cpu.c revision 1.111 1 /* $NetBSD: cpu.c,v 1.111 2014/05/12 11:56:02 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.111 2014/05/12 11:56:02 joerg Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70 #include "opt_multiprocessor.h"
71
72 #include "lapic.h"
73 #include "ioapic.h"
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/systm.h>
78 #include <sys/device.h>
79 #include <sys/kmem.h>
80 #include <sys/cpu.h>
81 #include <sys/cpufreq.h>
82 #include <sys/idle.h>
83 #include <sys/atomic.h>
84 #include <sys/reboot.h>
85
86 #include <uvm/uvm.h>
87
88 #include "acpica.h" /* for NACPICA, for mp_verbose */
89
90 #include <machine/cpufunc.h>
91 #include <machine/cpuvar.h>
92 #include <machine/pmap.h>
93 #include <machine/vmparam.h>
94 #if defined(MULTIPROCESSOR)
95 #include <machine/mpbiosvar.h>
96 #endif
97 #include <machine/mpconfig.h> /* for mp_verbose */
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104 #include <machine/cpu_counter.h>
105
106 #include <x86/fpu.h>
107
108 #ifdef i386
109 #include <machine/tlog.h>
110 #endif
111
112 #if NLAPIC > 0
113 #include <machine/apicvar.h>
114 #include <machine/i82489reg.h>
115 #include <machine/i82489var.h>
116 #endif
117
118 #include <dev/ic/mc146818reg.h>
119 #include <i386/isa/nvram.h>
120 #include <dev/isa/isareg.h>
121
122 #include "tsc.h"
123
124 static int cpu_match(device_t, cfdata_t, void *);
125 static void cpu_attach(device_t, device_t, void *);
126 static void cpu_defer(device_t);
127 static int cpu_rescan(device_t, const char *, const int *);
128 static void cpu_childdetached(device_t, device_t);
129 static bool cpu_stop(device_t);
130 static bool cpu_suspend(device_t, const pmf_qual_t *);
131 static bool cpu_resume(device_t, const pmf_qual_t *);
132 static bool cpu_shutdown(device_t, int);
133
134 struct cpu_softc {
135 device_t sc_dev; /* device tree glue */
136 struct cpu_info *sc_info; /* pointer to CPU info */
137 bool sc_wasonline;
138 };
139
140 #ifdef MULTIPROCESSOR
141 int mp_cpu_start(struct cpu_info *, paddr_t);
142 void mp_cpu_start_cleanup(struct cpu_info *);
143 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
144 mp_cpu_start_cleanup };
145 #endif
146
147
148 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
149 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
150
151 /*
152 * Statically-allocated CPU info for the primary CPU (or the only
153 * CPU, on uniprocessors). The CPU info list is initialized to
154 * point at it.
155 */
156 #ifdef TRAPLOG
157 struct tlog tlog_primary;
158 #endif
159 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 .ci_dev = 0,
161 .ci_self = &cpu_info_primary,
162 .ci_idepth = -1,
163 .ci_curlwp = &lwp0,
164 .ci_curldt = -1,
165 #ifdef TRAPLOG
166 .ci_tlog_base = &tlog_primary,
167 #endif /* !TRAPLOG */
168 };
169
170 struct cpu_info *cpu_info_list = &cpu_info_primary;
171
172 static void cpu_set_tss_gates(struct cpu_info *);
173
174 #ifdef i386
175 static void tss_init(struct i386tss *, void *, void *);
176 #endif
177
178 static void cpu_init_idle_lwp(struct cpu_info *);
179
180 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
181 * [0] basic features %edx
182 * [1] basic features %ecx
183 * [2] extended features %edx
184 * [3] extended features %ecx
185 * [4] VIA padlock features
186 */
187
188 extern char x86_64_doubleflt_stack[];
189
190 #ifdef MULTIPROCESSOR
191 bool x86_mp_online;
192 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
193 #endif
194 #if NLAPIC > 0
195 static vaddr_t cmos_data_mapping;
196 #endif
197 struct cpu_info *cpu_starting;
198
199 #ifdef MULTIPROCESSOR
200 void cpu_hatch(void *);
201 static void cpu_boot_secondary(struct cpu_info *ci);
202 static void cpu_start_secondary(struct cpu_info *ci);
203 #endif
204 #if NLAPIC > 0
205 static void cpu_copy_trampoline(void);
206 #endif
207
208 /*
209 * Runs once per boot once multiprocessor goo has been detected and
210 * the local APIC on the boot processor has been mapped.
211 *
212 * Called from lapic_boot_init() (from mpbios_scan()).
213 */
214 #if NLAPIC > 0
215 void
216 cpu_init_first(void)
217 {
218
219 cpu_info_primary.ci_cpuid = lapic_cpu_number();
220 cpu_copy_trampoline();
221
222 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
223 if (cmos_data_mapping == 0)
224 panic("No KVA for page 0");
225 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
226 pmap_update(pmap_kernel());
227 }
228 #endif
229
230 static int
231 cpu_match(device_t parent, cfdata_t match, void *aux)
232 {
233
234 return 1;
235 }
236
237 static void
238 cpu_vm_init(struct cpu_info *ci)
239 {
240 int ncolors = 2, i;
241
242 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
243 struct x86_cache_info *cai;
244 int tcolors;
245
246 cai = &ci->ci_cinfo[i];
247
248 tcolors = atop(cai->cai_totalsize);
249 switch(cai->cai_associativity) {
250 case 0xff:
251 tcolors = 1; /* fully associative */
252 break;
253 case 0:
254 case 1:
255 break;
256 default:
257 tcolors /= cai->cai_associativity;
258 }
259 ncolors = max(ncolors, tcolors);
260 /*
261 * If the desired number of colors is not a power of
262 * two, it won't be good. Find the greatest power of
263 * two which is an even divisor of the number of colors,
264 * to preserve even coloring of pages.
265 */
266 if (ncolors & (ncolors - 1) ) {
267 int try, picked = 1;
268 for (try = 1; try < ncolors; try *= 2) {
269 if (ncolors % try == 0) picked = try;
270 }
271 if (picked == 1) {
272 panic("desired number of cache colors %d is "
273 " > 1, but not even!", ncolors);
274 }
275 ncolors = picked;
276 }
277 }
278
279 /*
280 * Knowing the size of the largest cache on this CPU, potentially
281 * re-color our pages.
282 */
283 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
284 uvm_page_recolor(ncolors);
285
286 pmap_tlb_cpu_init(ci);
287 }
288
289 static void
290 cpu_attach(device_t parent, device_t self, void *aux)
291 {
292 struct cpu_softc *sc = device_private(self);
293 struct cpu_attach_args *caa = aux;
294 struct cpu_info *ci;
295 uintptr_t ptr;
296 #if NLAPIC > 0
297 int cpunum = caa->cpu_number;
298 #endif
299 static bool again;
300
301 sc->sc_dev = self;
302
303 if (ncpu == maxcpus) {
304 #ifndef _LP64
305 aprint_error(": too many CPUs, please use NetBSD/amd64\n");
306 #else
307 aprint_error(": too many CPUs\n");
308 #endif
309 return;
310 }
311
312 /*
313 * If we're an Application Processor, allocate a cpu_info
314 * structure, otherwise use the primary's.
315 */
316 if (caa->cpu_role == CPU_ROLE_AP) {
317 if ((boothowto & RB_MD1) != 0) {
318 aprint_error(": multiprocessor boot disabled\n");
319 if (!pmf_device_register(self, NULL, NULL))
320 aprint_error_dev(self,
321 "couldn't establish power handler\n");
322 return;
323 }
324 aprint_naive(": Application Processor\n");
325 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
326 KM_SLEEP);
327 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
328 ci->ci_curldt = -1;
329 #ifdef TRAPLOG
330 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
331 #endif
332 } else {
333 aprint_naive(": %s Processor\n",
334 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
335 ci = &cpu_info_primary;
336 #if NLAPIC > 0
337 if (cpunum != lapic_cpu_number()) {
338 /* XXX should be done earlier. */
339 uint32_t reg;
340 aprint_verbose("\n");
341 aprint_verbose_dev(self, "running CPU at apic %d"
342 " instead of at expected %d", lapic_cpu_number(),
343 cpunum);
344 reg = i82489_readreg(LAPIC_ID);
345 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
346 (cpunum << LAPIC_ID_SHIFT));
347 }
348 if (cpunum != lapic_cpu_number()) {
349 aprint_error_dev(self, "unable to reset apic id\n");
350 }
351 #endif
352 }
353
354 ci->ci_self = ci;
355 sc->sc_info = ci;
356 ci->ci_dev = self;
357 ci->ci_acpiid = caa->cpu_id;
358 ci->ci_cpuid = caa->cpu_number;
359 ci->ci_func = caa->cpu_func;
360
361 /* Must be before mi_cpu_attach(). */
362 cpu_vm_init(ci);
363
364 if (caa->cpu_role == CPU_ROLE_AP) {
365 int error;
366
367 error = mi_cpu_attach(ci);
368 if (error != 0) {
369 aprint_normal("\n");
370 aprint_error_dev(self,
371 "mi_cpu_attach failed with %d\n", error);
372 return;
373 }
374 cpu_init_tss(ci);
375 } else {
376 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
377 }
378
379 pmap_reference(pmap_kernel());
380 ci->ci_pmap = pmap_kernel();
381 ci->ci_tlbstate = TLBSTATE_STALE;
382
383 /*
384 * Boot processor may not be attached first, but the below
385 * must be done to allow booting other processors.
386 */
387 if (!again) {
388 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
389 /* Basic init. */
390 cpu_intr_init(ci);
391 cpu_get_tsc_freq(ci);
392 cpu_init(ci);
393 cpu_set_tss_gates(ci);
394 pmap_cpu_init_late(ci);
395 #if NLAPIC > 0
396 if (caa->cpu_role != CPU_ROLE_SP) {
397 /* Enable lapic. */
398 lapic_enable();
399 lapic_set_lvt();
400 lapic_calibrate_timer(ci);
401 }
402 #endif
403 /* Make sure DELAY() is initialized. */
404 DELAY(1);
405 again = true;
406 }
407
408 /* further PCB init done later. */
409
410 switch (caa->cpu_role) {
411 case CPU_ROLE_SP:
412 atomic_or_32(&ci->ci_flags, CPUF_SP);
413 cpu_identify(ci);
414 x86_errata();
415 x86_cpu_idle_init();
416 break;
417
418 case CPU_ROLE_BP:
419 atomic_or_32(&ci->ci_flags, CPUF_BSP);
420 cpu_identify(ci);
421 x86_errata();
422 x86_cpu_idle_init();
423 break;
424
425 #ifdef MULTIPROCESSOR
426 case CPU_ROLE_AP:
427 /*
428 * report on an AP
429 */
430 cpu_intr_init(ci);
431 gdt_alloc_cpu(ci);
432 cpu_set_tss_gates(ci);
433 pmap_cpu_init_late(ci);
434 cpu_start_secondary(ci);
435 if (ci->ci_flags & CPUF_PRESENT) {
436 struct cpu_info *tmp;
437
438 cpu_identify(ci);
439 tmp = cpu_info_list;
440 while (tmp->ci_next)
441 tmp = tmp->ci_next;
442
443 tmp->ci_next = ci;
444 }
445 break;
446 #endif
447
448 default:
449 aprint_normal("\n");
450 panic("unknown processor type??\n");
451 }
452
453 pat_init(ci);
454
455 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
456 aprint_error_dev(self, "couldn't establish power handler\n");
457
458 #ifdef MULTIPROCESSOR
459 if (mp_verbose) {
460 struct lwp *l = ci->ci_data.cpu_idlelwp;
461 struct pcb *pcb = lwp_getpcb(l);
462
463 aprint_verbose_dev(self,
464 "idle lwp at %p, idle sp at %p\n",
465 l,
466 #ifdef i386
467 (void *)pcb->pcb_esp
468 #else
469 (void *)pcb->pcb_rsp
470 #endif
471 );
472 }
473 #endif
474
475 /*
476 * Postpone the "cpufeaturebus" scan.
477 * It is safe to scan the pseudo-bus
478 * only after all CPUs have attached.
479 */
480 (void)config_defer(self, cpu_defer);
481 }
482
483 static void
484 cpu_defer(device_t self)
485 {
486 cpu_rescan(self, NULL, NULL);
487 }
488
489 static int
490 cpu_rescan(device_t self, const char *ifattr, const int *locators)
491 {
492 struct cpu_softc *sc = device_private(self);
493 struct cpufeature_attach_args cfaa;
494 struct cpu_info *ci = sc->sc_info;
495
496 memset(&cfaa, 0, sizeof(cfaa));
497 cfaa.ci = ci;
498
499 if (ifattr_match(ifattr, "cpufeaturebus")) {
500
501 if (ci->ci_frequency == NULL) {
502 cfaa.name = "frequency";
503 ci->ci_frequency = config_found_ia(self,
504 "cpufeaturebus", &cfaa, NULL);
505 }
506
507 if (ci->ci_padlock == NULL) {
508 cfaa.name = "padlock";
509 ci->ci_padlock = config_found_ia(self,
510 "cpufeaturebus", &cfaa, NULL);
511 }
512
513 if (ci->ci_temperature == NULL) {
514 cfaa.name = "temperature";
515 ci->ci_temperature = config_found_ia(self,
516 "cpufeaturebus", &cfaa, NULL);
517 }
518
519 if (ci->ci_vm == NULL) {
520 cfaa.name = "vm";
521 ci->ci_vm = config_found_ia(self,
522 "cpufeaturebus", &cfaa, NULL);
523 }
524 }
525
526 return 0;
527 }
528
529 static void
530 cpu_childdetached(device_t self, device_t child)
531 {
532 struct cpu_softc *sc = device_private(self);
533 struct cpu_info *ci = sc->sc_info;
534
535 if (ci->ci_frequency == child)
536 ci->ci_frequency = NULL;
537
538 if (ci->ci_padlock == child)
539 ci->ci_padlock = NULL;
540
541 if (ci->ci_temperature == child)
542 ci->ci_temperature = NULL;
543
544 if (ci->ci_vm == child)
545 ci->ci_vm = NULL;
546 }
547
548 /*
549 * Initialize the processor appropriately.
550 */
551
552 void
553 cpu_init(struct cpu_info *ci)
554 {
555 uint32_t cr4;
556
557 lcr0(rcr0() | CR0_WP);
558
559 cr4 = rcr4();
560 /*
561 * On a P6 or above, enable global TLB caching if the
562 * hardware supports it.
563 */
564 if (cpu_feature[0] & CPUID_PGE)
565 cr4 |= CR4_PGE; /* enable global TLB caching */
566
567 /*
568 * If we have FXSAVE/FXRESTOR, use them.
569 */
570 if (cpu_feature[0] & CPUID_FXSR) {
571 cr4 |= CR4_OSFXSR;
572
573 /*
574 * If we have SSE/SSE2, enable XMM exceptions.
575 */
576 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
577 cr4 |= CR4_OSXMMEXCPT;
578 }
579
580 /* If xsave is supported, enable it */
581 if (cpu_feature[1] & CPUID2_XSAVE)
582 cr4 |= CR4_OSXSAVE;
583
584 lcr4(cr4);
585
586 /* If xsave is enabled, enable all fpu features */
587 if (cr4 & CR4_OSXSAVE)
588 wrxcr(0, x86_xsave_features & XCR0_FPU);
589
590 #ifdef MTRR
591 /*
592 * On a P6 or above, initialize MTRR's if the hardware supports them.
593 */
594 if (cpu_feature[0] & CPUID_MTRR) {
595 if ((ci->ci_flags & CPUF_AP) == 0)
596 i686_mtrr_init_first();
597 mtrr_init_cpu(ci);
598 }
599
600 #ifdef i386
601 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
602 /*
603 * Must be a K6-2 Step >= 7 or a K6-III.
604 */
605 if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
606 if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
607 (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
608 CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
609 mtrr_funcs = &k6_mtrr_funcs;
610 k6_mtrr_init_first();
611 mtrr_init_cpu(ci);
612 }
613 }
614 }
615 #endif /* i386 */
616 #endif /* MTRR */
617
618 if (ci != &cpu_info_primary) {
619 /* Synchronize TSC again, and check for drift. */
620 wbinvd();
621 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
622 tsc_sync_ap(ci);
623 } else {
624 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
625 }
626 }
627
628 #ifdef MULTIPROCESSOR
629 void
630 cpu_boot_secondary_processors(void)
631 {
632 struct cpu_info *ci;
633 kcpuset_t *cpus;
634 u_long i;
635
636 /* Now that we know the number of CPUs, patch the text segment. */
637 x86_patch(false);
638
639 kcpuset_create(&cpus, true);
640 kcpuset_set(cpus, cpu_index(curcpu()));
641 for (i = 0; i < maxcpus; i++) {
642 ci = cpu_lookup(i);
643 if (ci == NULL)
644 continue;
645 if (ci->ci_data.cpu_idlelwp == NULL)
646 continue;
647 if ((ci->ci_flags & CPUF_PRESENT) == 0)
648 continue;
649 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
650 continue;
651 cpu_boot_secondary(ci);
652 kcpuset_set(cpus, cpu_index(ci));
653 }
654 while (!kcpuset_match(cpus, kcpuset_running))
655 ;
656 kcpuset_destroy(cpus);
657
658 x86_mp_online = true;
659
660 /* Now that we know about the TSC, attach the timecounter. */
661 tsc_tc_init();
662
663 /* Enable zeroing of pages in the idle loop if we have SSE2. */
664 vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
665 }
666 #endif
667
668 static void
669 cpu_init_idle_lwp(struct cpu_info *ci)
670 {
671 struct lwp *l = ci->ci_data.cpu_idlelwp;
672 struct pcb *pcb = lwp_getpcb(l);
673
674 pcb->pcb_cr0 = rcr0();
675 }
676
677 void
678 cpu_init_idle_lwps(void)
679 {
680 struct cpu_info *ci;
681 u_long i;
682
683 for (i = 0; i < maxcpus; i++) {
684 ci = cpu_lookup(i);
685 if (ci == NULL)
686 continue;
687 if (ci->ci_data.cpu_idlelwp == NULL)
688 continue;
689 if ((ci->ci_flags & CPUF_PRESENT) == 0)
690 continue;
691 cpu_init_idle_lwp(ci);
692 }
693 }
694
695 #ifdef MULTIPROCESSOR
696 void
697 cpu_start_secondary(struct cpu_info *ci)
698 {
699 extern paddr_t mp_pdirpa;
700 u_long psl;
701 int i;
702
703 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
704 atomic_or_32(&ci->ci_flags, CPUF_AP);
705 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
706 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
707 return;
708 }
709
710 /*
711 * Wait for it to become ready. Setting cpu_starting opens the
712 * initial gate and allows the AP to start soft initialization.
713 */
714 KASSERT(cpu_starting == NULL);
715 cpu_starting = ci;
716 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
717 #ifdef MPDEBUG
718 extern int cpu_trace[3];
719 static int otrace[3];
720 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
721 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
722 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
723 memcpy(otrace, cpu_trace, sizeof(otrace));
724 }
725 #endif
726 i8254_delay(10);
727 }
728
729 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
730 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
731 #if defined(MPDEBUG) && defined(DDB)
732 printf("dropping into debugger; continue from here to resume boot\n");
733 Debugger();
734 #endif
735 } else {
736 /*
737 * Synchronize time stamp counters. Invalidate cache and do
738 * twice to try and minimize possible cache effects. Disable
739 * interrupts to try and rule out any external interference.
740 */
741 psl = x86_read_psl();
742 x86_disable_intr();
743 wbinvd();
744 tsc_sync_bp(ci);
745 x86_write_psl(psl);
746 }
747
748 CPU_START_CLEANUP(ci);
749 cpu_starting = NULL;
750 }
751
752 void
753 cpu_boot_secondary(struct cpu_info *ci)
754 {
755 int64_t drift;
756 u_long psl;
757 int i;
758
759 atomic_or_32(&ci->ci_flags, CPUF_GO);
760 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
761 i8254_delay(10);
762 }
763 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
764 aprint_error_dev(ci->ci_dev, "failed to start\n");
765 #if defined(MPDEBUG) && defined(DDB)
766 printf("dropping into debugger; continue from here to resume boot\n");
767 Debugger();
768 #endif
769 } else {
770 /* Synchronize TSC again, check for drift. */
771 drift = ci->ci_data.cpu_cc_skew;
772 psl = x86_read_psl();
773 x86_disable_intr();
774 wbinvd();
775 tsc_sync_bp(ci);
776 x86_write_psl(psl);
777 drift -= ci->ci_data.cpu_cc_skew;
778 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
779 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
780 tsc_sync_drift(drift);
781 }
782 }
783
784 /*
785 * The CPU ends up here when its ready to run
786 * This is called from code in mptramp.s; at this point, we are running
787 * in the idle pcb/idle stack of the new CPU. When this function returns,
788 * this processor will enter the idle loop and start looking for work.
789 */
790 void
791 cpu_hatch(void *v)
792 {
793 struct cpu_info *ci = (struct cpu_info *)v;
794 struct pcb *pcb;
795 int s, i;
796
797 cpu_init_msrs(ci, true);
798 cpu_probe(ci);
799
800 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
801 /* cpu_get_tsc_freq(ci); */
802
803 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
804
805 /*
806 * Synchronize time stamp counters. Invalidate cache and do twice
807 * to try and minimize possible cache effects. Note that interrupts
808 * are off at this point.
809 */
810 wbinvd();
811 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
812 tsc_sync_ap(ci);
813
814 /*
815 * Wait to be brought online. Use 'monitor/mwait' if available,
816 * in order to make the TSC drift as much as possible. so that
817 * we can detect it later. If not available, try 'pause'.
818 * We'd like to use 'hlt', but we have interrupts off.
819 */
820 while ((ci->ci_flags & CPUF_GO) == 0) {
821 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
822 x86_monitor(&ci->ci_flags, 0, 0);
823 if ((ci->ci_flags & CPUF_GO) != 0) {
824 continue;
825 }
826 x86_mwait(0, 0);
827 } else {
828 for (i = 10000; i != 0; i--) {
829 x86_pause();
830 }
831 }
832 }
833
834 /* Because the text may have been patched in x86_patch(). */
835 wbinvd();
836 x86_flush();
837 tlbflushg();
838
839 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
840
841 #ifdef PAE
842 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
843 for (i = 0 ; i < PDP_SIZE; i++) {
844 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
845 }
846 lcr3(ci->ci_pae_l3_pdirpa);
847 #else
848 lcr3(pmap_pdirpa(pmap_kernel(), 0));
849 #endif
850
851 pcb = lwp_getpcb(curlwp);
852 pcb->pcb_cr3 = rcr3();
853 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
854 lcr0(pcb->pcb_cr0);
855
856 cpu_init_idt();
857 gdt_init_cpu(ci);
858 #if NLAPIC > 0
859 lapic_enable();
860 lapic_set_lvt();
861 lapic_initclocks();
862 #endif
863
864 fpuinit(ci);
865 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
866 ltr(ci->ci_tss_sel);
867
868 cpu_init(ci);
869 cpu_get_tsc_freq(ci);
870
871 s = splhigh();
872 #ifdef i386
873 lapic_tpr = 0;
874 #else
875 lcr8(0);
876 #endif
877 x86_enable_intr();
878 splx(s);
879 x86_errata();
880
881 aprint_debug_dev(ci->ci_dev, "running\n");
882
883 idle_loop(NULL);
884 KASSERT(false);
885 }
886 #endif
887
888 #if defined(DDB)
889
890 #include <ddb/db_output.h>
891 #include <machine/db_machdep.h>
892
893 /*
894 * Dump CPU information from ddb.
895 */
896 void
897 cpu_debug_dump(void)
898 {
899 struct cpu_info *ci;
900 CPU_INFO_ITERATOR cii;
901
902 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
903 for (CPU_INFO_FOREACH(cii, ci)) {
904 db_printf("%p %s %ld %x %x %10p %10p\n",
905 ci,
906 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
907 (long)ci->ci_cpuid,
908 ci->ci_flags, ci->ci_ipis,
909 ci->ci_curlwp,
910 ci->ci_fpcurlwp);
911 }
912 }
913 #endif
914
915 #if NLAPIC > 0
916 static void
917 cpu_copy_trampoline(void)
918 {
919 /*
920 * Copy boot code.
921 */
922 extern u_char cpu_spinup_trampoline[];
923 extern u_char cpu_spinup_trampoline_end[];
924
925 vaddr_t mp_trampoline_vaddr;
926
927 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
928 UVM_KMF_VAONLY);
929
930 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
931 VM_PROT_READ | VM_PROT_WRITE, 0);
932 pmap_update(pmap_kernel());
933 memcpy((void *)mp_trampoline_vaddr,
934 cpu_spinup_trampoline,
935 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
936
937 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
938 pmap_update(pmap_kernel());
939 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
940 }
941 #endif
942
943 #ifdef i386
944 static void
945 tss_init(struct i386tss *tss, void *stack, void *func)
946 {
947 KASSERT(curcpu()->ci_pmap == pmap_kernel());
948
949 memset(tss, 0, sizeof *tss);
950 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
951 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
952 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
953 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
954 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
955 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
956 /* %cr3 contains the value associated to pmap_kernel */
957 tss->tss_cr3 = rcr3();
958 tss->tss_esp = (int)((char *)stack + USPACE - 16);
959 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
960 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
961 tss->__tss_eip = (int)func;
962 }
963
964 /* XXX */
965 #define IDTVEC(name) __CONCAT(X, name)
966 typedef void (vector)(void);
967 extern vector IDTVEC(tss_trap08);
968 #if defined(DDB) && defined(MULTIPROCESSOR)
969 extern vector Xintrddbipi;
970 extern int ddb_vec;
971 #endif
972
973 static void
974 cpu_set_tss_gates(struct cpu_info *ci)
975 {
976 struct segment_descriptor sd;
977
978 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
979 UVM_KMF_WIRED);
980 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
981 IDTVEC(tss_trap08));
982 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
983 SDT_SYS386TSS, SEL_KPL, 0, 0);
984 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
985 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
986 GSEL(GTRAPTSS_SEL, SEL_KPL));
987
988 #if defined(DDB) && defined(MULTIPROCESSOR)
989 /*
990 * Set up separate handler for the DDB IPI, so that it doesn't
991 * stomp on a possibly corrupted stack.
992 *
993 * XXX overwriting the gate set in db_machine_init.
994 * Should rearrange the code so that it's set only once.
995 */
996 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
997 UVM_KMF_WIRED);
998 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
999
1000 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
1001 SDT_SYS386TSS, SEL_KPL, 0, 0);
1002 ci->ci_gdt[GIPITSS_SEL].sd = sd;
1003
1004 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
1005 GSEL(GIPITSS_SEL, SEL_KPL));
1006 #endif
1007 }
1008 #else
1009 static void
1010 cpu_set_tss_gates(struct cpu_info *ci)
1011 {
1012
1013 }
1014 #endif /* i386 */
1015
1016 #ifdef MULTIPROCESSOR
1017 int
1018 mp_cpu_start(struct cpu_info *ci, paddr_t target)
1019 {
1020 unsigned short dwordptr[2];
1021 int error;
1022
1023 /*
1024 * Bootstrap code must be addressable in real mode
1025 * and it must be page aligned.
1026 */
1027 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1028
1029 /*
1030 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1031 */
1032
1033 outb(IO_RTC, NVRAM_RESET);
1034 outb(IO_RTC+1, NVRAM_RESET_JUMP);
1035
1036 /*
1037 * "and the warm reset vector (DWORD based at 40:67) to point
1038 * to the AP startup code ..."
1039 */
1040
1041 dwordptr[0] = 0;
1042 dwordptr[1] = target >> 4;
1043
1044 #if NLAPIC > 0
1045 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1046 #endif
1047
1048 if ((cpu_feature[0] & CPUID_APIC) == 0) {
1049 aprint_error("mp_cpu_start: CPU does not have APIC\n");
1050 return ENODEV;
1051 }
1052
1053 /*
1054 * ... prior to executing the following sequence:". We'll also add in
1055 * local cache flush, in case the BIOS has left the AP with its cache
1056 * disabled. It may not be able to cope with MP coherency.
1057 */
1058 wbinvd();
1059
1060 if (ci->ci_flags & CPUF_AP) {
1061 error = x86_ipi_init(ci->ci_cpuid);
1062 if (error != 0) {
1063 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1064 __func__);
1065 return error;
1066 }
1067 i8254_delay(10000);
1068
1069 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1070 if (error != 0) {
1071 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1072 __func__);
1073 return error;
1074 }
1075 i8254_delay(200);
1076
1077 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1078 if (error != 0) {
1079 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1080 __func__);
1081 return error;
1082 }
1083 i8254_delay(200);
1084 }
1085
1086 return 0;
1087 }
1088
1089 void
1090 mp_cpu_start_cleanup(struct cpu_info *ci)
1091 {
1092 /*
1093 * Ensure the NVRAM reset byte contains something vaguely sane.
1094 */
1095
1096 outb(IO_RTC, NVRAM_RESET);
1097 outb(IO_RTC+1, NVRAM_RESET_RST);
1098 }
1099 #endif
1100
1101 #ifdef __x86_64__
1102 typedef void (vector)(void);
1103 extern vector Xsyscall, Xsyscall32;
1104 #endif
1105
1106 void
1107 cpu_init_msrs(struct cpu_info *ci, bool full)
1108 {
1109 #ifdef __x86_64__
1110 wrmsr(MSR_STAR,
1111 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1112 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1113 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1114 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1115 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1116
1117 if (full) {
1118 wrmsr(MSR_FSBASE, 0);
1119 wrmsr(MSR_GSBASE, (uint64_t)ci);
1120 wrmsr(MSR_KERNELGSBASE, 0);
1121 }
1122 #endif /* __x86_64__ */
1123
1124 if (cpu_feature[2] & CPUID_NOX)
1125 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1126 }
1127
1128 void
1129 cpu_offline_md(void)
1130 {
1131 int s;
1132
1133 s = splhigh();
1134 fpusave_cpu(true);
1135 splx(s);
1136 }
1137
1138 /* XXX joerg restructure and restart CPUs individually */
1139 static bool
1140 cpu_stop(device_t dv)
1141 {
1142 struct cpu_softc *sc = device_private(dv);
1143 struct cpu_info *ci = sc->sc_info;
1144 int err;
1145
1146 KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1147
1148 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1149 return true;
1150
1151 if (ci->ci_data.cpu_idlelwp == NULL)
1152 return true;
1153
1154 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1155
1156 if (sc->sc_wasonline) {
1157 mutex_enter(&cpu_lock);
1158 err = cpu_setstate(ci, false);
1159 mutex_exit(&cpu_lock);
1160
1161 if (err != 0)
1162 return false;
1163 }
1164
1165 return true;
1166 }
1167
1168 static bool
1169 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1170 {
1171 struct cpu_softc *sc = device_private(dv);
1172 struct cpu_info *ci = sc->sc_info;
1173
1174 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1175 return true;
1176 else {
1177 cpufreq_suspend(ci);
1178 }
1179
1180 return cpu_stop(dv);
1181 }
1182
1183 static bool
1184 cpu_resume(device_t dv, const pmf_qual_t *qual)
1185 {
1186 struct cpu_softc *sc = device_private(dv);
1187 struct cpu_info *ci = sc->sc_info;
1188 int err = 0;
1189
1190 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1191 return true;
1192
1193 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1194 goto out;
1195
1196 if (ci->ci_data.cpu_idlelwp == NULL)
1197 goto out;
1198
1199 if (sc->sc_wasonline) {
1200 mutex_enter(&cpu_lock);
1201 err = cpu_setstate(ci, true);
1202 mutex_exit(&cpu_lock);
1203 }
1204
1205 out:
1206 if (err != 0)
1207 return false;
1208
1209 cpufreq_resume(ci);
1210
1211 return true;
1212 }
1213
1214 static bool
1215 cpu_shutdown(device_t dv, int how)
1216 {
1217 struct cpu_softc *sc = device_private(dv);
1218 struct cpu_info *ci = sc->sc_info;
1219
1220 if ((ci->ci_flags & CPUF_BSP) != 0)
1221 return false;
1222
1223 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1224 return true;
1225
1226 return cpu_stop(dv);
1227 }
1228
1229 void
1230 cpu_get_tsc_freq(struct cpu_info *ci)
1231 {
1232 uint64_t last_tsc;
1233
1234 if (cpu_hascounter()) {
1235 last_tsc = cpu_counter_serializing();
1236 i8254_delay(100000);
1237 ci->ci_data.cpu_cc_freq =
1238 (cpu_counter_serializing() - last_tsc) * 10;
1239 }
1240 }
1241
1242 void
1243 x86_cpu_idle_mwait(void)
1244 {
1245 struct cpu_info *ci = curcpu();
1246
1247 KASSERT(ci->ci_ilevel == IPL_NONE);
1248
1249 x86_monitor(&ci->ci_want_resched, 0, 0);
1250 if (__predict_false(ci->ci_want_resched)) {
1251 return;
1252 }
1253 x86_mwait(0, 0);
1254 }
1255
1256 void
1257 x86_cpu_idle_halt(void)
1258 {
1259 struct cpu_info *ci = curcpu();
1260
1261 KASSERT(ci->ci_ilevel == IPL_NONE);
1262
1263 x86_disable_intr();
1264 if (!__predict_false(ci->ci_want_resched)) {
1265 x86_stihlt();
1266 } else {
1267 x86_enable_intr();
1268 }
1269 }
1270
1271 /*
1272 * Loads pmap for the current CPU.
1273 */
1274 void
1275 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1276 {
1277 #ifdef PAE
1278 struct cpu_info *ci = curcpu();
1279 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1280 int i;
1281
1282 /*
1283 * disable interrupts to block TLB shootdowns, which can reload cr3.
1284 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1285 * reload cr3.
1286 */
1287 x86_disable_intr();
1288 for (i = 0 ; i < PDP_SIZE; i++) {
1289 l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1290 }
1291 x86_enable_intr();
1292 tlbflush();
1293 #else /* PAE */
1294 lcr3(pmap_pdirpa(pmap, 0));
1295 #endif /* PAE */
1296 }
1297
1298 /*
1299 * Notify all other cpus to halt.
1300 */
1301
1302 void
1303 cpu_broadcast_halt(void)
1304 {
1305 x86_broadcast_ipi(X86_IPI_HALT);
1306 }
1307
1308 /*
1309 * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1310 */
1311
1312 void
1313 cpu_kick(struct cpu_info *ci)
1314 {
1315 x86_send_ipi(ci, 0);
1316 }
1317