cpu.c revision 1.116 1 /* $NetBSD: cpu.c,v 1.116 2015/09/17 23:48:01 nat Exp $ */
2
3 /*-
4 * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.116 2015/09/17 23:48:01 nat Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70 #include "opt_multiprocessor.h"
71
72 #include "lapic.h"
73 #include "ioapic.h"
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/systm.h>
78 #include <sys/device.h>
79 #include <sys/kmem.h>
80 #include <sys/cpu.h>
81 #include <sys/cpufreq.h>
82 #include <sys/idle.h>
83 #include <sys/atomic.h>
84 #include <sys/reboot.h>
85
86 #include <uvm/uvm.h>
87
88 #include "acpica.h" /* for NACPICA, for mp_verbose */
89
90 #include <machine/cpufunc.h>
91 #include <machine/cpuvar.h>
92 #include <machine/pmap.h>
93 #include <machine/vmparam.h>
94 #if defined(MULTIPROCESSOR)
95 #include <machine/mpbiosvar.h>
96 #endif
97 #include <machine/mpconfig.h> /* for mp_verbose */
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104 #include <machine/cpu_counter.h>
105
106 #include <x86/fpu.h>
107
108 #ifdef i386
109 #include <machine/tlog.h>
110 #endif
111
112 #if NLAPIC > 0
113 #include <machine/apicvar.h>
114 #include <machine/i82489reg.h>
115 #include <machine/i82489var.h>
116 #endif
117
118 #include <dev/ic/mc146818reg.h>
119 #include <i386/isa/nvram.h>
120 #include <dev/isa/isareg.h>
121
122 #include "tsc.h"
123
124 static int cpu_match(device_t, cfdata_t, void *);
125 static void cpu_attach(device_t, device_t, void *);
126 static void cpu_defer(device_t);
127 static int cpu_rescan(device_t, const char *, const int *);
128 static void cpu_childdetached(device_t, device_t);
129 static bool cpu_stop(device_t);
130 static bool cpu_suspend(device_t, const pmf_qual_t *);
131 static bool cpu_resume(device_t, const pmf_qual_t *);
132 static bool cpu_shutdown(device_t, int);
133
134 struct cpu_softc {
135 device_t sc_dev; /* device tree glue */
136 struct cpu_info *sc_info; /* pointer to CPU info */
137 bool sc_wasonline;
138 };
139
140 #ifdef MULTIPROCESSOR
141 int mp_cpu_start(struct cpu_info *, paddr_t);
142 void mp_cpu_start_cleanup(struct cpu_info *);
143 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
144 mp_cpu_start_cleanup };
145 #endif
146
147
148 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
149 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
150
151 /*
152 * Statically-allocated CPU info for the primary CPU (or the only
153 * CPU, on uniprocessors). The CPU info list is initialized to
154 * point at it.
155 */
156 #ifdef TRAPLOG
157 struct tlog tlog_primary;
158 #endif
159 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 .ci_dev = 0,
161 .ci_self = &cpu_info_primary,
162 .ci_idepth = -1,
163 .ci_curlwp = &lwp0,
164 .ci_curldt = -1,
165 #ifdef TRAPLOG
166 .ci_tlog_base = &tlog_primary,
167 #endif /* !TRAPLOG */
168 };
169
170 struct cpu_info *cpu_info_list = &cpu_info_primary;
171
172 static void cpu_set_tss_gates(struct cpu_info *);
173
174 #ifdef i386
175 static void tss_init(struct i386tss *, void *, void *);
176 #endif
177
178 static void cpu_init_idle_lwp(struct cpu_info *);
179
180 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
181 * [0] basic features %edx
182 * [1] basic features %ecx
183 * [2] extended features %edx
184 * [3] extended features %ecx
185 * [4] VIA padlock features
186 */
187
188 extern char x86_64_doubleflt_stack[];
189
190 #ifdef MULTIPROCESSOR
191 bool x86_mp_online;
192 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
193 #endif
194 #if NLAPIC > 0
195 static vaddr_t cmos_data_mapping;
196 #endif
197 struct cpu_info *cpu_starting;
198
199 #ifdef MULTIPROCESSOR
200 void cpu_hatch(void *);
201 static void cpu_boot_secondary(struct cpu_info *ci);
202 static void cpu_start_secondary(struct cpu_info *ci);
203 #endif
204 #if NLAPIC > 0
205 static void cpu_copy_trampoline(void);
206 #endif
207
208 /*
209 * Runs once per boot once multiprocessor goo has been detected and
210 * the local APIC on the boot processor has been mapped.
211 *
212 * Called from lapic_boot_init() (from mpbios_scan()).
213 */
214 #if NLAPIC > 0
215 void
216 cpu_init_first(void)
217 {
218
219 cpu_info_primary.ci_cpuid = lapic_cpu_number();
220 cpu_copy_trampoline();
221
222 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
223 if (cmos_data_mapping == 0)
224 panic("No KVA for page 0");
225 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
226 pmap_update(pmap_kernel());
227 }
228 #endif
229
230 static int
231 cpu_match(device_t parent, cfdata_t match, void *aux)
232 {
233
234 return 1;
235 }
236
237 static void
238 cpu_vm_init(struct cpu_info *ci)
239 {
240 int ncolors = 2, i;
241
242 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
243 struct x86_cache_info *cai;
244 int tcolors;
245
246 cai = &ci->ci_cinfo[i];
247
248 tcolors = atop(cai->cai_totalsize);
249 switch(cai->cai_associativity) {
250 case 0xff:
251 tcolors = 1; /* fully associative */
252 break;
253 case 0:
254 case 1:
255 break;
256 default:
257 tcolors /= cai->cai_associativity;
258 }
259 ncolors = max(ncolors, tcolors);
260 /*
261 * If the desired number of colors is not a power of
262 * two, it won't be good. Find the greatest power of
263 * two which is an even divisor of the number of colors,
264 * to preserve even coloring of pages.
265 */
266 if (ncolors & (ncolors - 1) ) {
267 int try, picked = 1;
268 for (try = 1; try < ncolors; try *= 2) {
269 if (ncolors % try == 0) picked = try;
270 }
271 if (picked == 1) {
272 panic("desired number of cache colors %d is "
273 " > 1, but not even!", ncolors);
274 }
275 ncolors = picked;
276 }
277 }
278
279 /*
280 * Knowing the size of the largest cache on this CPU, potentially
281 * re-color our pages.
282 */
283 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
284 uvm_page_recolor(ncolors);
285
286 pmap_tlb_cpu_init(ci);
287 }
288
289 static void
290 cpu_attach(device_t parent, device_t self, void *aux)
291 {
292 struct cpu_softc *sc = device_private(self);
293 struct cpu_attach_args *caa = aux;
294 struct cpu_info *ci;
295 uintptr_t ptr;
296 #if NLAPIC > 0
297 int cpunum = caa->cpu_number;
298 #endif
299 static bool again;
300
301 sc->sc_dev = self;
302
303 if (ncpu == maxcpus) {
304 #ifndef _LP64
305 aprint_error(": too many CPUs, please use NetBSD/amd64\n");
306 #else
307 aprint_error(": too many CPUs\n");
308 #endif
309 return;
310 }
311
312 /*
313 * If we're an Application Processor, allocate a cpu_info
314 * structure, otherwise use the primary's.
315 */
316 if (caa->cpu_role == CPU_ROLE_AP) {
317 if ((boothowto & RB_MD1) != 0) {
318 aprint_error(": multiprocessor boot disabled\n");
319 if (!pmf_device_register(self, NULL, NULL))
320 aprint_error_dev(self,
321 "couldn't establish power handler\n");
322 return;
323 }
324 aprint_naive(": Application Processor\n");
325 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
326 KM_SLEEP);
327 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
328 ci->ci_curldt = -1;
329 #ifdef TRAPLOG
330 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
331 #endif
332 } else {
333 aprint_naive(": %s Processor\n",
334 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
335 ci = &cpu_info_primary;
336 #if NLAPIC > 0
337 if (cpunum != lapic_cpu_number()) {
338 /* XXX should be done earlier. */
339 uint32_t reg;
340 aprint_verbose("\n");
341 aprint_verbose_dev(self, "running CPU at apic %d"
342 " instead of at expected %d", lapic_cpu_number(),
343 cpunum);
344 reg = i82489_readreg(LAPIC_ID);
345 i82489_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
346 (cpunum << LAPIC_ID_SHIFT));
347 }
348 if (cpunum != lapic_cpu_number()) {
349 aprint_error_dev(self, "unable to reset apic id\n");
350 }
351 #endif
352 }
353
354 ci->ci_self = ci;
355 sc->sc_info = ci;
356 ci->ci_dev = self;
357 ci->ci_acpiid = caa->cpu_id;
358 ci->ci_cpuid = caa->cpu_number;
359 ci->ci_func = caa->cpu_func;
360 aprint_normal("\n");
361
362 /* Must be before mi_cpu_attach(). */
363 cpu_vm_init(ci);
364
365 if (caa->cpu_role == CPU_ROLE_AP) {
366 int error;
367
368 error = mi_cpu_attach(ci);
369 if (error != 0) {
370 aprint_error_dev(self,
371 "mi_cpu_attach failed with %d\n", error);
372 return;
373 }
374 cpu_init_tss(ci);
375 } else {
376 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
377 }
378
379 pmap_reference(pmap_kernel());
380 ci->ci_pmap = pmap_kernel();
381 ci->ci_tlbstate = TLBSTATE_STALE;
382
383 /*
384 * Boot processor may not be attached first, but the below
385 * must be done to allow booting other processors.
386 */
387 if (!again) {
388 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
389 /* Basic init. */
390 cpu_intr_init(ci);
391 cpu_get_tsc_freq(ci);
392 cpu_init(ci);
393 cpu_set_tss_gates(ci);
394 pmap_cpu_init_late(ci);
395 #if NLAPIC > 0
396 if (caa->cpu_role != CPU_ROLE_SP) {
397 /* Enable lapic. */
398 lapic_enable();
399 lapic_set_lvt();
400 lapic_calibrate_timer(ci);
401 }
402 #endif
403 /* Make sure DELAY() is initialized. */
404 DELAY(1);
405 again = true;
406 }
407
408 /* further PCB init done later. */
409
410 switch (caa->cpu_role) {
411 case CPU_ROLE_SP:
412 atomic_or_32(&ci->ci_flags, CPUF_SP);
413 cpu_identify(ci);
414 x86_errata();
415 x86_cpu_idle_init();
416 break;
417
418 case CPU_ROLE_BP:
419 atomic_or_32(&ci->ci_flags, CPUF_BSP);
420 cpu_identify(ci);
421 x86_errata();
422 x86_cpu_idle_init();
423 break;
424
425 #ifdef MULTIPROCESSOR
426 case CPU_ROLE_AP:
427 /*
428 * report on an AP
429 */
430 cpu_intr_init(ci);
431 gdt_alloc_cpu(ci);
432 cpu_set_tss_gates(ci);
433 pmap_cpu_init_late(ci);
434 cpu_start_secondary(ci);
435 if (ci->ci_flags & CPUF_PRESENT) {
436 struct cpu_info *tmp;
437
438 cpu_identify(ci);
439 tmp = cpu_info_list;
440 while (tmp->ci_next)
441 tmp = tmp->ci_next;
442
443 tmp->ci_next = ci;
444 }
445 break;
446 #endif
447
448 default:
449 panic("unknown processor type??\n");
450 }
451
452 pat_init(ci);
453
454 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
455 aprint_error_dev(self, "couldn't establish power handler\n");
456
457 #ifdef MULTIPROCESSOR
458 if (mp_verbose) {
459 struct lwp *l = ci->ci_data.cpu_idlelwp;
460 struct pcb *pcb = lwp_getpcb(l);
461
462 aprint_verbose_dev(self,
463 "idle lwp at %p, idle sp at %p\n",
464 l,
465 #ifdef i386
466 (void *)pcb->pcb_esp
467 #else
468 (void *)pcb->pcb_rsp
469 #endif
470 );
471 }
472 #endif
473
474 /*
475 * Postpone the "cpufeaturebus" scan.
476 * It is safe to scan the pseudo-bus
477 * only after all CPUs have attached.
478 */
479 (void)config_defer(self, cpu_defer);
480 }
481
482 static void
483 cpu_defer(device_t self)
484 {
485 cpu_rescan(self, NULL, NULL);
486 }
487
488 static int
489 cpu_rescan(device_t self, const char *ifattr, const int *locators)
490 {
491 struct cpu_softc *sc = device_private(self);
492 struct cpufeature_attach_args cfaa;
493 struct cpu_info *ci = sc->sc_info;
494
495 memset(&cfaa, 0, sizeof(cfaa));
496 cfaa.ci = ci;
497
498 if (ifattr_match(ifattr, "cpufeaturebus")) {
499
500 if (ci->ci_frequency == NULL) {
501 cfaa.name = "frequency";
502 ci->ci_frequency = config_found_ia(self,
503 "cpufeaturebus", &cfaa, NULL);
504 }
505
506 if (ci->ci_padlock == NULL) {
507 cfaa.name = "padlock";
508 ci->ci_padlock = config_found_ia(self,
509 "cpufeaturebus", &cfaa, NULL);
510 }
511
512 if (ci->ci_temperature == NULL) {
513 cfaa.name = "temperature";
514 ci->ci_temperature = config_found_ia(self,
515 "cpufeaturebus", &cfaa, NULL);
516 }
517
518 if (ci->ci_vm == NULL) {
519 cfaa.name = "vm";
520 ci->ci_vm = config_found_ia(self,
521 "cpufeaturebus", &cfaa, NULL);
522 }
523 }
524
525 return 0;
526 }
527
528 static void
529 cpu_childdetached(device_t self, device_t child)
530 {
531 struct cpu_softc *sc = device_private(self);
532 struct cpu_info *ci = sc->sc_info;
533
534 if (ci->ci_frequency == child)
535 ci->ci_frequency = NULL;
536
537 if (ci->ci_padlock == child)
538 ci->ci_padlock = NULL;
539
540 if (ci->ci_temperature == child)
541 ci->ci_temperature = NULL;
542
543 if (ci->ci_vm == child)
544 ci->ci_vm = NULL;
545 }
546
547 /*
548 * Initialize the processor appropriately.
549 */
550
551 void
552 cpu_init(struct cpu_info *ci)
553 {
554 uint32_t cr4 = 0;
555
556 lcr0(rcr0() | CR0_WP);
557
558 /*
559 * On a P6 or above, enable global TLB caching if the
560 * hardware supports it.
561 */
562 if (cpu_feature[0] & CPUID_PGE)
563 cr4 |= CR4_PGE; /* enable global TLB caching */
564
565 /*
566 * If we have FXSAVE/FXRESTOR, use them.
567 */
568 if (cpu_feature[0] & CPUID_FXSR) {
569 cr4 |= CR4_OSFXSR;
570
571 /*
572 * If we have SSE/SSE2, enable XMM exceptions.
573 */
574 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
575 cr4 |= CR4_OSXMMEXCPT;
576 }
577
578 /* If xsave is supported, enable it */
579 if (cpu_feature[1] & CPUID2_XSAVE)
580 cr4 |= CR4_OSXSAVE;
581
582 if (cr4) {
583 cr4 |= rcr4();
584 lcr4(cr4);
585 }
586
587 /* If xsave is enabled, enable all fpu features */
588 if (cr4 & CR4_OSXSAVE)
589 wrxcr(0, x86_xsave_features & XCR0_FPU);
590
591 #ifdef MTRR
592 /*
593 * On a P6 or above, initialize MTRR's if the hardware supports them.
594 */
595 if (cpu_feature[0] & CPUID_MTRR) {
596 if ((ci->ci_flags & CPUF_AP) == 0)
597 i686_mtrr_init_first();
598 mtrr_init_cpu(ci);
599 }
600
601 #ifdef i386
602 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
603 /*
604 * Must be a K6-2 Step >= 7 or a K6-III.
605 */
606 if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
607 if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
608 (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
609 CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
610 mtrr_funcs = &k6_mtrr_funcs;
611 k6_mtrr_init_first();
612 mtrr_init_cpu(ci);
613 }
614 }
615 }
616 #endif /* i386 */
617 #endif /* MTRR */
618
619 if (ci != &cpu_info_primary) {
620 /* Synchronize TSC again, and check for drift. */
621 wbinvd();
622 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
623 tsc_sync_ap(ci);
624 } else {
625 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
626 }
627 }
628
629 #ifdef MULTIPROCESSOR
630 void
631 cpu_boot_secondary_processors(void)
632 {
633 struct cpu_info *ci;
634 kcpuset_t *cpus;
635 u_long i;
636
637 /* Now that we know the number of CPUs, patch the text segment. */
638 x86_patch(false);
639
640 kcpuset_create(&cpus, true);
641 kcpuset_set(cpus, cpu_index(curcpu()));
642 for (i = 0; i < maxcpus; i++) {
643 ci = cpu_lookup(i);
644 if (ci == NULL)
645 continue;
646 if (ci->ci_data.cpu_idlelwp == NULL)
647 continue;
648 if ((ci->ci_flags & CPUF_PRESENT) == 0)
649 continue;
650 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
651 continue;
652 cpu_boot_secondary(ci);
653 kcpuset_set(cpus, cpu_index(ci));
654 }
655 while (!kcpuset_match(cpus, kcpuset_running))
656 ;
657 kcpuset_destroy(cpus);
658
659 x86_mp_online = true;
660
661 /* Now that we know about the TSC, attach the timecounter. */
662 tsc_tc_init();
663
664 /* Enable zeroing of pages in the idle loop if we have SSE2. */
665 vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
666 }
667 #endif
668
669 static void
670 cpu_init_idle_lwp(struct cpu_info *ci)
671 {
672 struct lwp *l = ci->ci_data.cpu_idlelwp;
673 struct pcb *pcb = lwp_getpcb(l);
674
675 pcb->pcb_cr0 = rcr0();
676 }
677
678 void
679 cpu_init_idle_lwps(void)
680 {
681 struct cpu_info *ci;
682 u_long i;
683
684 for (i = 0; i < maxcpus; i++) {
685 ci = cpu_lookup(i);
686 if (ci == NULL)
687 continue;
688 if (ci->ci_data.cpu_idlelwp == NULL)
689 continue;
690 if ((ci->ci_flags & CPUF_PRESENT) == 0)
691 continue;
692 cpu_init_idle_lwp(ci);
693 }
694 }
695
696 #ifdef MULTIPROCESSOR
697 void
698 cpu_start_secondary(struct cpu_info *ci)
699 {
700 extern paddr_t mp_pdirpa;
701 u_long psl;
702 int i;
703
704 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
705 atomic_or_32(&ci->ci_flags, CPUF_AP);
706 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
707 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
708 return;
709 }
710
711 /*
712 * Wait for it to become ready. Setting cpu_starting opens the
713 * initial gate and allows the AP to start soft initialization.
714 */
715 KASSERT(cpu_starting == NULL);
716 cpu_starting = ci;
717 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
718 #ifdef MPDEBUG
719 extern int cpu_trace[3];
720 static int otrace[3];
721 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
722 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
723 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
724 memcpy(otrace, cpu_trace, sizeof(otrace));
725 }
726 #endif
727 i8254_delay(10);
728 }
729
730 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
731 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
732 #if defined(MPDEBUG) && defined(DDB)
733 printf("dropping into debugger; continue from here to resume boot\n");
734 Debugger();
735 #endif
736 } else {
737 /*
738 * Synchronize time stamp counters. Invalidate cache and do
739 * twice to try and minimize possible cache effects. Disable
740 * interrupts to try and rule out any external interference.
741 */
742 psl = x86_read_psl();
743 x86_disable_intr();
744 wbinvd();
745 tsc_sync_bp(ci);
746 x86_write_psl(psl);
747 }
748
749 CPU_START_CLEANUP(ci);
750 cpu_starting = NULL;
751 }
752
753 void
754 cpu_boot_secondary(struct cpu_info *ci)
755 {
756 int64_t drift;
757 u_long psl;
758 int i;
759
760 atomic_or_32(&ci->ci_flags, CPUF_GO);
761 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
762 i8254_delay(10);
763 }
764 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
765 aprint_error_dev(ci->ci_dev, "failed to start\n");
766 #if defined(MPDEBUG) && defined(DDB)
767 printf("dropping into debugger; continue from here to resume boot\n");
768 Debugger();
769 #endif
770 } else {
771 /* Synchronize TSC again, check for drift. */
772 drift = ci->ci_data.cpu_cc_skew;
773 psl = x86_read_psl();
774 x86_disable_intr();
775 wbinvd();
776 tsc_sync_bp(ci);
777 x86_write_psl(psl);
778 drift -= ci->ci_data.cpu_cc_skew;
779 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
780 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
781 tsc_sync_drift(drift);
782 }
783 }
784
785 /*
786 * The CPU ends up here when its ready to run
787 * This is called from code in mptramp.s; at this point, we are running
788 * in the idle pcb/idle stack of the new CPU. When this function returns,
789 * this processor will enter the idle loop and start looking for work.
790 */
791 void
792 cpu_hatch(void *v)
793 {
794 struct cpu_info *ci = (struct cpu_info *)v;
795 struct pcb *pcb;
796 int s, i;
797
798 cpu_init_msrs(ci, true);
799 cpu_probe(ci);
800
801 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
802 /* cpu_get_tsc_freq(ci); */
803
804 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
805
806 /*
807 * Synchronize time stamp counters. Invalidate cache and do twice
808 * to try and minimize possible cache effects. Note that interrupts
809 * are off at this point.
810 */
811 wbinvd();
812 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
813 tsc_sync_ap(ci);
814
815 /*
816 * Wait to be brought online. Use 'monitor/mwait' if available,
817 * in order to make the TSC drift as much as possible. so that
818 * we can detect it later. If not available, try 'pause'.
819 * We'd like to use 'hlt', but we have interrupts off.
820 */
821 while ((ci->ci_flags & CPUF_GO) == 0) {
822 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
823 x86_monitor(&ci->ci_flags, 0, 0);
824 if ((ci->ci_flags & CPUF_GO) != 0) {
825 continue;
826 }
827 x86_mwait(0, 0);
828 } else {
829 for (i = 10000; i != 0; i--) {
830 x86_pause();
831 }
832 }
833 }
834
835 /* Because the text may have been patched in x86_patch(). */
836 wbinvd();
837 x86_flush();
838 tlbflushg();
839
840 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
841
842 #ifdef PAE
843 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
844 for (i = 0 ; i < PDP_SIZE; i++) {
845 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
846 }
847 lcr3(ci->ci_pae_l3_pdirpa);
848 #else
849 lcr3(pmap_pdirpa(pmap_kernel(), 0));
850 #endif
851
852 pcb = lwp_getpcb(curlwp);
853 pcb->pcb_cr3 = rcr3();
854 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
855 lcr0(pcb->pcb_cr0);
856
857 cpu_init_idt();
858 gdt_init_cpu(ci);
859 #if NLAPIC > 0
860 lapic_enable();
861 lapic_set_lvt();
862 lapic_initclocks();
863 #endif
864
865 fpuinit(ci);
866 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
867 ltr(ci->ci_tss_sel);
868
869 cpu_init(ci);
870 cpu_get_tsc_freq(ci);
871
872 s = splhigh();
873 #ifdef i386
874 lapic_tpr = 0;
875 #else
876 lcr8(0);
877 #endif
878 x86_enable_intr();
879 splx(s);
880 x86_errata();
881
882 aprint_debug_dev(ci->ci_dev, "running\n");
883
884 idle_loop(NULL);
885 KASSERT(false);
886 }
887 #endif
888
889 #if defined(DDB)
890
891 #include <ddb/db_output.h>
892 #include <machine/db_machdep.h>
893
894 /*
895 * Dump CPU information from ddb.
896 */
897 void
898 cpu_debug_dump(void)
899 {
900 struct cpu_info *ci;
901 CPU_INFO_ITERATOR cii;
902
903 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
904 for (CPU_INFO_FOREACH(cii, ci)) {
905 db_printf("%p %s %ld %x %x %10p %10p\n",
906 ci,
907 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
908 (long)ci->ci_cpuid,
909 ci->ci_flags, ci->ci_ipis,
910 ci->ci_curlwp,
911 ci->ci_fpcurlwp);
912 }
913 }
914 #endif
915
916 #if NLAPIC > 0
917 static void
918 cpu_copy_trampoline(void)
919 {
920 /*
921 * Copy boot code.
922 */
923 extern u_char cpu_spinup_trampoline[];
924 extern u_char cpu_spinup_trampoline_end[];
925
926 vaddr_t mp_trampoline_vaddr;
927
928 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
929 UVM_KMF_VAONLY);
930
931 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
932 VM_PROT_READ | VM_PROT_WRITE, 0);
933 pmap_update(pmap_kernel());
934 memcpy((void *)mp_trampoline_vaddr,
935 cpu_spinup_trampoline,
936 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
937
938 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
939 pmap_update(pmap_kernel());
940 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
941 }
942 #endif
943
944 #ifdef i386
945 static void
946 tss_init(struct i386tss *tss, void *stack, void *func)
947 {
948 KASSERT(curcpu()->ci_pmap == pmap_kernel());
949
950 memset(tss, 0, sizeof *tss);
951 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
952 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
953 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
954 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
955 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
956 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
957 /* %cr3 contains the value associated to pmap_kernel */
958 tss->tss_cr3 = rcr3();
959 tss->tss_esp = (int)((char *)stack + USPACE - 16);
960 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
961 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
962 tss->__tss_eip = (int)func;
963 }
964
965 /* XXX */
966 #define IDTVEC(name) __CONCAT(X, name)
967 typedef void (vector)(void);
968 extern vector IDTVEC(tss_trap08);
969 #if defined(DDB) && defined(MULTIPROCESSOR)
970 extern vector Xintrddbipi;
971 extern int ddb_vec;
972 #endif
973
974 static void
975 cpu_set_tss_gates(struct cpu_info *ci)
976 {
977 struct segment_descriptor sd;
978
979 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
980 UVM_KMF_WIRED);
981 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
982 IDTVEC(tss_trap08));
983 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
984 SDT_SYS386TSS, SEL_KPL, 0, 0);
985 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
986 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
987 GSEL(GTRAPTSS_SEL, SEL_KPL));
988
989 #if defined(DDB) && defined(MULTIPROCESSOR)
990 /*
991 * Set up separate handler for the DDB IPI, so that it doesn't
992 * stomp on a possibly corrupted stack.
993 *
994 * XXX overwriting the gate set in db_machine_init.
995 * Should rearrange the code so that it's set only once.
996 */
997 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
998 UVM_KMF_WIRED);
999 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi);
1000
1001 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
1002 SDT_SYS386TSS, SEL_KPL, 0, 0);
1003 ci->ci_gdt[GIPITSS_SEL].sd = sd;
1004
1005 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
1006 GSEL(GIPITSS_SEL, SEL_KPL));
1007 #endif
1008 }
1009 #else
1010 static void
1011 cpu_set_tss_gates(struct cpu_info *ci)
1012 {
1013
1014 }
1015 #endif /* i386 */
1016
1017 #ifdef MULTIPROCESSOR
1018 int
1019 mp_cpu_start(struct cpu_info *ci, paddr_t target)
1020 {
1021 unsigned short dwordptr[2];
1022 int error;
1023
1024 /*
1025 * Bootstrap code must be addressable in real mode
1026 * and it must be page aligned.
1027 */
1028 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1029
1030 /*
1031 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1032 */
1033
1034 outb(IO_RTC, NVRAM_RESET);
1035 outb(IO_RTC+1, NVRAM_RESET_JUMP);
1036
1037 /*
1038 * "and the warm reset vector (DWORD based at 40:67) to point
1039 * to the AP startup code ..."
1040 */
1041
1042 dwordptr[0] = 0;
1043 dwordptr[1] = target >> 4;
1044
1045 #if NLAPIC > 0
1046 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1047 #endif
1048
1049 if ((cpu_feature[0] & CPUID_APIC) == 0) {
1050 aprint_error("mp_cpu_start: CPU does not have APIC\n");
1051 return ENODEV;
1052 }
1053
1054 /*
1055 * ... prior to executing the following sequence:". We'll also add in
1056 * local cache flush, in case the BIOS has left the AP with its cache
1057 * disabled. It may not be able to cope with MP coherency.
1058 */
1059 wbinvd();
1060
1061 if (ci->ci_flags & CPUF_AP) {
1062 error = x86_ipi_init(ci->ci_cpuid);
1063 if (error != 0) {
1064 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1065 __func__);
1066 return error;
1067 }
1068 i8254_delay(10000);
1069
1070 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1071 if (error != 0) {
1072 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1073 __func__);
1074 return error;
1075 }
1076 i8254_delay(200);
1077
1078 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1079 if (error != 0) {
1080 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1081 __func__);
1082 return error;
1083 }
1084 i8254_delay(200);
1085 }
1086
1087 return 0;
1088 }
1089
1090 void
1091 mp_cpu_start_cleanup(struct cpu_info *ci)
1092 {
1093 /*
1094 * Ensure the NVRAM reset byte contains something vaguely sane.
1095 */
1096
1097 outb(IO_RTC, NVRAM_RESET);
1098 outb(IO_RTC+1, NVRAM_RESET_RST);
1099 }
1100 #endif
1101
1102 #ifdef __x86_64__
1103 typedef void (vector)(void);
1104 extern vector Xsyscall, Xsyscall32;
1105 #endif
1106
1107 void
1108 cpu_init_msrs(struct cpu_info *ci, bool full)
1109 {
1110 #ifdef __x86_64__
1111 wrmsr(MSR_STAR,
1112 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1113 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1114 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1115 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1116 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1117
1118 if (full) {
1119 wrmsr(MSR_FSBASE, 0);
1120 wrmsr(MSR_GSBASE, (uint64_t)ci);
1121 wrmsr(MSR_KERNELGSBASE, 0);
1122 }
1123 #endif /* __x86_64__ */
1124
1125 if (cpu_feature[2] & CPUID_NOX)
1126 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1127 }
1128
1129 void
1130 cpu_offline_md(void)
1131 {
1132 int s;
1133
1134 s = splhigh();
1135 fpusave_cpu(true);
1136 splx(s);
1137 }
1138
1139 /* XXX joerg restructure and restart CPUs individually */
1140 static bool
1141 cpu_stop(device_t dv)
1142 {
1143 struct cpu_softc *sc = device_private(dv);
1144 struct cpu_info *ci = sc->sc_info;
1145 int err;
1146
1147 KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1148
1149 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1150 return true;
1151
1152 if (ci->ci_data.cpu_idlelwp == NULL)
1153 return true;
1154
1155 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1156
1157 if (sc->sc_wasonline) {
1158 mutex_enter(&cpu_lock);
1159 err = cpu_setstate(ci, false);
1160 mutex_exit(&cpu_lock);
1161
1162 if (err != 0)
1163 return false;
1164 }
1165
1166 return true;
1167 }
1168
1169 static bool
1170 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1171 {
1172 struct cpu_softc *sc = device_private(dv);
1173 struct cpu_info *ci = sc->sc_info;
1174
1175 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1176 return true;
1177 else {
1178 cpufreq_suspend(ci);
1179 }
1180
1181 return cpu_stop(dv);
1182 }
1183
1184 static bool
1185 cpu_resume(device_t dv, const pmf_qual_t *qual)
1186 {
1187 struct cpu_softc *sc = device_private(dv);
1188 struct cpu_info *ci = sc->sc_info;
1189 int err = 0;
1190
1191 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1192 return true;
1193
1194 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1195 goto out;
1196
1197 if (ci->ci_data.cpu_idlelwp == NULL)
1198 goto out;
1199
1200 if (sc->sc_wasonline) {
1201 mutex_enter(&cpu_lock);
1202 err = cpu_setstate(ci, true);
1203 mutex_exit(&cpu_lock);
1204 }
1205
1206 out:
1207 if (err != 0)
1208 return false;
1209
1210 cpufreq_resume(ci);
1211
1212 return true;
1213 }
1214
1215 static bool
1216 cpu_shutdown(device_t dv, int how)
1217 {
1218 struct cpu_softc *sc = device_private(dv);
1219 struct cpu_info *ci = sc->sc_info;
1220
1221 if ((ci->ci_flags & CPUF_BSP) != 0)
1222 return false;
1223
1224 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1225 return true;
1226
1227 return cpu_stop(dv);
1228 }
1229
1230 void
1231 cpu_get_tsc_freq(struct cpu_info *ci)
1232 {
1233 uint64_t last_tsc;
1234
1235 if (cpu_hascounter()) {
1236 last_tsc = cpu_counter_serializing();
1237 i8254_delay(100000);
1238 ci->ci_data.cpu_cc_freq =
1239 (cpu_counter_serializing() - last_tsc) * 10;
1240 }
1241 }
1242
1243 void
1244 x86_cpu_idle_mwait(void)
1245 {
1246 struct cpu_info *ci = curcpu();
1247
1248 KASSERT(ci->ci_ilevel == IPL_NONE);
1249
1250 x86_monitor(&ci->ci_want_resched, 0, 0);
1251 if (__predict_false(ci->ci_want_resched)) {
1252 return;
1253 }
1254 x86_mwait(0, 0);
1255 }
1256
1257 void
1258 x86_cpu_idle_halt(void)
1259 {
1260 struct cpu_info *ci = curcpu();
1261
1262 KASSERT(ci->ci_ilevel == IPL_NONE);
1263
1264 x86_disable_intr();
1265 if (!__predict_false(ci->ci_want_resched)) {
1266 x86_stihlt();
1267 } else {
1268 x86_enable_intr();
1269 }
1270 }
1271
1272 /*
1273 * Loads pmap for the current CPU.
1274 */
1275 void
1276 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1277 {
1278 #ifdef PAE
1279 struct cpu_info *ci = curcpu();
1280 bool interrupts_enabled;
1281 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1282 int i;
1283
1284 /*
1285 * disable interrupts to block TLB shootdowns, which can reload cr3.
1286 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1287 * reload cr3.
1288 */
1289 interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1290 if (interrupts_enabled)
1291 x86_disable_intr();
1292
1293 for (i = 0 ; i < PDP_SIZE; i++) {
1294 l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1295 }
1296
1297 if (interrupts_enabled)
1298 x86_enable_intr();
1299 tlbflush();
1300 #else /* PAE */
1301 lcr3(pmap_pdirpa(pmap, 0));
1302 #endif /* PAE */
1303 }
1304
1305 /*
1306 * Notify all other cpus to halt.
1307 */
1308
1309 void
1310 cpu_broadcast_halt(void)
1311 {
1312 x86_broadcast_ipi(X86_IPI_HALT);
1313 }
1314
1315 /*
1316 * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1317 */
1318
1319 void
1320 cpu_kick(struct cpu_info *ci)
1321 {
1322 x86_send_ipi(ci, 0);
1323 }
1324