cpu.c revision 1.127 1 /* $NetBSD: cpu.c,v 1.127 2017/05/31 10:08:24 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2000-2012 NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Bill Sommerfeld of RedBack Networks Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999 Stefan Grefen
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the NetBSD
46 * Foundation, Inc. and its contributors.
47 * 4. Neither the name of The NetBSD Foundation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
52 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.127 2017/05/31 10:08:24 pgoyette Exp $");
66
67 #include "opt_ddb.h"
68 #include "opt_mpbios.h" /* for MPDEBUG */
69 #include "opt_mtrr.h"
70 #include "opt_multiprocessor.h"
71
72 #include "lapic.h"
73 #include "ioapic.h"
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/systm.h>
78 #include <sys/device.h>
79 #include <sys/kmem.h>
80 #include <sys/cpu.h>
81 #include <sys/cpufreq.h>
82 #include <sys/idle.h>
83 #include <sys/atomic.h>
84 #include <sys/reboot.h>
85
86 #include <uvm/uvm.h>
87
88 #include "acpica.h" /* for NACPICA, for mp_verbose */
89
90 #include <machine/cpufunc.h>
91 #include <machine/cpuvar.h>
92 #include <machine/pmap.h>
93 #include <machine/vmparam.h>
94 #if defined(MULTIPROCESSOR)
95 #include <machine/mpbiosvar.h>
96 #endif
97 #include <machine/mpconfig.h> /* for mp_verbose */
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104 #include <machine/cpu_counter.h>
105
106 #include <x86/fpu.h>
107
108 #ifdef i386
109 #include <machine/tlog.h>
110 #endif
111
112 #if NLAPIC > 0
113 #include <machine/apicvar.h>
114 #include <machine/i82489reg.h>
115 #include <machine/i82489var.h>
116 #endif
117
118 #include <dev/ic/mc146818reg.h>
119 #include <i386/isa/nvram.h>
120 #include <dev/isa/isareg.h>
121
122 #include "tsc.h"
123
124 static int cpu_match(device_t, cfdata_t, void *);
125 static void cpu_attach(device_t, device_t, void *);
126 static void cpu_defer(device_t);
127 static int cpu_rescan(device_t, const char *, const int *);
128 static void cpu_childdetached(device_t, device_t);
129 static bool cpu_stop(device_t);
130 static bool cpu_suspend(device_t, const pmf_qual_t *);
131 static bool cpu_resume(device_t, const pmf_qual_t *);
132 static bool cpu_shutdown(device_t, int);
133
134 struct cpu_softc {
135 device_t sc_dev; /* device tree glue */
136 struct cpu_info *sc_info; /* pointer to CPU info */
137 bool sc_wasonline;
138 };
139
140 #ifdef MULTIPROCESSOR
141 int mp_cpu_start(struct cpu_info *, paddr_t);
142 void mp_cpu_start_cleanup(struct cpu_info *);
143 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
144 mp_cpu_start_cleanup };
145 #endif
146
147
148 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
149 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
150
151 /*
152 * Statically-allocated CPU info for the primary CPU (or the only
153 * CPU, on uniprocessors). The CPU info list is initialized to
154 * point at it.
155 */
156 #ifdef TRAPLOG
157 struct tlog tlog_primary;
158 #endif
159 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 .ci_dev = 0,
161 .ci_self = &cpu_info_primary,
162 .ci_idepth = -1,
163 .ci_curlwp = &lwp0,
164 .ci_curldt = -1,
165 #ifdef TRAPLOG
166 .ci_tlog_base = &tlog_primary,
167 #endif /* !TRAPLOG */
168 };
169
170 struct cpu_info *cpu_info_list = &cpu_info_primary;
171
172 static void cpu_set_tss_gates(struct cpu_info *);
173
174 #ifdef i386
175 static void tss_init(struct i386tss *, void *, void *);
176 #endif
177
178 static void cpu_init_idle_lwp(struct cpu_info *);
179
180 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits */
181 /* [0] basic features cpuid.1:%edx
182 * [1] basic features cpuid.1:%ecx (CPUID2_xxx bits)
183 * [2] extended features cpuid:80000001:%edx
184 * [3] extended features cpuid:80000001:%ecx
185 * [4] VIA padlock features
186 * [5] structured extended features cpuid.7:%ebx
187 * [6] structured extended features cpuid.7:%ecx
188 */
189
190 extern char x86_64_doubleflt_stack[];
191
192 #ifdef MULTIPROCESSOR
193 bool x86_mp_online;
194 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
195 #endif
196 #if NLAPIC > 0
197 static vaddr_t cmos_data_mapping;
198 #endif
199 struct cpu_info *cpu_starting;
200
201 #ifdef MULTIPROCESSOR
202 void cpu_hatch(void *);
203 static void cpu_boot_secondary(struct cpu_info *ci);
204 static void cpu_start_secondary(struct cpu_info *ci);
205 #endif
206 #if NLAPIC > 0
207 static void cpu_copy_trampoline(void);
208 #endif
209
210 /*
211 * Runs once per boot once multiprocessor goo has been detected and
212 * the local APIC on the boot processor has been mapped.
213 *
214 * Called from lapic_boot_init() (from mpbios_scan()).
215 */
216 #if NLAPIC > 0
217 void
218 cpu_init_first(void)
219 {
220
221 cpu_info_primary.ci_cpuid = lapic_cpu_number();
222 cpu_copy_trampoline();
223
224 cmos_data_mapping = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY);
225 if (cmos_data_mapping == 0)
226 panic("No KVA for page 0");
227 pmap_kenter_pa(cmos_data_mapping, 0, VM_PROT_READ|VM_PROT_WRITE, 0);
228 pmap_update(pmap_kernel());
229 }
230 #endif
231
232 static int
233 cpu_match(device_t parent, cfdata_t match, void *aux)
234 {
235
236 return 1;
237 }
238
239 static void
240 cpu_vm_init(struct cpu_info *ci)
241 {
242 int ncolors = 2, i;
243
244 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
245 struct x86_cache_info *cai;
246 int tcolors;
247
248 cai = &ci->ci_cinfo[i];
249
250 tcolors = atop(cai->cai_totalsize);
251 switch(cai->cai_associativity) {
252 case 0xff:
253 tcolors = 1; /* fully associative */
254 break;
255 case 0:
256 case 1:
257 break;
258 default:
259 tcolors /= cai->cai_associativity;
260 }
261 ncolors = max(ncolors, tcolors);
262 /*
263 * If the desired number of colors is not a power of
264 * two, it won't be good. Find the greatest power of
265 * two which is an even divisor of the number of colors,
266 * to preserve even coloring of pages.
267 */
268 if (ncolors & (ncolors - 1) ) {
269 int try, picked = 1;
270 for (try = 1; try < ncolors; try *= 2) {
271 if (ncolors % try == 0) picked = try;
272 }
273 if (picked == 1) {
274 panic("desired number of cache colors %d is "
275 " > 1, but not even!", ncolors);
276 }
277 ncolors = picked;
278 }
279 }
280
281 /*
282 * Knowing the size of the largest cache on this CPU, potentially
283 * re-color our pages.
284 */
285 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
286 uvm_page_recolor(ncolors);
287
288 pmap_tlb_cpu_init(ci);
289 #ifndef __HAVE_DIRECT_MAP
290 pmap_vpage_cpu_init(ci);
291 #endif
292 }
293
294 static void
295 cpu_attach(device_t parent, device_t self, void *aux)
296 {
297 struct cpu_softc *sc = device_private(self);
298 struct cpu_attach_args *caa = aux;
299 struct cpu_info *ci;
300 uintptr_t ptr;
301 #if NLAPIC > 0
302 int cpunum = caa->cpu_number;
303 #endif
304 static bool again;
305
306 sc->sc_dev = self;
307
308 if (ncpu == maxcpus) {
309 #ifndef _LP64
310 aprint_error(": too many CPUs, please use NetBSD/amd64\n");
311 #else
312 aprint_error(": too many CPUs\n");
313 #endif
314 return;
315 }
316
317 /*
318 * If we're an Application Processor, allocate a cpu_info
319 * structure, otherwise use the primary's.
320 */
321 if (caa->cpu_role == CPU_ROLE_AP) {
322 if ((boothowto & RB_MD1) != 0) {
323 aprint_error(": multiprocessor boot disabled\n");
324 if (!pmf_device_register(self, NULL, NULL))
325 aprint_error_dev(self,
326 "couldn't establish power handler\n");
327 return;
328 }
329 aprint_naive(": Application Processor\n");
330 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
331 KM_SLEEP);
332 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
333 ci->ci_curldt = -1;
334 #ifdef TRAPLOG
335 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
336 #endif
337 } else {
338 aprint_naive(": %s Processor\n",
339 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
340 ci = &cpu_info_primary;
341 #if NLAPIC > 0
342 if (cpunum != lapic_cpu_number()) {
343 /* XXX should be done earlier. */
344 uint32_t reg;
345 aprint_verbose("\n");
346 aprint_verbose_dev(self, "running CPU at apic %d"
347 " instead of at expected %d", lapic_cpu_number(),
348 cpunum);
349 reg = lapic_readreg(LAPIC_ID);
350 lapic_writereg(LAPIC_ID, (reg & ~LAPIC_ID_MASK) |
351 (cpunum << LAPIC_ID_SHIFT));
352 }
353 if (cpunum != lapic_cpu_number()) {
354 aprint_error_dev(self, "unable to reset apic id\n");
355 }
356 #endif
357 }
358
359 ci->ci_self = ci;
360 sc->sc_info = ci;
361 ci->ci_dev = self;
362 ci->ci_acpiid = caa->cpu_id;
363 ci->ci_cpuid = caa->cpu_number;
364 ci->ci_func = caa->cpu_func;
365 aprint_normal("\n");
366
367 /* Must be before mi_cpu_attach(). */
368 cpu_vm_init(ci);
369
370 if (caa->cpu_role == CPU_ROLE_AP) {
371 int error;
372
373 error = mi_cpu_attach(ci);
374 if (error != 0) {
375 aprint_error_dev(self,
376 "mi_cpu_attach failed with %d\n", error);
377 return;
378 }
379 cpu_init_tss(ci);
380 } else {
381 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
382 }
383
384 pmap_reference(pmap_kernel());
385 ci->ci_pmap = pmap_kernel();
386 ci->ci_tlbstate = TLBSTATE_STALE;
387
388 /*
389 * Boot processor may not be attached first, but the below
390 * must be done to allow booting other processors.
391 */
392 if (!again) {
393 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
394 /* Basic init. */
395 cpu_intr_init(ci);
396 cpu_get_tsc_freq(ci);
397 cpu_init(ci);
398 cpu_set_tss_gates(ci);
399 pmap_cpu_init_late(ci);
400 #if NLAPIC > 0
401 if (caa->cpu_role != CPU_ROLE_SP) {
402 /* Enable lapic. */
403 lapic_enable();
404 lapic_set_lvt();
405 lapic_calibrate_timer(ci);
406 }
407 #endif
408 /* Make sure DELAY() is initialized. */
409 DELAY(1);
410 again = true;
411 }
412
413 /* further PCB init done later. */
414
415 switch (caa->cpu_role) {
416 case CPU_ROLE_SP:
417 atomic_or_32(&ci->ci_flags, CPUF_SP);
418 cpu_identify(ci);
419 x86_errata();
420 x86_cpu_idle_init();
421 break;
422
423 case CPU_ROLE_BP:
424 atomic_or_32(&ci->ci_flags, CPUF_BSP);
425 cpu_identify(ci);
426 x86_errata();
427 x86_cpu_idle_init();
428 break;
429
430 #ifdef MULTIPROCESSOR
431 case CPU_ROLE_AP:
432 /*
433 * report on an AP
434 */
435 cpu_intr_init(ci);
436 gdt_alloc_cpu(ci);
437 cpu_set_tss_gates(ci);
438 pmap_cpu_init_late(ci);
439 cpu_start_secondary(ci);
440 if (ci->ci_flags & CPUF_PRESENT) {
441 struct cpu_info *tmp;
442
443 cpu_identify(ci);
444 tmp = cpu_info_list;
445 while (tmp->ci_next)
446 tmp = tmp->ci_next;
447
448 tmp->ci_next = ci;
449 }
450 break;
451 #endif
452
453 default:
454 panic("unknown processor type??\n");
455 }
456
457 pat_init(ci);
458
459 if (!pmf_device_register1(self, cpu_suspend, cpu_resume, cpu_shutdown))
460 aprint_error_dev(self, "couldn't establish power handler\n");
461
462 #ifdef MULTIPROCESSOR
463 if (mp_verbose) {
464 struct lwp *l = ci->ci_data.cpu_idlelwp;
465 struct pcb *pcb = lwp_getpcb(l);
466
467 aprint_verbose_dev(self,
468 "idle lwp at %p, idle sp at %p\n",
469 l,
470 #ifdef i386
471 (void *)pcb->pcb_esp
472 #else
473 (void *)pcb->pcb_rsp
474 #endif
475 );
476 }
477 #endif
478
479 /*
480 * Postpone the "cpufeaturebus" scan.
481 * It is safe to scan the pseudo-bus
482 * only after all CPUs have attached.
483 */
484 (void)config_defer(self, cpu_defer);
485 }
486
487 static void
488 cpu_defer(device_t self)
489 {
490 cpu_rescan(self, NULL, NULL);
491 }
492
493 static int
494 cpu_rescan(device_t self, const char *ifattr, const int *locators)
495 {
496 struct cpu_softc *sc = device_private(self);
497 struct cpufeature_attach_args cfaa;
498 struct cpu_info *ci = sc->sc_info;
499
500 memset(&cfaa, 0, sizeof(cfaa));
501 cfaa.ci = ci;
502
503 if (ifattr_match(ifattr, "cpufeaturebus")) {
504
505 if (ci->ci_frequency == NULL) {
506 cfaa.name = "frequency";
507 ci->ci_frequency = config_found_ia(self,
508 "cpufeaturebus", &cfaa, NULL);
509 }
510
511 if (ci->ci_padlock == NULL) {
512 cfaa.name = "padlock";
513 ci->ci_padlock = config_found_ia(self,
514 "cpufeaturebus", &cfaa, NULL);
515 }
516
517 if (ci->ci_temperature == NULL) {
518 cfaa.name = "temperature";
519 ci->ci_temperature = config_found_ia(self,
520 "cpufeaturebus", &cfaa, NULL);
521 }
522
523 if (ci->ci_vm == NULL) {
524 cfaa.name = "vm";
525 ci->ci_vm = config_found_ia(self,
526 "cpufeaturebus", &cfaa, NULL);
527 }
528 }
529
530 return 0;
531 }
532
533 static void
534 cpu_childdetached(device_t self, device_t child)
535 {
536 struct cpu_softc *sc = device_private(self);
537 struct cpu_info *ci = sc->sc_info;
538
539 if (ci->ci_frequency == child)
540 ci->ci_frequency = NULL;
541
542 if (ci->ci_padlock == child)
543 ci->ci_padlock = NULL;
544
545 if (ci->ci_temperature == child)
546 ci->ci_temperature = NULL;
547
548 if (ci->ci_vm == child)
549 ci->ci_vm = NULL;
550 }
551
552 /*
553 * Initialize the processor appropriately.
554 */
555
556 void
557 cpu_init(struct cpu_info *ci)
558 {
559 uint32_t cr4 = 0;
560
561 lcr0(rcr0() | CR0_WP);
562
563 /*
564 * On a P6 or above, enable global TLB caching if the
565 * hardware supports it.
566 */
567 if (cpu_feature[0] & CPUID_PGE)
568 cr4 |= CR4_PGE; /* enable global TLB caching */
569
570 /*
571 * If we have FXSAVE/FXRESTOR, use them.
572 */
573 if (cpu_feature[0] & CPUID_FXSR) {
574 cr4 |= CR4_OSFXSR;
575
576 /*
577 * If we have SSE/SSE2, enable XMM exceptions.
578 */
579 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
580 cr4 |= CR4_OSXMMEXCPT;
581 }
582
583 /* If xsave is supported, enable it */
584 if (cpu_feature[1] & CPUID2_XSAVE)
585 cr4 |= CR4_OSXSAVE;
586
587 /* If SMEP is supported, enable it */
588 if (cpu_feature[5] & CPUID_SEF_SMEP)
589 cr4 |= CR4_SMEP;
590
591 if (cr4) {
592 cr4 |= rcr4();
593 lcr4(cr4);
594 }
595
596 /* If xsave is enabled, enable all fpu features */
597 if (cr4 & CR4_OSXSAVE)
598 wrxcr(0, x86_xsave_features & XCR0_FPU);
599
600 #ifdef MTRR
601 /*
602 * On a P6 or above, initialize MTRR's if the hardware supports them.
603 */
604 if (cpu_feature[0] & CPUID_MTRR) {
605 if ((ci->ci_flags & CPUF_AP) == 0)
606 i686_mtrr_init_first();
607 mtrr_init_cpu(ci);
608 }
609
610 #ifdef i386
611 if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
612 /*
613 * Must be a K6-2 Step >= 7 or a K6-III.
614 */
615 if (CPUID_TO_FAMILY(ci->ci_signature) == 5) {
616 if (CPUID_TO_MODEL(ci->ci_signature) > 8 ||
617 (CPUID_TO_MODEL(ci->ci_signature) == 8 &&
618 CPUID_TO_STEPPING(ci->ci_signature) >= 7)) {
619 mtrr_funcs = &k6_mtrr_funcs;
620 k6_mtrr_init_first();
621 mtrr_init_cpu(ci);
622 }
623 }
624 }
625 #endif /* i386 */
626 #endif /* MTRR */
627
628 if (ci != &cpu_info_primary) {
629 /* Synchronize TSC again, and check for drift. */
630 wbinvd();
631 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
632 tsc_sync_ap(ci);
633 } else {
634 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
635 }
636 }
637
638 #ifdef MULTIPROCESSOR
639 void
640 cpu_boot_secondary_processors(void)
641 {
642 struct cpu_info *ci;
643 kcpuset_t *cpus;
644 u_long i;
645
646 /* Now that we know the number of CPUs, patch the text segment. */
647 x86_patch(false);
648
649 kcpuset_create(&cpus, true);
650 kcpuset_set(cpus, cpu_index(curcpu()));
651 for (i = 0; i < maxcpus; i++) {
652 ci = cpu_lookup(i);
653 if (ci == NULL)
654 continue;
655 if (ci->ci_data.cpu_idlelwp == NULL)
656 continue;
657 if ((ci->ci_flags & CPUF_PRESENT) == 0)
658 continue;
659 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
660 continue;
661 cpu_boot_secondary(ci);
662 kcpuset_set(cpus, cpu_index(ci));
663 }
664 while (!kcpuset_match(cpus, kcpuset_running))
665 ;
666 kcpuset_destroy(cpus);
667
668 x86_mp_online = true;
669
670 /* Now that we know about the TSC, attach the timecounter. */
671 tsc_tc_init();
672
673 /* Enable zeroing of pages in the idle loop if we have SSE2. */
674 vm_page_zero_enable = ((cpu_feature[0] & CPUID_SSE2) != 0);
675 }
676 #endif
677
678 static void
679 cpu_init_idle_lwp(struct cpu_info *ci)
680 {
681 struct lwp *l = ci->ci_data.cpu_idlelwp;
682 struct pcb *pcb = lwp_getpcb(l);
683
684 pcb->pcb_cr0 = rcr0();
685 }
686
687 void
688 cpu_init_idle_lwps(void)
689 {
690 struct cpu_info *ci;
691 u_long i;
692
693 for (i = 0; i < maxcpus; i++) {
694 ci = cpu_lookup(i);
695 if (ci == NULL)
696 continue;
697 if (ci->ci_data.cpu_idlelwp == NULL)
698 continue;
699 if ((ci->ci_flags & CPUF_PRESENT) == 0)
700 continue;
701 cpu_init_idle_lwp(ci);
702 }
703 }
704
705 #ifdef MULTIPROCESSOR
706 void
707 cpu_start_secondary(struct cpu_info *ci)
708 {
709 extern paddr_t mp_pdirpa;
710 u_long psl;
711 int i;
712
713 mp_pdirpa = pmap_init_tmp_pgtbl(mp_trampoline_paddr);
714 atomic_or_32(&ci->ci_flags, CPUF_AP);
715 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
716 if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) {
717 return;
718 }
719
720 /*
721 * Wait for it to become ready. Setting cpu_starting opens the
722 * initial gate and allows the AP to start soft initialization.
723 */
724 KASSERT(cpu_starting == NULL);
725 cpu_starting = ci;
726 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
727 #ifdef MPDEBUG
728 extern int cpu_trace[3];
729 static int otrace[3];
730 if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) {
731 aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n",
732 cpu_trace[0], cpu_trace[1], cpu_trace[2]);
733 memcpy(otrace, cpu_trace, sizeof(otrace));
734 }
735 #endif
736 i8254_delay(10);
737 }
738
739 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
740 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
741 #if defined(MPDEBUG) && defined(DDB)
742 printf("dropping into debugger; continue from here to resume boot\n");
743 Debugger();
744 #endif
745 } else {
746 /*
747 * Synchronize time stamp counters. Invalidate cache and do
748 * twice to try and minimize possible cache effects. Disable
749 * interrupts to try and rule out any external interference.
750 */
751 psl = x86_read_psl();
752 x86_disable_intr();
753 wbinvd();
754 tsc_sync_bp(ci);
755 x86_write_psl(psl);
756 }
757
758 CPU_START_CLEANUP(ci);
759 cpu_starting = NULL;
760 }
761
762 void
763 cpu_boot_secondary(struct cpu_info *ci)
764 {
765 int64_t drift;
766 u_long psl;
767 int i;
768
769 atomic_or_32(&ci->ci_flags, CPUF_GO);
770 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
771 i8254_delay(10);
772 }
773 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
774 aprint_error_dev(ci->ci_dev, "failed to start\n");
775 #if defined(MPDEBUG) && defined(DDB)
776 printf("dropping into debugger; continue from here to resume boot\n");
777 Debugger();
778 #endif
779 } else {
780 /* Synchronize TSC again, check for drift. */
781 drift = ci->ci_data.cpu_cc_skew;
782 psl = x86_read_psl();
783 x86_disable_intr();
784 wbinvd();
785 tsc_sync_bp(ci);
786 x86_write_psl(psl);
787 drift -= ci->ci_data.cpu_cc_skew;
788 aprint_debug_dev(ci->ci_dev, "TSC skew=%lld drift=%lld\n",
789 (long long)ci->ci_data.cpu_cc_skew, (long long)drift);
790 tsc_sync_drift(drift);
791 }
792 }
793
794 /*
795 * The CPU ends up here when it's ready to run.
796 * This is called from code in mptramp.s; at this point, we are running
797 * in the idle pcb/idle stack of the new CPU. When this function returns,
798 * this processor will enter the idle loop and start looking for work.
799 */
800 void
801 cpu_hatch(void *v)
802 {
803 struct cpu_info *ci = (struct cpu_info *)v;
804 struct pcb *pcb;
805 int s;
806
807 cpu_init_msrs(ci, true);
808 cpu_probe(ci);
809
810 ci->ci_data.cpu_cc_freq = cpu_info_primary.ci_data.cpu_cc_freq;
811 /* cpu_get_tsc_freq(ci); */
812
813 KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0);
814
815 /*
816 * Synchronize time stamp counters. Invalidate cache and do twice
817 * to try and minimize possible cache effects. Note that interrupts
818 * are off at this point.
819 */
820 wbinvd();
821 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
822 tsc_sync_ap(ci);
823
824 /*
825 * Wait to be brought online. Use 'monitor/mwait' if available,
826 * in order to make the TSC drift as much as possible. so that
827 * we can detect it later. If not available, try 'pause'.
828 * We'd like to use 'hlt', but we have interrupts off.
829 */
830 while ((ci->ci_flags & CPUF_GO) == 0) {
831 if ((cpu_feature[1] & CPUID2_MONITOR) != 0) {
832 x86_monitor(&ci->ci_flags, 0, 0);
833 if ((ci->ci_flags & CPUF_GO) != 0) {
834 continue;
835 }
836 x86_mwait(0, 0);
837 } else {
838 for (i = 100; i != 0; i--) {
839 x86_pause();
840 }
841 }
842 }
843
844 /* Because the text may have been patched in x86_patch(). */
845 wbinvd();
846 x86_flush();
847 tlbflushg();
848
849 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
850
851 #ifdef PAE
852 pd_entry_t * l3_pd = ci->ci_pae_l3_pdir;
853 for (i = 0 ; i < PDP_SIZE; i++) {
854 l3_pd[i] = pmap_kernel()->pm_pdirpa[i] | PG_V;
855 }
856 lcr3(ci->ci_pae_l3_pdirpa);
857 #else
858 lcr3(pmap_pdirpa(pmap_kernel(), 0));
859 #endif
860
861 pcb = lwp_getpcb(curlwp);
862 pcb->pcb_cr3 = rcr3();
863 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
864 lcr0(pcb->pcb_cr0);
865
866 cpu_init_idt();
867 gdt_init_cpu(ci);
868 #if NLAPIC > 0
869 lapic_enable();
870 lapic_set_lvt();
871 lapic_initclocks();
872 #endif
873
874 fpuinit(ci);
875 lldt(GSYSSEL(GLDT_SEL, SEL_KPL));
876 ltr(ci->ci_tss_sel);
877
878 cpu_init(ci);
879 cpu_get_tsc_freq(ci);
880
881 s = splhigh();
882 lapic_write_tpri(0);
883 x86_enable_intr();
884 splx(s);
885 x86_errata();
886
887 aprint_debug_dev(ci->ci_dev, "running\n");
888
889 idle_loop(NULL);
890 KASSERT(false);
891 }
892 #endif
893
894 #if defined(DDB)
895
896 #include <ddb/db_output.h>
897 #include <machine/db_machdep.h>
898
899 /*
900 * Dump CPU information from ddb.
901 */
902 void
903 cpu_debug_dump(void)
904 {
905 struct cpu_info *ci;
906 CPU_INFO_ITERATOR cii;
907
908 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
909 for (CPU_INFO_FOREACH(cii, ci)) {
910 db_printf("%p %s %ld %x %x %10p %10p\n",
911 ci,
912 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
913 (long)ci->ci_cpuid,
914 ci->ci_flags, ci->ci_ipis,
915 ci->ci_curlwp,
916 ci->ci_fpcurlwp);
917 }
918 }
919 #endif
920
921 #if NLAPIC > 0
922 static void
923 cpu_copy_trampoline(void)
924 {
925 /*
926 * Copy boot code.
927 */
928 extern u_char cpu_spinup_trampoline[];
929 extern u_char cpu_spinup_trampoline_end[];
930
931 vaddr_t mp_trampoline_vaddr;
932
933 mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
934 UVM_KMF_VAONLY);
935
936 pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr,
937 VM_PROT_READ | VM_PROT_WRITE, 0);
938 pmap_update(pmap_kernel());
939 memcpy((void *)mp_trampoline_vaddr,
940 cpu_spinup_trampoline,
941 cpu_spinup_trampoline_end - cpu_spinup_trampoline);
942
943 pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE);
944 pmap_update(pmap_kernel());
945 uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY);
946 }
947 #endif
948
949 #ifdef i386
950 static void
951 tss_init(struct i386tss *tss, void *stack, void *func)
952 {
953 KASSERT(curcpu()->ci_pmap == pmap_kernel());
954
955 memset(tss, 0, sizeof *tss);
956 tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
957 tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
958 tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
959 tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
960 tss->tss_gs = tss->__tss_es = tss->__tss_ds =
961 tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
962 /* %cr3 contains the value associated to pmap_kernel */
963 tss->tss_cr3 = rcr3();
964 tss->tss_esp = (int)((char *)stack + USPACE - 16);
965 tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
966 tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
967 tss->__tss_eip = (int)func;
968 }
969
970 /* XXX */
971 #define IDTVEC(name) __CONCAT(X, name)
972 typedef void (vector)(void);
973 extern vector IDTVEC(tss_trap08);
974 #if defined(DDB) && defined(MULTIPROCESSOR)
975 extern vector Xintrddbipi, Xx2apic_intrddbipi;
976 extern int ddb_vec;
977 #endif
978
979 static void
980 cpu_set_tss_gates(struct cpu_info *ci)
981 {
982 struct segment_descriptor sd;
983
984 ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
985 UVM_KMF_WIRED);
986 tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
987 IDTVEC(tss_trap08));
988 setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
989 SDT_SYS386TSS, SEL_KPL, 0, 0);
990 ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
991 setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
992 GSEL(GTRAPTSS_SEL, SEL_KPL));
993
994 #if defined(DDB) && defined(MULTIPROCESSOR)
995 /*
996 * Set up separate handler for the DDB IPI, so that it doesn't
997 * stomp on a possibly corrupted stack.
998 *
999 * XXX overwriting the gate set in db_machine_init.
1000 * Should rearrange the code so that it's set only once.
1001 */
1002 ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
1003 UVM_KMF_WIRED);
1004 tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
1005 x2apic_mode ? Xx2apic_intrddbipi : Xintrddbipi);
1006
1007 setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
1008 SDT_SYS386TSS, SEL_KPL, 0, 0);
1009 ci->ci_gdt[GIPITSS_SEL].sd = sd;
1010
1011 setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
1012 GSEL(GIPITSS_SEL, SEL_KPL));
1013 #endif
1014 }
1015 #else
1016 static void
1017 cpu_set_tss_gates(struct cpu_info *ci)
1018 {
1019
1020 }
1021 #endif /* i386 */
1022
1023 #ifdef MULTIPROCESSOR
1024 int
1025 mp_cpu_start(struct cpu_info *ci, paddr_t target)
1026 {
1027 unsigned short dwordptr[2];
1028 int error;
1029
1030 /*
1031 * Bootstrap code must be addressable in real mode
1032 * and it must be page aligned.
1033 */
1034 KASSERT(target < 0x10000 && target % PAGE_SIZE == 0);
1035
1036 /*
1037 * "The BSP must initialize CMOS shutdown code to 0Ah ..."
1038 */
1039
1040 outb(IO_RTC, NVRAM_RESET);
1041 outb(IO_RTC+1, NVRAM_RESET_JUMP);
1042
1043 /*
1044 * "and the warm reset vector (DWORD based at 40:67) to point
1045 * to the AP startup code ..."
1046 */
1047
1048 dwordptr[0] = 0;
1049 dwordptr[1] = target >> 4;
1050
1051 #if NLAPIC > 0
1052 memcpy((uint8_t *)cmos_data_mapping + 0x467, dwordptr, 4);
1053 #endif
1054
1055 if ((cpu_feature[0] & CPUID_APIC) == 0) {
1056 aprint_error("mp_cpu_start: CPU does not have APIC\n");
1057 return ENODEV;
1058 }
1059
1060 /*
1061 * ... prior to executing the following sequence:". We'll also add in
1062 * local cache flush, in case the BIOS has left the AP with its cache
1063 * disabled. It may not be able to cope with MP coherency.
1064 */
1065 wbinvd();
1066
1067 if (ci->ci_flags & CPUF_AP) {
1068 error = x86_ipi_init(ci->ci_cpuid);
1069 if (error != 0) {
1070 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n",
1071 __func__);
1072 return error;
1073 }
1074 i8254_delay(10000);
1075
1076 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1077 if (error != 0) {
1078 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n",
1079 __func__);
1080 return error;
1081 }
1082 i8254_delay(200);
1083
1084 error = x86_ipi_startup(ci->ci_cpuid, target / PAGE_SIZE);
1085 if (error != 0) {
1086 aprint_error_dev(ci->ci_dev, "%s: IPI not taken (3)\n",
1087 __func__);
1088 return error;
1089 }
1090 i8254_delay(200);
1091 }
1092
1093 return 0;
1094 }
1095
1096 void
1097 mp_cpu_start_cleanup(struct cpu_info *ci)
1098 {
1099 /*
1100 * Ensure the NVRAM reset byte contains something vaguely sane.
1101 */
1102
1103 outb(IO_RTC, NVRAM_RESET);
1104 outb(IO_RTC+1, NVRAM_RESET_RST);
1105 }
1106 #endif
1107
1108 #ifdef __x86_64__
1109 typedef void (vector)(void);
1110 extern vector Xsyscall, Xsyscall32;
1111 #endif
1112
1113 void
1114 cpu_init_msrs(struct cpu_info *ci, bool full)
1115 {
1116 #ifdef __x86_64__
1117 wrmsr(MSR_STAR,
1118 ((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1119 ((uint64_t)LSEL(LSYSRETBASE_SEL, SEL_UPL) << 48));
1120 wrmsr(MSR_LSTAR, (uint64_t)Xsyscall);
1121 wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
1122 wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C);
1123
1124 if (full) {
1125 wrmsr(MSR_FSBASE, 0);
1126 wrmsr(MSR_GSBASE, (uint64_t)ci);
1127 wrmsr(MSR_KERNELGSBASE, 0);
1128 }
1129 #endif /* __x86_64__ */
1130
1131 if (cpu_feature[2] & CPUID_NOX)
1132 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1133 }
1134
1135 void
1136 cpu_offline_md(void)
1137 {
1138 int s;
1139
1140 s = splhigh();
1141 fpusave_cpu(true);
1142 splx(s);
1143 }
1144
1145 /* XXX joerg restructure and restart CPUs individually */
1146 static bool
1147 cpu_stop(device_t dv)
1148 {
1149 struct cpu_softc *sc = device_private(dv);
1150 struct cpu_info *ci = sc->sc_info;
1151 int err;
1152
1153 KASSERT((ci->ci_flags & CPUF_PRESENT) != 0);
1154
1155 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1156 return true;
1157
1158 if (ci->ci_data.cpu_idlelwp == NULL)
1159 return true;
1160
1161 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1162
1163 if (sc->sc_wasonline) {
1164 mutex_enter(&cpu_lock);
1165 err = cpu_setstate(ci, false);
1166 mutex_exit(&cpu_lock);
1167
1168 if (err != 0)
1169 return false;
1170 }
1171
1172 return true;
1173 }
1174
1175 static bool
1176 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1177 {
1178 struct cpu_softc *sc = device_private(dv);
1179 struct cpu_info *ci = sc->sc_info;
1180
1181 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1182 return true;
1183 else {
1184 cpufreq_suspend(ci);
1185 }
1186
1187 return cpu_stop(dv);
1188 }
1189
1190 static bool
1191 cpu_resume(device_t dv, const pmf_qual_t *qual)
1192 {
1193 struct cpu_softc *sc = device_private(dv);
1194 struct cpu_info *ci = sc->sc_info;
1195 int err = 0;
1196
1197 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1198 return true;
1199
1200 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1201 goto out;
1202
1203 if (ci->ci_data.cpu_idlelwp == NULL)
1204 goto out;
1205
1206 if (sc->sc_wasonline) {
1207 mutex_enter(&cpu_lock);
1208 err = cpu_setstate(ci, true);
1209 mutex_exit(&cpu_lock);
1210 }
1211
1212 out:
1213 if (err != 0)
1214 return false;
1215
1216 cpufreq_resume(ci);
1217
1218 return true;
1219 }
1220
1221 static bool
1222 cpu_shutdown(device_t dv, int how)
1223 {
1224 struct cpu_softc *sc = device_private(dv);
1225 struct cpu_info *ci = sc->sc_info;
1226
1227 if ((ci->ci_flags & CPUF_BSP) != 0)
1228 return false;
1229
1230 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1231 return true;
1232
1233 return cpu_stop(dv);
1234 }
1235
1236 void
1237 cpu_get_tsc_freq(struct cpu_info *ci)
1238 {
1239 uint64_t last_tsc;
1240
1241 if (cpu_hascounter()) {
1242 last_tsc = cpu_counter_serializing();
1243 i8254_delay(100000);
1244 ci->ci_data.cpu_cc_freq =
1245 (cpu_counter_serializing() - last_tsc) * 10;
1246 }
1247 }
1248
1249 void
1250 x86_cpu_idle_mwait(void)
1251 {
1252 struct cpu_info *ci = curcpu();
1253
1254 KASSERT(ci->ci_ilevel == IPL_NONE);
1255
1256 x86_monitor(&ci->ci_want_resched, 0, 0);
1257 if (__predict_false(ci->ci_want_resched)) {
1258 return;
1259 }
1260 x86_mwait(0, 0);
1261 }
1262
1263 void
1264 x86_cpu_idle_halt(void)
1265 {
1266 struct cpu_info *ci = curcpu();
1267
1268 KASSERT(ci->ci_ilevel == IPL_NONE);
1269
1270 x86_disable_intr();
1271 if (!__predict_false(ci->ci_want_resched)) {
1272 x86_stihlt();
1273 } else {
1274 x86_enable_intr();
1275 }
1276 }
1277
1278 /*
1279 * Loads pmap for the current CPU.
1280 */
1281 void
1282 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1283 {
1284 #ifdef PAE
1285 struct cpu_info *ci = curcpu();
1286 bool interrupts_enabled;
1287 pd_entry_t *l3_pd = ci->ci_pae_l3_pdir;
1288 int i;
1289
1290 /*
1291 * disable interrupts to block TLB shootdowns, which can reload cr3.
1292 * while this doesn't block NMIs, it's probably ok as NMIs unlikely
1293 * reload cr3.
1294 */
1295 interrupts_enabled = (x86_read_flags() & PSL_I) != 0;
1296 if (interrupts_enabled)
1297 x86_disable_intr();
1298
1299 for (i = 0 ; i < PDP_SIZE; i++) {
1300 l3_pd[i] = pmap->pm_pdirpa[i] | PG_V;
1301 }
1302
1303 if (interrupts_enabled)
1304 x86_enable_intr();
1305 tlbflush();
1306 #else /* PAE */
1307 lcr3(pmap_pdirpa(pmap, 0));
1308 #endif /* PAE */
1309 }
1310
1311 /*
1312 * Notify all other cpus to halt.
1313 */
1314
1315 void
1316 cpu_broadcast_halt(void)
1317 {
1318 x86_broadcast_ipi(X86_IPI_HALT);
1319 }
1320
1321 /*
1322 * Send a dummy ipi to a cpu to force it to run splraise()/spllower()
1323 */
1324
1325 void
1326 cpu_kick(struct cpu_info *ci)
1327 {
1328 x86_send_ipi(ci, 0);
1329 }
1330