cpu.c revision 1.112 1 /* $NetBSD: cpu.c,v 1.112 2014/12/08 15:22:47 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.112 2014/12/08 15:22:47 msaitoh Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70 #include "opt_multiprocessor.h"
71
72 #include "lapic.h"
73 #include "ioapic.h"
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/systm.h>
78 #include <sys/device.h>
79 #include <sys/kmem.h>
80 #include <sys/cpu.h>
81 #include <sys/cpufreq.h>
82 #include <sys/idle.h>
83 #include <sys/atomic.h>
84 #include <sys/reboot.h>
85
86 #include <uvm/uvm.h>
87
88 #include "acpica.h" /* for NACPICA, for mp_verbose */
89
90 #include <machine/cpufunc.h>
91 #include <machine/cpuvar.h>
92 #include <machine/pmap.h>
93 #include <machine/vmparam.h>
94 #if defined(MULTIPROCESSOR)
95 #include <machine/mpbiosvar.h>
96 #endif
97 #include <machine/mpconfig.h> /* for mp_verbose */
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104 #include <machine/cpu_counter.h>
105
106 #include <x86/fpu.h>
107
108 #ifdef i386
109 #include <machine/tlog.h>
110 #endif
111
112 #if NLAPIC > 0
113 #include <machine/apicvar.h>
114 #include <machine/i82489reg.h>
115 #include <machine/i82489var.h>
116 #endif
117
118 #include <dev/ic/mc146818reg.h>
119 #include <i386/isa/nvram.h>
120 #include <dev/isa/isareg.h>
121
122 #include "tsc.h"
123
124 static int cpu_match(device_t, cfdata_t, void *);
125 static void cpu_attach(device_t, device_t, void *);
126 static void cpu_defer(device_t);
127 static int cpu_rescan(device_t, const char *, const int *);
128 static void cpu_childdetached(device_t, device_t);
129 static bool cpu_stop(device_t);
130 static bool cpu_suspend(device_t, const pmf_qual_t *);
131 static bool cpu_resume(device_t, const pmf_qual_t *);
132 static bool cpu_shutdown(device_t, int);
133
134 struct cpu_softc {
135 device_t sc_dev; /* device tree glue */
136 struct cpu_info *sc_info; /* pointer to CPU info */
137 bool sc_wasonline;
138 };
139
140 #ifdef MULTIPROCESSOR
141 int mp_cpu_start(struct cpu_info *, paddr_t);
142 void mp_cpu_start_cleanup(struct cpu_info *);
143 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
144 mp_cpu_start_cleanup };
145 #endif
146
147
148 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
149 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
150
151 /*
152 * Statically-allocated CPU info for the primary CPU (or the only
153 * CPU, on uniprocessors). The CPU info list is initialized to
154 * point at it.
155 */
156 #ifdef TRAPLOG
157 struct tlog tlog_primary;
158 #endif
159 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 .ci_dev = 0,
161 .ci_self = &cpu_info_primary,
162 .ci_idepth = -1,
163 .ci_curlwp = &lwp0,
164 .ci_curldt = -1,
165 #ifdef TRAPLOG
166 .ci_tlog_base = &tlog_primary,
167 #endif /* !TRAPLOG */
168 };
169
170 struct cpu_info *cpu_info_list = &cpu_info_primary;
171
172 static void cpu_set_tss_gates(struct cpu_info *);
173
174 #ifdef i386
175 static void tss_init(struct i386tss *, void *, void *);
176 #endif
177
178 static void cpu_init_idle_lwp(struct cpu_info *);
179
180 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
181 * [0] basic features %edx
182 * [1] basic features %ecx
183 * [2] extended features %edx
184 * [3] extended features %ecx
185 * [4] VIA padlock features
186 */
187
188 extern char x86_64_doubleflt_stack[];
189
190 #ifdef MULTIPROCESSOR
191 bool x86_mp_online;
192 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
193 #endif
194 #if NLAPIC > 0
195 static vaddr_t cmos_data_mapping;
196 #endif
197 struct cpu_info *cpu_starting;
198
199 #ifdef MULTIPROCESSOR
200 void cpu_hatch(void *);
201 static void cpu_boot_secondary(struct cpu_info *ci);
202 static void cpu_start_secondary(struct cpu_info *ci);
203 #endif
204 #if NLAPIC > 0
205 static void cpu_copy_trampoline(void);
206 #endif
207
208 /*
209 * Runs once per boot once multiprocessor goo has been detected and
210 * the local APIC on the boot processor has been mapped.
211 *
212 * Called from lapic_boot_init() (from mpbios_scan()).
213 */
214 #if NLAPIC > 0
215 void
216 cpu_init_first(void)
217 {
218
219 cpu_info_primary.ci_cpuid = lapic_cpu_number();
220 cpu_copy_trampoline();
221
222 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
223 if (cmos_data_mapping == 0)
224 panic("No KVA for page 0");
225 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
226 pmap_update(pmap_kernel());
227 }
228 #endif
229
230 static int
231 cpu_match(device_t parent, cfdata_t match, void *aux)
232 {
233
234 return 1;
235 }
236
237 static void
238 cpu_vm_init(struct cpu_info *ci)
239 {
240 int ncolors = 2, i;
241
242 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
243 struct x86_cache_info *cai;
244 int tcolors;
245
246 cai = &ci->ci_cinfo[i];
247
248 tcolors = atop(cai->cai_totalsize);
249 switch(cai->cai_associativity) {
250 case 0xff:
251 tcolors = 1; /* fully associative */
252 break;
253 case 0:
254 case 1:
255 break;
256 default:
257 tcolors /= cai->cai_associativity;
258 }
259 ncolors = max(ncolors, tcolors);
260 /*
261 * If the desired number of colors is not a power of
262 * two, it won't be good. Find the greatest power of
263 * two which is an even divisor of the number of colors,
264 * to preserve even coloring of pages.
265 */
266 if (ncolors & (ncolors - 1) ) {
267 int try, picked = 1;
268 for (try = 1; try < ncolors; try *= 2) {
269 if (ncolors % try == 0) picked = try;
270 }
271 if (picked == 1) {
272 panic("desired number of cache colors %d is "
273 " > 1, but not even!", ncolors);
274 }
275 ncolors = picked;
276 }
277 }
278
279 /*
280 * Knowing the size of the largest cache on this CPU, potentially
281 * re-color our pages.
282 */
283 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
284 uvm_page_recolor(ncolors);
285
286 pmap_tlb_cpu_init(ci);
287 }
288
289 static void
290 cpu_attach(device_t parent, device_t self, void *aux)
291 {
292 struct cpu_softc *sc = device_private(self);
293 struct cpu_attach_args *caa = aux;
294 struct cpu_info *ci;
295 uintptr_t ptr;
296 #if NLAPIC > 0
297 int cpunum = caa->cpu_number;
298 #endif
299 static bool again;
300
301 sc->sc_dev = self;
302
303 if (ncpu == maxcpus) {
304 #ifndef _LP64
305 aprint_error(": too many CPUs, please use NetBSD/amd64\n");
306 #else
307 aprint_error(": too many CPUs\n");
308 #endif
309 return;
310 }
311
312 /*
313 * If we're an Application Processor, allocate a cpu_info
314 * structure, otherwise use the primary's.
315 */
316 if (caa->cpu_role == CPU_ROLE_AP) {
317 if ((boothowto & RB_MD1) != 0) {
318 aprint_error(": multiprocessor boot disabled\n");
319 if (!pmf_device_register(self, NULL, NULL))
320 aprint_error_dev(self,
321 "couldn't establish power handler\n");
322 return;
323 }
324 aprint_naive(": Application Processor\n");
325 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
326 KM_SLEEP);
327 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
328 ci->ci_curldt = -1;
329 #ifdef TRAPLOG
330 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
331 #endif
332 } else {
333 aprint_naive(": %s Processor\n",
334 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
335 ci = &cpu_info_primary;
336 #if NLAPIC > 0
337 if (cpunum != lapic_cpu_number()) {
338 /* XXX should be done earlier. */
339 uint32_t reg;
340 aprint_verbose("\n");
341 aprint_verbose_dev(self, "running CPU at apic %d"
342 " instead of at expected %d", lapic_cpu_number(),
343 cpunum);
344 reg = i82489_readreg(LAPIC_ID);
345 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
346 (cpunum << LAPIC_ID_SHIFT));
347 }
348 if (cpunum != lapic_cpu_number()) {
349 aprint_error_dev(self, "unable to reset apic id\n");
350 }
351 #endif
352 }
353
354 ci->ci_self = ci;
355 sc->sc_info = ci;
356 ci->ci_dev = self;
357 ci->ci_acpiid = caa->cpu_id;
358 ci->ci_cpuid = caa->cpu_number;
359 ci->ci_func = caa->cpu_func;
360 aprint_normal("\n");
361
362 /* Must be before mi_cpu_attach(). */
363 cpu_vm_init(ci);
364
365 if (caa->cpu_role == CPU_ROLE_AP) {
366 int error;
367
368 error = mi_cpu_attach(ci);
369 if (error != 0) {
370 aprint_error_dev(self,
371 "mi_cpu_attach failed with %d\n", error);
372 return;
373 }
374 cpu_init_tss(ci);
375 } else {
376 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
377 }
378
379 pmap_reference(pmap_kernel());
380 ci->ci_pmap = pmap_kernel();
381 ci->ci_tlbstate = TLBSTATE_STALE;
382
383 /*
384 * Boot processor may not be attached first, but the below
385 * must be done to allow booting other processors.
386 */
387 if (!again) {
388 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
389 /* Basic init. */
390 cpu_intr_init(ci);
391 cpu_get_tsc_freq(ci);
392 cpu_init(ci);
393 cpu_set_tss_gates(ci);
394 pmap_cpu_init_late(ci);
395 #if NLAPIC > 0
396 if (caa->cpu_role != CPU_ROLE_SP) {
397 /* Enable lapic. */
398 lapic_enable();
399 lapic_set_lvt();
400 lapic_calibrate_timer(ci);
401 }
402 #endif
403 /* Make sure DELAY() is initialized. */
404 DELAY(1);
405 again = true;
406 }
407
408 /* further PCB init done later. */
409
410 switch (caa->cpu_role) {
411 case CPU_ROLE_SP:
412 atomic_or_32(&ci->ci_flags, CPUF_SP);
413 cpu_identify(ci);
414 x86_errata();
415 x86_cpu_idle_init();
416 break;
417
418 case CPU_ROLE_BP:
419 atomic_or_32(&ci->ci_flags, CPUF_BSP);
420 cpu_identify(ci);
421 x86_errata();
422 x86_cpu_idle_init();
423 break;
424
425 #ifdef MULTIPROCESSOR
426 case CPU_ROLE_AP:
427 /*
428 * report on an AP
429 */
430 cpu_intr_init(ci);
431 gdt_alloc_cpu(ci);
432 cpu_set_tss_gates(ci);
433 pmap_cpu_init_late(ci);
434 cpu_start_secondary(ci);
435 if (ci->ci_flags & CPUF_PRESENT) {
436 struct cpu_info *tmp;
437
438 cpu_identify(ci);
439 tmp = cpu_info_list;
440 while (tmp->ci_next)
441 tmp = tmp->ci_next;
442
443 tmp->ci_next = ci;
444 }
445 break;
446 #endif
447
448 default:
449 panic("unknown processor type??\n");
450 }
451
452 pat_init(ci);
453
454 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
455 aprint_error_dev(self, "couldn't establish power handler\n");
456
457 #ifdef MULTIPROCESSOR
458 if (mp_verbose) {
459 struct lwp *l = ci->ci_data.cpu_idlelwp;
460 struct pcb *pcb = lwp_getpcb(l);
461
462 aprint_verbose_dev(self,
463 "idle lwp at %p, idle sp at %p\n",
464 l,
465 #ifdef i386
466 (void *)pcb->pcb_esp
467 #else
468 (void *)pcb->pcb_rsp
469 #endif
470 );
471 }
472 #endif
473
474 /*
475 * Postpone the "cpufeaturebus" scan.
476 * It is safe to scan the pseudo-bus
477 * only after all CPUs have attached.
478 */
479 (void)config_defer(self, cpu_defer);
480 }
481
482 static void
483 cpu_defer(device_t self)
484 {
485 cpu_rescan(self, NULL, NULL);
486 }
487
488 static int
489 cpu_rescan(device_t self, const char *ifattr, const int *locators)
490 {
491 struct cpu_softc *sc = device_private(self);
492 struct cpufeature_attach_args cfaa;
493 struct cpu_info *ci = sc->sc_info;
494
495 memset(&cfaa, 0, sizeof(cfaa));
496 cfaa.ci = ci;
497
498 if (ifattr_match(ifattr, "cpufeaturebus")) {
499
500 if (ci->ci_frequency == NULL) {
501 cfaa.name = "frequency";
502 ci->ci_frequency = config_found_ia(self,
503 "cpufeaturebus", &cfaa, NULL);
504 }
505
506 if (ci->ci_padlock == NULL) {
507 cfaa.name = "padlock";
508 ci->ci_padlock = config_found_ia(self,
509 "cpufeaturebus", &cfaa, NULL);
510 }
511
512 if (ci->ci_temperature == NULL) {
513 cfaa.name = "temperature";
514 ci->ci_temperature = config_found_ia(self,
515 "cpufeaturebus", &cfaa, NULL);
516 }
517
518 if (ci->ci_vm == NULL) {
519 cfaa.name = "vm";
520 ci->ci_vm = config_found_ia(self,
521 "cpufeaturebus", &cfaa, NULL);
522 }
523 }
524
525 return 0;
526 }
527
528 static void
529 cpu_childdetached(device_t self, device_t child)
530 {
531 struct cpu_softc *sc = device_private(self);
532 struct cpu_info *ci = sc->sc_info;
533
534 if (ci->ci_frequency == child)
535 ci->ci_frequency = NULL;
536
537 if (ci->ci_padlock == child)
538 ci->ci_padlock = NULL;
539
540 if (ci->ci_temperature == child)
541 ci->ci_temperature = NULL;
542
543 if (ci->ci_vm == child)
544 ci->ci_vm = NULL;
545 }
546
547 /*
548 * Initialize the processor appropriately.
549 */
550
551 void
552 cpu_init(struct cpu_info *ci)
553 {
554 uint32_t cr4;
555
556 lcr0(rcr0() | CR0_WP);
557
558 cr4 = rcr4();
559 /*
560 * On a P6 or above, enable global TLB caching if the
561 * hardware supports it.
562 */
563 if (cpu_feature[0] & CPUID_PGE)
564 cr4 |= CR4_PGE; /* enable global TLB caching */
565
566 /*
567 * If we have FXSAVE/FXRESTOR, use them.
568 */
569 if (cpu_feature[0] & CPUID_FXSR) {
570 cr4 |= CR4_OSFXSR;
571
572 /*
573 * If we have SSE/SSE2, enable XMM exceptions.
574 */
575 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
576 cr4 |= CR4_OSXMMEXCPT;
577 }
578
579 /* If xsave is supported, enable it */
580 if (cpu_feature[1] & CPUID2_XSAVE)
581 cr4 |= CR4_OSXSAVE;
582
583 lcr4(cr4);
584
585 /* If xsave is enabled, enable all fpu features */
586 if (cr4 & CR4_OSXSAVE)
587 wrxcr(0, x86_xsave_features & XCR0_FPU);
588
589 #ifdef MTRR
590 /*
591 * On a P6 or above, initialize MTRR's if the hardware supports them.
592 */
593 if (cpu_feature[0] & CPUID_MTRR) {
594 if ((ci->ci_flags & CPUF_AP) == 0)
595 i686_mtrr_init_first();
596 mtrr_init_cpu(ci);
597 }
598
599 #ifdef i386
600 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
601 /*
602 * Must be a K6-2 Step >= 7 or a K6-III.
603 */
604 if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
605 if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
606 (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
607 CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
608 mtrr_funcs = &k6_mtrr_funcs;
609 k6_mtrr_init_first();
610 mtrr_init_cpu(ci);
611 }
612 }
613 }
614 #endif /* i386 */
615 #endif /* MTRR */
616
617 if (ci != &cpu_info_primary) {
618 /* Synchronize TSC again, and check for drift. */
619 wbinvd();
620 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
621 tsc_sync_ap(ci);
622 } else {
623 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
624 }
625 }
626
627 #ifdef MULTIPROCESSOR
628 void
629 cpu_boot_secondary_processors(void)
630 {
631 struct cpu_info *ci;
632 kcpuset_t *cpus;
633 u_long i;
634
635 /* Now that we know the number of CPUs, patch the text segment. */
636 x86_patch(false);
637
638 kcpuset_create(&cpus, true);
639 kcpuset_set(cpus, cpu_index(curcpu()));
640 for (i = 0; i < maxcpus; i++) {
641 ci = cpu_lookup(i);
642 if (ci == NULL)
643 continue;
644 if (ci->ci_data.cpu_idlelwp == NULL)
645 continue;
646 if ((ci->ci_flags & CPUF_PRESENT) == 0)
647 continue;
648 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
649 continue;
650 cpu_boot_secondary(ci);
651 kcpuset_set(cpus, cpu_index(ci));
652 }
653 while (!kcpuset_match(cpus, kcpuset_running))
654 ;
655 kcpuset_destroy(cpus);
656
657 x86_mp_online = true;
658
659 /* Now that we know about the TSC, attach the timecounter. */
660 tsc_tc_init();
661
662 /* Enable zeroing of pages in the idle loop if we have SSE2. */
663 vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
664 }
665 #endif
666
667 static void
668 cpu_init_idle_lwp(struct cpu_info *ci)
669 {
670 struct lwp *l = ci->ci_data.cpu_idlelwp;
671 struct pcb *pcb = lwp_getpcb(l);
672
673 pcb->pcb_cr0 = rcr0();
674 }
675
676 void
677 cpu_init_idle_lwps(void)
678 {
679 struct cpu_info *ci;
680 u_long i;
681
682 for (i = 0; i < maxcpus; i++) {
683 ci = cpu_lookup(i);
684 if (ci == NULL)
685 continue;
686 if (ci->ci_data.cpu_idlelwp == NULL)
687 continue;
688 if ((ci->ci_flags & CPUF_PRESENT) == 0)
689 continue;
690 cpu_init_idle_lwp(ci);
691 }
692 }
693
694 #ifdef MULTIPROCESSOR
695 void
696 cpu_start_secondary(struct cpu_info *ci)
697 {
698 extern paddr_t mp_pdirpa;
699 u_long psl;
700 int i;
701
702 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
703 atomic_or_32(&ci->ci_flags, CPUF_AP);
704 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
705 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
706 return;
707 }
708
709 /*
710 * Wait for it to become ready. Setting cpu_starting opens the
711 * initial gate and allows the AP to start soft initialization.
712 */
713 KASSERT(cpu_starting == NULL);
714 cpu_starting = ci;
715 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
716 #ifdef MPDEBUG
717 extern int cpu_trace[3];
718 static int otrace[3];
719 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
720 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
721 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
722 memcpy(otrace, cpu_trace, sizeof(otrace));
723 }
724 #endif
725 i8254_delay(10);
726 }
727
728 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
729 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
730 #if defined(MPDEBUG) && defined(DDB)
731 printf("dropping into debugger; continue from here to resume boot\n");
732 Debugger();
733 #endif
734 } else {
735 /*
736 * Synchronize time stamp counters. Invalidate cache and do
737 * twice to try and minimize possible cache effects. Disable
738 * interrupts to try and rule out any external interference.
739 */
740 psl = x86_read_psl();
741 x86_disable_intr();
742 wbinvd();
743 tsc_sync_bp(ci);
744 x86_write_psl(psl);
745 }
746
747 CPU_START_CLEANUP(ci);
748 cpu_starting = NULL;
749 }
750
751 void
752 cpu_boot_secondary(struct cpu_info *ci)
753 {
754 int64_t drift;
755 u_long psl;
756 int i;
757
758 atomic_or_32(&ci->ci_flags, CPUF_GO);
759 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
760 i8254_delay(10);
761 }
762 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
763 aprint_error_dev(ci->ci_dev, "failed to start\n");
764 #if defined(MPDEBUG) && defined(DDB)
765 printf("dropping into debugger; continue from here to resume boot\n");
766 Debugger();
767 #endif
768 } else {
769 /* Synchronize TSC again, check for drift. */
770 drift = ci->ci_data.cpu_cc_skew;
771 psl = x86_read_psl();
772 x86_disable_intr();
773 wbinvd();
774 tsc_sync_bp(ci);
775 x86_write_psl(psl);
776 drift -= ci->ci_data.cpu_cc_skew;
777 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
778 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
779 tsc_sync_drift(drift);
780 }
781 }
782
783 /*
784 * The CPU ends up here when its ready to run
785 * This is called from code in mptramp.s; at this point, we are running
786 * in the idle pcb/idle stack of the new CPU. When this function returns,
787 * this processor will enter the idle loop and start looking for work.
788 */
789 void
790 cpu_hatch(void *v)
791 {
792 struct cpu_info *ci = (struct cpu_info *)v;
793 struct pcb *pcb;
794 int s, i;
795
796 cpu_init_msrs(ci, true);
797 cpu_probe(ci);
798
799 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
800 /* cpu_get_tsc_freq(ci); */
801
802 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
803
804 /*
805 * Synchronize time stamp counters. Invalidate cache and do twice
806 * to try and minimize possible cache effects. Note that interrupts
807 * are off at this point.
808 */
809 wbinvd();
810 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
811 tsc_sync_ap(ci);
812
813 /*
814 * Wait to be brought online. Use 'monitor/mwait' if available,
815 * in order to make the TSC drift as much as possible. so that
816 * we can detect it later. If not available, try 'pause'.
817 * We'd like to use 'hlt', but we have interrupts off.
818 */
819 while ((ci->ci_flags & CPUF_GO) == 0) {
820 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
821 x86_monitor(&ci->ci_flags, 0, 0);
822 if ((ci->ci_flags & CPUF_GO) != 0) {
823 continue;
824 }
825 x86_mwait(0, 0);
826 } else {
827 for (i = 10000; i != 0; i--) {
828 x86_pause();
829 }
830 }
831 }
832
833 /* Because the text may have been patched in x86_patch(). */
834 wbinvd();
835 x86_flush();
836 tlbflushg();
837
838 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
839
840 #ifdef PAE
841 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
842 for (i = 0 ; i < PDP_SIZE; i++) {
843 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
844 }
845 lcr3(ci->ci_pae_l3_pdirpa);
846 #else
847 lcr3(pmap_pdirpa(pmap_kernel(), 0));
848 #endif
849
850 pcb = lwp_getpcb(curlwp);
851 pcb->pcb_cr3 = rcr3();
852 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
853 lcr0(pcb->pcb_cr0);
854
855 cpu_init_idt();
856 gdt_init_cpu(ci);
857 #if NLAPIC > 0
858 lapic_enable();
859 lapic_set_lvt();
860 lapic_initclocks();
861 #endif
862
863 fpuinit(ci);
864 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
865 ltr(ci->ci_tss_sel);
866
867 cpu_init(ci);
868 cpu_get_tsc_freq(ci);
869
870 s = splhigh();
871 #ifdef i386
872 lapic_tpr = 0;
873 #else
874 lcr8(0);
875 #endif
876 x86_enable_intr();
877 splx(s);
878 x86_errata();
879
880 aprint_debug_dev(ci->ci_dev, "running\n");
881
882 idle_loop(NULL);
883 KASSERT(false);
884 }
885 #endif
886
887 #if defined(DDB)
888
889 #include <ddb/db_output.h>
890 #include <machine/db_machdep.h>
891
892 /*
893 * Dump CPU information from ddb.
894 */
895 void
896 cpu_debug_dump(void)
897 {
898 struct cpu_info *ci;
899 CPU_INFO_ITERATOR cii;
900
901 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
902 for (CPU_INFO_FOREACH(cii, ci)) {
903 db_printf("%p %s %ld %x %x %10p %10p\n",
904 ci,
905 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
906 (long)ci->ci_cpuid,
907 ci->ci_flags, ci->ci_ipis,
908 ci->ci_curlwp,
909 ci->ci_fpcurlwp);
910 }
911 }
912 #endif
913
914 #if NLAPIC > 0
915 static void
916 cpu_copy_trampoline(void)
917 {
918 /*
919 * Copy boot code.
920 */
921 extern u_char cpu_spinup_trampoline[];
922 extern u_char cpu_spinup_trampoline_end[];
923
924 vaddr_t mp_trampoline_vaddr;
925
926 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
927 UVM_KMF_VAONLY);
928
929 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
930 VM_PROT_READ | VM_PROT_WRITE, 0);
931 pmap_update(pmap_kernel());
932 memcpy((void *)mp_trampoline_vaddr,
933 cpu_spinup_trampoline,
934 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
935
936 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
937 pmap_update(pmap_kernel());
938 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
939 }
940 #endif
941
942 #ifdef i386
943 static void
944 tss_init(struct i386tss *tss, void *stack, void *func)
945 {
946 KASSERT(curcpu()->ci_pmap == pmap_kernel());
947
948 memset(tss, 0, sizeof *tss);
949 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
950 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
951 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
952 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
953 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
954 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
955 /* %cr3 contains the value associated to pmap_kernel */
956 tss->tss_cr3 = rcr3();
957 tss->tss_esp = (int)((char *)stack + USPACE - 16);
958 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
959 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
960 tss->__tss_eip = (int)func;
961 }
962
963 /* XXX */
964 #define IDTVEC(name) __CONCAT(X, name)
965 typedef void (vector)(void);
966 extern vector IDTVEC(tss_trap08);
967 #if defined(DDB) && defined(MULTIPROCESSOR)
968 extern vector Xintrddbipi;
969 extern int ddb_vec;
970 #endif
971
972 static void
973 cpu_set_tss_gates(struct cpu_info *ci)
974 {
975 struct segment_descriptor sd;
976
977 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
978 UVM_KMF_WIRED);
979 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
980 IDTVEC(tss_trap08));
981 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
982 SDT_SYS386TSS, SEL_KPL, 0, 0);
983 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
984 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
985 GSEL(GTRAPTSS_SEL, SEL_KPL));
986
987 #if defined(DDB) && defined(MULTIPROCESSOR)
988 /*
989 * Set up separate handler for the DDB IPI, so that it doesn't
990 * stomp on a possibly corrupted stack.
991 *
992 * XXX overwriting the gate set in db_machine_init.
993 * Should rearrange the code so that it's set only once.
994 */
995 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
996 UVM_KMF_WIRED);
997 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
998
999 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
1000 SDT_SYS386TSS, SEL_KPL, 0, 0);
1001 ci->ci_gdt[GIPITSS_SEL].sd = sd;
1002
1003 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
1004 GSEL(GIPITSS_SEL, SEL_KPL));
1005 #endif
1006 }
1007 #else
1008 static void
1009 cpu_set_tss_gates(struct cpu_info *ci)
1010 {
1011
1012 }
1013 #endif /* i386 */
1014
1015 #ifdef MULTIPROCESSOR
1016 int
1017 mp_cpu_start(struct cpu_info *ci, paddr_t target)
1018 {
1019 unsigned short dwordptr[2];
1020 int error;
1021
1022 /*
1023 * Bootstrap code must be addressable in real mode
1024 * and it must be page aligned.
1025 */
1026 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1027
1028 /*
1029 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1030 */
1031
1032 outb(IO_RTC, NVRAM_RESET);
1033 outb(IO_RTC+1, NVRAM_RESET_JUMP);
1034
1035 /*
1036 * "and the warm reset vector (DWORD based at 40:67) to point
1037 * to the AP startup code ..."
1038 */
1039
1040 dwordptr[0] = 0;
1041 dwordptr[1] = target >> 4;
1042
1043 #if NLAPIC > 0
1044 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1045 #endif
1046
1047 if ((cpu_feature[0] & CPUID_APIC) == 0) {
1048 aprint_error("mp_cpu_start: CPU does not have APIC\n");
1049 return ENODEV;
1050 }
1051
1052 /*
1053 * ... prior to executing the following sequence:". We'll also add in
1054 * local cache flush, in case the BIOS has left the AP with its cache
1055 * disabled. It may not be able to cope with MP coherency.
1056 */
1057 wbinvd();
1058
1059 if (ci->ci_flags & CPUF_AP) {
1060 error = x86_ipi_init(ci->ci_cpuid);
1061 if (error != 0) {
1062 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1063 __func__);
1064 return error;
1065 }
1066 i8254_delay(10000);
1067
1068 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1069 if (error != 0) {
1070 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1071 __func__);
1072 return error;
1073 }
1074 i8254_delay(200);
1075
1076 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1077 if (error != 0) {
1078 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1079 __func__);
1080 return error;
1081 }
1082 i8254_delay(200);
1083 }
1084
1085 return 0;
1086 }
1087
1088 void
1089 mp_cpu_start_cleanup(struct cpu_info *ci)
1090 {
1091 /*
1092 * Ensure the NVRAM reset byte contains something vaguely sane.
1093 */
1094
1095 outb(IO_RTC, NVRAM_RESET);
1096 outb(IO_RTC+1, NVRAM_RESET_RST);
1097 }
1098 #endif
1099
1100 #ifdef __x86_64__
1101 typedef void (vector)(void);
1102 extern vector Xsyscall, Xsyscall32;
1103 #endif
1104
1105 void
1106 cpu_init_msrs(struct cpu_info *ci, bool full)
1107 {
1108 #ifdef __x86_64__
1109 wrmsr(MSR_STAR,
1110 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1111 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1112 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1113 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1114 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1115
1116 if (full) {
1117 wrmsr(MSR_FSBASE, 0);
1118 wrmsr(MSR_GSBASE, (uint64_t)ci);
1119 wrmsr(MSR_KERNELGSBASE, 0);
1120 }
1121 #endif /* __x86_64__ */
1122
1123 if (cpu_feature[2] & CPUID_NOX)
1124 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1125 }
1126
1127 void
1128 cpu_offline_md(void)
1129 {
1130 int s;
1131
1132 s = splhigh();
1133 fpusave_cpu(true);
1134 splx(s);
1135 }
1136
1137 /* XXX joerg restructure and restart CPUs individually */
1138 static bool
1139 cpu_stop(device_t dv)
1140 {
1141 struct cpu_softc *sc = device_private(dv);
1142 struct cpu_info *ci = sc->sc_info;
1143 int err;
1144
1145 KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1146
1147 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1148 return true;
1149
1150 if (ci->ci_data.cpu_idlelwp == NULL)
1151 return true;
1152
1153 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1154
1155 if (sc->sc_wasonline) {
1156 mutex_enter(&cpu_lock);
1157 err = cpu_setstate(ci, false);
1158 mutex_exit(&cpu_lock);
1159
1160 if (err != 0)
1161 return false;
1162 }
1163
1164 return true;
1165 }
1166
1167 static bool
1168 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1169 {
1170 struct cpu_softc *sc = device_private(dv);
1171 struct cpu_info *ci = sc->sc_info;
1172
1173 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1174 return true;
1175 else {
1176 cpufreq_suspend(ci);
1177 }
1178
1179 return cpu_stop(dv);
1180 }
1181
1182 static bool
1183 cpu_resume(device_t dv, const pmf_qual_t *qual)
1184 {
1185 struct cpu_softc *sc = device_private(dv);
1186 struct cpu_info *ci = sc->sc_info;
1187 int err = 0;
1188
1189 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1190 return true;
1191
1192 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1193 goto out;
1194
1195 if (ci->ci_data.cpu_idlelwp == NULL)
1196 goto out;
1197
1198 if (sc->sc_wasonline) {
1199 mutex_enter(&cpu_lock);
1200 err = cpu_setstate(ci, true);
1201 mutex_exit(&cpu_lock);
1202 }
1203
1204 out:
1205 if (err != 0)
1206 return false;
1207
1208 cpufreq_resume(ci);
1209
1210 return true;
1211 }
1212
1213 static bool
1214 cpu_shutdown(device_t dv, int how)
1215 {
1216 struct cpu_softc *sc = device_private(dv);
1217 struct cpu_info *ci = sc->sc_info;
1218
1219 if ((ci->ci_flags & CPUF_BSP) != 0)
1220 return false;
1221
1222 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1223 return true;
1224
1225 return cpu_stop(dv);
1226 }
1227
1228 void
1229 cpu_get_tsc_freq(struct cpu_info *ci)
1230 {
1231 uint64_t last_tsc;
1232
1233 if (cpu_hascounter()) {
1234 last_tsc = cpu_counter_serializing();
1235 i8254_delay(100000);
1236 ci->ci_data.cpu_cc_freq =
1237 (cpu_counter_serializing() - last_tsc) * 10;
1238 }
1239 }
1240
1241 void
1242 x86_cpu_idle_mwait(void)
1243 {
1244 struct cpu_info *ci = curcpu();
1245
1246 KASSERT(ci->ci_ilevel == IPL_NONE);
1247
1248 x86_monitor(&ci->ci_want_resched, 0, 0);
1249 if (__predict_false(ci->ci_want_resched)) {
1250 return;
1251 }
1252 x86_mwait(0, 0);
1253 }
1254
1255 void
1256 x86_cpu_idle_halt(void)
1257 {
1258 struct cpu_info *ci = curcpu();
1259
1260 KASSERT(ci->ci_ilevel == IPL_NONE);
1261
1262 x86_disable_intr();
1263 if (!__predict_false(ci->ci_want_resched)) {
1264 x86_stihlt();
1265 } else {
1266 x86_enable_intr();
1267 }
1268 }
1269
1270 /*
1271 * Loads pmap for the current CPU.
1272 */
1273 void
1274 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1275 {
1276 #ifdef PAE
1277 struct cpu_info *ci = curcpu();
1278 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1279 int i;
1280
1281 /*
1282 * disable interrupts to block TLB shootdowns, which can reload cr3.
1283 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1284 * reload cr3.
1285 */
1286 x86_disable_intr();
1287 for (i = 0 ; i < PDP_SIZE; i++) {
1288 l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1289 }
1290 x86_enable_intr();
1291 tlbflush();
1292 #else /* PAE */
1293 lcr3(pmap_pdirpa(pmap, 0));
1294 #endif /* PAE */
1295 }
1296
1297 /*
1298 * Notify all other cpus to halt.
1299 */
1300
1301 void
1302 cpu_broadcast_halt(void)
1303 {
1304 x86_broadcast_ipi(X86_IPI_HALT);
1305 }
1306
1307 /*
1308 * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1309 */
1310
1311 void
1312 cpu_kick(struct cpu_info *ci)
1313 {
1314 x86_send_ipi(ci, 0);
1315 }
1316