error;
366
367 error = mi_cpu_attach(ci);
368 if (error != 0) {
369 aprint_normal("\n");
370 aprint_error_dev(self,
371 "mi_cpu_attach failed with %d\n", error);
372 return;
373 }
374 cpu_init_tss(ci);
375 } else {
376 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
377 }
378
379 pmap_reference(pmap_kernel());
380 ci->ci_pmap = pmap_kernel();
381 ci->ci_tlbstate = TLBSTATE_STALE;
382
383 /*
384 * Boot processor may not be attached first, but the below
385 * must be done to allow booting other processors.
386 */
387 if (!again) {
388 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
389 /* Basic init. */
390 cpu_intr_init(ci);
391 cpu_get_tsc_freq(ci);
392 cpu_init(ci);
393 cpu_set_tss_gates(ci);
394 pmap_cpu_init_late(ci);
395 #if NLAPIC > 0
396 if (caa->cpu_role != CPU_ROLE_SP) {
397 /* Enable lapic. */
398 lapic_enable();
399 lapic_set_lvt();
400 lapic_calibrate_timer(ci);
401 }
402 #endif
403 /* Make sure DELAY() is initialized. */
404 DELAY(1);
405 again = true;
406 }
407
408 /* further PCB init done later. */
409
410 switch (caa->cpu_role) {
411 case CPU_ROLE_SP:
412 atomic_or_32(&ci->ci_flags, CPUF_SP);
413 cpu_identify(ci);
414 x86_errata();
415 x86_cpu_idle_init();
416 break;
417
418 case CPU_ROLE_BP:
419 atomic_or_32(&ci->ci_flags, CPUF_BSP);
420 cpu_identify(ci);
421 x86_errata();
422 x86_cpu_idle_init();
423 break;
424
425 #ifdef MULTIPROCESSOR
426 case CPU_ROLE_AP:
427 /*
428 * report on an AP
429 */
430 cpu_intr_init(ci);
431 gdt_alloc_cpu(ci);
432 cpu_set_tss_gates(ci);
433 pmap_cpu_init_late(ci);
434 cpu_start_secondary(ci);
435 if (ci->ci_flags & CPUF_PRESENT) {
436 struct cpu_info *tmp;
437
438 cpu_identify(ci);
439 tmp = cpu_info_list;
440 while (tmp->ci_next)
441 tmp = tmp->ci_next;
442
443 tmp->ci_next = ci;
444 }
445 break;
446 #endif
447
448 default:
449 aprint_normal("\n");
450 panic("unknown processor type??\n");
451 }
452
453 pat_init(ci);
454
455 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
456 aprint_error_dev(self, "couldn't establish power handler\n");
457
458 #ifdef MULTIPROCESSOR
459 if (mp_verbose) {
460 struct lwp *l = ci->ci_data.cpu_idlelwp;
461 struct pcb *pcb = lwp_getpcb(l);
462
463 aprint_verbose_dev(self,
464 "idle lwp at %p, idle sp at %p\n",
465 l,
466 #ifdef i386
467 (void *)pcb->pcb_esp
468 #else
469 (void *)pcb->pcb_rsp
470 #endif
471 );
472 }
473 #endif
474
475 /*
476 * Postpone the "cpufeaturebus" scan.
477 * It is safe to scan the pseudo-bus
478 * only after all CPUs have attached.
479 */
480 (void)config_defer(self, cpu_defer);
481 }
482
483 static void
484 cpu_defer(device_t self)
485 {
486 cpu_rescan(self, NULL, NULL);
487 }
488
489 static int
490 cpu_rescan(device_t self, const char *ifattr, const int *locators)
491 {
492 struct cpu_softc *sc = device_private(self);
493 struct cpufeature_attach_args cfaa;
494 struct cpu_info *ci = sc->sc_info;
495
496 memset(&cfaa, 0, sizeof(cfaa));
497 cfaa.ci = ci;
498
499 if (ifattr_match(ifattr, "cpufeaturebus")) {
500
501 if (ci->ci_frequency == NULL) {
502 cfaa.name = "frequency";
503 ci->ci_frequency = config_found_ia(self,
504 "cpufeaturebus", &cfaa, NULL);
505 }
506
507 if (ci->ci_padlock == NULL) {
508 cfaa.name = "padlock";
509 ci->ci_padlock = config_found_ia(self,
510 "cpufeaturebus", &cfaa, NULL);
511 }
512
513 if (ci->ci_temperature == NULL) {
514 cfaa.name = "temperature";
515 ci->ci_temperature = config_found_ia(self,
516 "cpufeaturebus", &cfaa, NULL);
517 }
518
519 if (ci->ci_vm == NULL) {
520 cfaa.name = "vm";
521 ci->ci_vm = config_found_ia(self,
522 "cpufeaturebus", &cfaa, NULL);
523 }
524 }
525
526 return 0;
527 }
528
529 static void
530 cpu_childdetached(device_t self, device_t child)
531 {
532 struct cpu_softc *sc = device_private(self);
533 struct cpu_info *ci = sc->sc_info;
534
535 if (ci->ci_frequency == child)
536 ci->ci_frequency = NULL;
537
538 if (ci->ci_padlock == child)
539 ci->ci_padlock = NULL;
540
541 if (ci->ci_temperature == child)
542 ci->ci_temperature = NULL;
543
544 if (ci->ci_vm == child)
545 ci->ci_vm = NULL;
546 }
547
548 /*
549 * Initialize the processor appropriately.
550 */
551
552 void
553 cpu_init(struct cpu_info *ci)
554 {
555
556 lcr0(rcr0() | CR0_WP);
557
558 /*
559 * On a P6 or above, enable global TLB caching if the
560 * hardware supports it.
561 */
562 if (cpu_feature[0] & CPUID_PGE)
563 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
564
565 /*
566 * If we have FXSAVE/FXRESTOR, use them.
567 */
568 if (cpu_feature[0] & CPUID_FXSR) {
569 lcr4(rcr4() | CR4_OSFXSR);
570
571 /*
572 * If we have SSE/SSE2, enable XMM exceptions.
573 */
574 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
575 lcr4(rcr4() | CR4_OSXMMEXCPT);
576 }
577
578 #ifdef MTRR
579 /*
580 * On a P6 or above, initialize MTRR's if the hardware supports them.
581 */
582 if (cpu_feature[0] & CPUID_MTRR) {
583 if ((ci->ci_flags & CPUF_AP) == 0)
584 i686_mtrr_init_first();
585 mtrr_init_cpu(ci);
586 }
587
588 #ifdef i386
589 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
590 /*
591 * Must be a K6-2 Step >= 7 or a K6-III.
592 */
593 if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
594 if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
595 (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
596 CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
597 mtrr_funcs = &k6_mtrr_funcs;
598 k6_mtrr_init_first();
599 mtrr_init_cpu(ci);
600 }
601 }
602 }
603 #endif /* i386 */
604 #endif /* MTRR */
605
606 if (ci != &cpu_info_primary) {
607 /* Synchronize TSC again, and check for drift. */
608 wbinvd();
609 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
610 tsc_sync_ap(ci);
611 } else {
612 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
613 }
614 }
615
616 #ifdef MULTIPROCESSOR
617 void
618 cpu_boot_secondary_processors(void)
619 {
620 struct cpu_info *ci;
621 kcpuset_t *cpus;
622 u_long i;
623
624 /* Now that we know the number of CPUs, patch the text segment. */
625 x86_patch(false);
626
627 kcpuset_create(&cpus, true);
628 kcpuset_set(cpus, cpu_index(curcpu()));
629 for (i = 0; i < maxcpus; i++) {
630 ci = cpu_lookup(i);
631 if (ci == NULL)
632 continue;
633 if (ci->ci_data.cpu_idlelwp == NULL)
634 continue;
635 if ((ci->ci_flags & CPUF_PRESENT) == 0)
636 continue;
637 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
638 continue;
639 cpu_boot_secondary(ci);
640 kcpuset_set(cpus, cpu_index(ci));
641 }
642 while (!kcpuset_match(cpus, kcpuset_running))
643 ;
644 kcpuset_destroy(cpus);
645
646 x86_mp_online = true;
647
648 /* Now that we know about the TSC, attach the timecounter. */
649 tsc_tc_init();
650
651 /* Enable zeroing of pages in the idle loop if we have SSE2. */
652 vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
653 }
654 #endif
655
656 static void
657 cpu_init_idle_lwp(struct cpu_info *ci)
658 {
659 struct lwp *l = ci->ci_data.cpu_idlelwp;
660 struct pcb *pcb = lwp_getpcb(l);
661
662 pcb->pcb_cr0 = rcr0();
663 }
664
665 void
666 cpu_init_idle_lwps(void)
667 {
668 struct cpu_info *ci;
669 u_long i;
670
671 for (i = 0; i < maxcpus; i++) {
672 ci = cpu_lookup(i);
673 if (ci == NULL)
674 continue;
675 if (ci->ci_data.cpu_idlelwp == NULL)
676 continue;
677 if ((ci->ci_flags & CPUF_PRESENT) == 0)
678 continue;
679 cpu_init_idle_lwp(ci);
680 }
681 }
682
683 #ifdef MULTIPROCESSOR
684 void
685 cpu_start_secondary(struct cpu_info *ci)
686 {
687 extern paddr_t mp_pdirpa;
688 u_long psl;
689 int i;
690
691 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
692 atomic_or_32(&ci->ci_flags, CPUF_AP);
693 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
694 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
695 return;
696 }
697
698 /*
699 * Wait for it to become ready. Setting cpu_starting opens the
700 * initial gate and allows the AP to start soft initialization.
701 */
702 KASSERT(cpu_starting == NULL);
703 cpu_starting = ci;
704 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
705 #ifdef MPDEBUG
706 extern int cpu_trace[3];
707 static int otrace[3];
708 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
709 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
710 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
711 memcpy(otrace, cpu_trace, sizeof(otrace));
712 }
713 #endif
714 i8254_delay(10);
715 }
716
717 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
718 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
719 #if defined(MPDEBUG) && defined(DDB)
720 printf("dropping into debugger; continue from here to resume boot\n");
721 Debugger();
722 #endif
723 } else {
724 /*
725 * Synchronize time stamp counters. Invalidate cache and do
726 * twice to try and minimize possible cache effects. Disable
727 * interrupts to try and rule out any external interference.
728 */
729 psl = x86_read_psl();
730 x86_disable_intr();
731 wbinvd();
732 tsc_sync_bp(ci);
733 x86_write_psl(psl);
734 }
735
736 CPU_START_CLEANUP(ci);
737 cpu_starting = NULL;
738 }
739
740 void
741 cpu_boot_secondary(struct cpu_info *ci)
742 {
743 int64_t drift;
744 u_long psl;
745 int i;
746
747 atomic_or_32(&ci->ci_flags, CPUF_GO);
748 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
749 i8254_delay(10);
750 }
751 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
752 aprint_error_dev(ci->ci_dev, "failed to start\n");
753 #if defined(MPDEBUG) && defined(DDB)
754 printf("dropping into debugger; continue from here to resume boot\n");
755 Debugger();
756 #endif
757 } else {
758 /* Synchronize TSC again, check for drift. */
759 drift = ci->ci_data.cpu_cc_skew;
760 psl = x86_read_psl();
761 x86_disable_intr();
762 wbinvd();
763 tsc_sync_bp(ci);
764 x86_write_psl(psl);
765 drift -= ci->ci_data.cpu_cc_skew;
766 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
767 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
768 tsc_sync_drift(drift);
769 }
770 }
771
772 /*
773 * The CPU ends up here when its ready to run
774 * This is called from code in mptramp.s; at this point, we are running
775 * in the idle pcb/idle stack of the new CPU. When this function returns,
776 * this processor will enter the idle loop and start looking for work.
777 */
778 void
779 cpu_hatch(void *v)
780 {
781 struct cpu_info *ci = (struct cpu_info *)v;
782 struct pcb *pcb;
783 int s, i;
784
785 cpu_init_msrs(ci, true);
786 cpu_probe(ci);
787
788 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
789 /* cpu_get_tsc_freq(ci); */
790
791 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
792
793 /*
794 * Synchronize time stamp counters. Invalidate cache and do twice
795 * to try and minimize possible cache effects. Note that interrupts
796 * are off at this point.
797 */
798 wbinvd();
799 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
800 tsc_sync_ap(ci);
801
802 /*
803 * Wait to be brought online. Use 'monitor/mwait' if available,
804 * in order to make the TSC drift as much as possible. so that
805 * we can detect it later. If not available, try 'pause'.
806 * We'd like to use 'hlt', but we have interrupts off.
807 */
808 while ((ci->ci_flags & CPUF_GO) == 0) {
809 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
810 x86_monitor(&ci->ci_flags, 0, 0);
811 if ((ci->ci_flags & CPUF_GO) != 0) {
812 continue;
813 }
814 x86_mwait(0, 0);
815 } else {
816 for (i = 10000; i != 0; i--) {
817 x86_pause();
818 }
819 }
820 }
821
822 /* Because the text may have been patched in x86_patch(). */
823 wbinvd();
824 x86_flush();
825 tlbflushg();
826
827 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
828
829 #ifdef PAE
830 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
831 for (i = 0 ; i < PDP_SIZE; i++) {
832 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
833 }
834 lcr3(ci->ci_pae_l3_pdirpa);
835 #else
836 lcr3(pmap_pdirpa(pmap_kernel(), 0));
837 #endif
838
839 pcb = lwp_getpcb(curlwp);
840 pcb->pcb_cr3 = rcr3();
841 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
842 lcr0(pcb->pcb_cr0);
843
844 cpu_init_idt();
845 gdt_init_cpu(ci);
846 lapic_enable();
847 lapic_set_lvt();
848 lapic_initclocks();
849
850 fpuinit(ci);
851 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
852 ltr(ci->ci_tss_sel);
853
854 cpu_init(ci);
855 cpu_get_tsc_freq(ci);
856
857 s = splhigh();
858 #ifdef i386
859 lapic_tpr = 0;
860 #else
861 lcr8(0);
862 #endif
863 x86_enable_intr();
864 splx(s);
865 x86_errata();
866
867 aprint_debug_dev(ci->ci_dev, "running\n");
868
869 idle_loop(NULL);
870 KASSERT(false);
871 }
872 #endif
873
874 #if defined(DDB)
875
876 #include <ddb/db_output.h>
877 #include <machine/db_machdep.h>
878
879 /*
880 * Dump CPU information from ddb.
881 */
882 void
883 cpu_debug_dump(void)
884 {
885 struct cpu_info *ci;
886 CPU_INFO_ITERATOR cii;
887
888 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
889 for (CPU_INFO_FOREACH(cii, ci)) {
890 db_printf("%p %s %ld %x %x %10p %10p\n",
891 ci,
892 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
893 (long)ci->ci_cpuid,
894 ci->ci_flags, ci->ci_ipis,
895 ci->ci_curlwp,
896 ci->ci_fpcurlwp);
897 }
898 }
899 #endif
900
901 #if NLAPIC > 0
902 static void
903 cpu_copy_trampoline(void)
904 {
905 /*
906 * Copy boot code.
907 */
908 extern u_char cpu_spinup_trampoline[];
909 extern u_char cpu_spinup_trampoline_end[];
910
911 vaddr_t mp_trampoline_vaddr;
912
913 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
914 UVM_KMF_VAONLY);
915
916 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
917 VM_PROT_READ | VM_PROT_WRITE, 0);
918 pmap_update(pmap_kernel());
919 memcpy((void *)mp_trampoline_vaddr,
920 cpu_spinup_trampoline,
921 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
922
923 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
924 pmap_update(pmap_kernel());
925 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
926 }
927 #endif
928
929 #ifdef i386
930 static void
931 tss_init(struct i386tss *tss, void *stack, void *func)
932 {
933 KASSERT(curcpu()->ci_pmap == pmap_kernel());
934
935 memset(tss, 0, sizeof *tss);
936 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
937 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
938 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
939 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
940 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
941 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
942 /* %cr3 contains the value associated to pmap_kernel */
943 tss->tss_cr3 = rcr3();
944 tss->tss_esp = (int)((char *)stack + USPACE - 16);
945 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
946 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
947 tss->__tss_eip = (int)func;
948 }
949
950 /* XXX */
951 #define IDTVEC(name) __CONCAT(X, name)
952 typedef void (vector)(void);
953 extern vector IDTVEC(tss_trap08);
954 #if defined(DDB) && defined(MULTIPROCESSOR)
955 extern vector Xintrddbipi;
956 extern int ddb_vec;
957 #endif
958
959 static void
960 cpu_set_tss_gates(struct cpu_info *ci)
961 {
962 struct segment_descriptor sd;
963
964 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
965 UVM_KMF_WIRED);
966 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
967 IDTVEC(tss_trap08));
968 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
969 SDT_SYS386TSS, SEL_KPL, 0, 0);
970 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
971 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
972 GSEL(GTRAPTSS_SEL, SEL_KPL));
973
974 #if defined(DDB) && defined(MULTIPROCESSOR)
975 /*
976 * Set up separate handler for the DDB IPI, so that it doesn't
977 * stomp on a possibly corrupted stack.
978 *
979 * XXX overwriting the gate set in db_machine_init.
980 * Should rearrange the code so that it's set only once.
981 */
982 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
983 UVM_KMF_WIRED);
984 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
985
986 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
987 SDT_SYS386TSS, SEL_KPL, 0, 0);
988 ci->ci_gdt[GIPITSS_SEL].sd = sd;
989
990 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
991 GSEL(GIPITSS_SEL, SEL_KPL));
992 #endif
993 }
994 #else
995 static void
996 cpu_set_tss_gates(struct cpu_info *ci)
997 {
998
999 }
1000 #endif /* i386 */
1001
1002 #ifdef MULTIPROCESSOR
1003 int
1004 mp_cpu_start(struct cpu_info *ci, paddr_t target)
1005 {
1006 unsigned short dwordptr[2];
1007 int error;
1008
1009 /*
1010 * Bootstrap code must be addressable in real mode
1011 * and it must be page aligned.
1012 */
1013 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1014
1015 /*
1016 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1017 */
1018
1019 outb(IO_RTC, NVRAM_RESET);
1020 outb(IO_RTC+1, NVRAM_RESET_JUMP);
1021
1022 /*
1023 * "and the warm reset vector (DWORD based at 40:67) to point
1024 * to the AP startup code ..."
1025 */
1026
1027 dwordptr[0] = 0;
1028 dwordptr[1] = target >> 4;
1029
1030 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1031
1032 if ((cpu_feature[0] & CPUID_APIC) == 0) {
1033 aprint_error("mp_cpu_start: CPU does not have APIC\n");
1034 return ENODEV;
1035 }
1036
1037 /*
1038 * ... prior to executing the following sequence:". We'll also add in
1039 * local cache flush, in case the BIOS has left the AP with its cache
1040 * disabled. It may not be able to cope with MP coherency.
1041 */
1042 wbinvd();
1043
1044 if (ci->ci_flags & CPUF_AP) {
1045 error = x86_ipi_init(ci->ci_cpuid);
1046 if (error != 0) {
1047 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1048 __func__);
1049 return error;
1050 }
1051 i8254_delay(10000);
1052
1053 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1054 if (error != 0) {
1055 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1056 __func__);
1057 return error;
1058 }
1059 i8254_delay(200);
1060
1061 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1062 if (error != 0) {
1063 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1064 __func__);
1065 return error;
1066 }
1067 i8254_delay(200);
1068 }
1069
1070 return 0;
1071 }
1072
1073 void
1074 mp_cpu_start_cleanup(struct cpu_info *ci)
1075 {
1076 /*
1077 * Ensure the NVRAM reset byte contains something vaguely sane.
1078 */
1079
1080 outb(IO_RTC, NVRAM_RESET);
1081 outb(IO_RTC+1, NVRAM_RESET_RST);
1082 }
1083 #endif
1084
1085 #ifdef __x86_64__
1086 typedef void (vector)(void);
1087 extern vector Xsyscall, Xsyscall32;
1088 #endif
1089
1090 void
1091 cpu_init_msrs(struct cpu_info *ci, bool full)
1092 {
1093 #ifdef __x86_64__
1094 wrmsr(MSR_STAR,
1095 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1096 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1097 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1098 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1099 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1100
1101 if (full) {
1102 wrmsr(MSR_FSBASE, 0);
1103 wrmsr(MSR_GSBASE, (uint64_t)ci);
1104 wrmsr(MSR_KERNELGSBASE, 0);
1105 }
1106 #endif /* __x86_64__ */
1107
1108 if (cpu_feature[2] & CPUID_NOX)
1109 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1110 }
1111
1112 void
1113 cpu_offline_md(void)
1114 {
1115 int s;
1116
1117 s = splhigh();
1118 fpusave_cpu(true);
1119 splx(s);
1120 }
1121
1122 /* XXX joerg restructure and restart CPUs individually */
1123 static bool
1124 cpu_stop(device_t dv)
1125 {
1126 struct cpu_softc *sc = device_private(dv);
1127 struct cpu_info *ci = sc->sc_info;
1128 int err;
1129
1130 KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1131
1132 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1133 return true;
1134
1135 if (ci->ci_data.cpu_idlelwp == NULL)
1136 return true;
1137
1138 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1139
1140 if (sc->sc_wasonline) {
1141 mutex_enter(&cpu_lock);
1142 err = cpu_setstate(ci, false);
1143 mutex_exit(&cpu_lock);
1144
1145 if (err != 0)
1146 return false;
1147 }
1148
1149 return true;
1150 }
1151
1152 static bool
1153 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1154 {
1155 struct cpu_softc *sc = device_private(dv);
1156 struct cpu_info *ci = sc->sc_info;
1157
1158 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1159 return true;
1160 else {
1161 cpufreq_suspend(ci);
1162 }
1163
1164 return cpu_stop(dv);
1165 }
1166
1167 static bool
1168 cpu_resume(device_t dv, const pmf_qual_t *qual)
1169 {
1170 struct cpu_softc *sc = device_private(dv);
1171 struct cpu_info *ci = sc->sc_info;
1172 int err = 0;
1173
1174 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1175 return true;
1176
1177 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1178 goto out;
1179
1180 if (ci->ci_data.cpu_idlelwp == NULL)
1181 goto out;
1182
1183 if (sc->sc_wasonline) {
1184 mutex_enter(&cpu_lock);
1185 err = cpu_setstate(ci, true);
1186 mutex_exit(&cpu_lock);
1187 }
1188
1189 out:
1190 if (err != 0)
1191 return false;
1192
1193 cpufreq_resume(ci);
1194
1195 return true;
1196 }
1197
1198 static bool
1199 cpu_shutdown(device_t dv, int how)
1200 {
1201 struct cpu_softc *sc = device_private(dv);
1202 struct cpu_info *ci = sc->sc_info;
1203
1204 if ((ci->ci_flags & CPUF_BSP) != 0)
1205 return false;
1206
1207 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1208 return true;
1209
1210 return cpu_stop(dv);
1211 }
1212
1213 void
1214 cpu_get_tsc_freq(struct cpu_info *ci)
1215 {
1216 uint64_t last_tsc;
1217
1218 if (cpu_hascounter()) {
1219 last_tsc = cpu_counter_serializing();
1220 i8254_delay(100000);
1221 ci->ci_data.cpu_cc_freq =
1222 (cpu_counter_serializing() - last_tsc) * 10;
1223 }
1224 }
1225
1226 void
1227 x86_cpu_idle_mwait(void)
1228 {
1229 struct cpu_info *ci = curcpu();
1230
1231 KASSERT(ci->ci_ilevel == IPL_NONE);
1232
1233 x86_monitor(&ci->ci_want_resched, 0, 0);
1234 if (__predict_false(ci->ci_want_resched)) {
1235 return;
1236 }
1237 x86_mwait(0, 0);
1238 }
1239
1240 void
1241 x86_cpu_idle_halt(void)
1242 {
1243 struct cpu_info *ci = curcpu();
1244
1245 KASSERT(ci->ci_ilevel == IPL_NONE);
1246
1247 x86_disable_intr();
1248 if (!__predict_false(ci->ci_want_resched)) {
1249 x86_stihlt();
1250 } else {
1251 x86_enable_intr();
1252 }
1253 }
1254
1255 /*
1256 * Loads pmap for the current CPU.
1257 */
1258 void
1259 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1260 {
1261 #ifdef PAE
1262 struct cpu_info *ci = curcpu();
1263 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1264 int i;
1265
1266 /*
1267 * disable interrupts to block TLB shootdowns, which can reload cr3.
1268 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1269 * reload cr3.
1270 */
1271 x86_disable_intr();
1272 for (i = 0 ; i < PDP_SIZE; i++) {
1273 l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1274 }
1275 x86_enable_intr();
1276 tlbflush();
1277 #else /* PAE */
1278 lcr3(pmap_pdirpa(pmap, 0));
1279 #endif /* PAE */
1280 }
1281
1282 /*
1283 * Notify all other cpus to halt.
1284 */
1285
1286 void
1287 cpu_broadcast_halt(void)
1288 {
1289 x86_broadcast_ipi(X86_IPI_HALT);
1290 }
1291
1292 /*
1293 * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1294 */
1295
1296 void
1297 cpu_kick(struct cpu_info *ci)
1298 {
1299 x86_send_ipi(ci, 0);
1300 }
1301